[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.161.175.236. Please contact the publisher to request reinstatement.
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
[Skip to Content Landing]
Download PDF
Figure. Strategy for Management of Patients With Risk Factors for Contrast-Induced Nephropathy
Image description not available.

*See Box for listing of risk factors for contrast-induced nephropathy.

Table 1. Properties of Commonly Used Radiocontrast Media
Image description not available.
Table 2. Study Demographics and Clinical Characteristics: Hydration and Diuretics, Dopamine, Fenoldopam, and Theophylline/Aminophylline
Image description not available.
Table 3. Study Demographics and Clinical Characteristics: Calcium Channel Blockers and N-Acetylcysteine (NAC)
Image description not available.
Table 4. Study Demographics and Clinical Characteristics: Hemodialysis, Hemofiltration, and Other
Image description not available.
Table 5. Quality Assessment of the Included Studies
Image description not available.
1.
Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency.  Am J Kidney Dis. 2002;39:930-936PubMedArticle
2.
Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality: a cohort analysis.  JAMA. 1996;275:1489-1494PubMedArticle
3.
Rihal CS, Textor SC, Grill DE.  et al.  Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention.  Circulation. 2002;105:2259-2264PubMedArticle
4.
Shlipak MG, Heidenreich PA, Noguchi H, Chertow GM, Browner WS, McClellan MB. Association of renal insufficiency with treatment and outcomes after myocardial infarction in elderly patients.  Ann Intern Med. 2002;137:555-562PubMedArticle
5.
Best PJ, Lennon R, Ting HH.  et al.  The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions.  J Am Coll Cardiol. 2002;39:1113-1119PubMedArticle
6.
McCullough PA, Sandberg KR. Epidemiology of contrast-induced nephropathy.  Rev Cardiovasc Med. 2003;4:(suppl 5)  S3-S9PubMed
7.
Barrett BJ, Parfrey PS, Vavasour HM.  et al.  Contrast nephropathy in patients with impaired renal function: high versus low osmolar media.  Kidney Int. 1992;41:1274-1279PubMedArticle
8.
Lasser EC, Lyon SG, Berry CC. Reports on contrast media reactions: analysis of data from reports to the U.S. Food and Drug Administration.  Radiology. 1997;203:605-610PubMed
9.
Moore RD, Steinberg EP, Powe NR.  et al.  Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial.  Radiology. 1992;182:649-655PubMed
10.
Spargias K, Alexopoulos E, Kyrzopoulos S.  et al.  Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention.  Circulation. 2004;110:2837-2842PubMedArticle
11.
Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy.  AJR Am J Roentgenol. 2004;183:1673-1689PubMedArticle
12.
Rudnick MR, Berns JS, Cohen RM, Goldfarb S. Nephrotoxic risks of renal angiography: contrast media-associated nephrotoxicity and atheroembolism–a critical review.  Am J Kidney Dis. 1994;24:713-727PubMed
13.
Freeman RV, O'Donnell M, Share D.  et al.  Nephropathy requiring dialysis after percutaneous coronary intervention and the critical role of an adjusted contrast dose.  Am J Cardiol. 2002;90:1068-1073PubMedArticle
14.
Ashby DT, Mehran R, Aymong EA.  et al.  Comparison of outcomes in men versus women having percutaneous coronary interventions in small coronary arteries.  Am J Cardiol. 2003;91:979-981PubMedArticle
15.
Cochran ST, Wong WS, Roe DJ. Predicting angiography-induced acute renal function impairment: clinical risk model.  AJR Am J Roentgenol. 1983;141:1027-1033PubMedArticle
16.
Bartholomew BA, Harjai KJ, Dukkipati S.  et al.  Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification.  Am J Cardiol. 2004;93:1515-1519PubMedArticle
17.
Mehran R, Aymong ED, Nikolsky E.  et al.  A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation.  J Am Coll Cardiol. 2004;44:1393-1399PubMed
18.
Taliercio CP, Vlietstra RE, Fisher LD, Burnett JC. Risks for renal dysfunction with cardiac angiography.  Ann Intern Med. 1986;104:501-504PubMedArticle
19.
McCullough PA, Wolyn R, Rocher LL, Levin RN, O'Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality.  Am J Med. 1997;103:368-375PubMedArticle
20.
Gruberg L, Mehran R, Dangas G.  et al.  Acute renal failure requiring dialysis after percutaneous coronary interventions.  Catheter Cardiovasc Interv. 2001;52:409-416PubMedArticle
21.
Iakovou I, Dangas G, Mehran R.  et al.  Impact of gender on the incidence and outcome of contrast-induced nephropathy after percutaneous coronary intervention.  J Invasive Cardiol. 2003;15:18-22PubMed
22.
Nikolsky E, Aymong ED, Dangas G, Mehran R. Radiocontrast nephropathy: identifying the high-risk patient and the implications of exacerbating renal function.  Rev Cardiovasc Med. 2003;4:(suppl 1)  S7-S14PubMedArticle
23.
Nikolsky E, Mehran R, Lasic Z.  et al.  Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions.  Kidney Int. 2005;67:706-713PubMedArticle
24.
Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography.  N Engl J Med. 2003;348:491-499PubMedArticle
25.
Rudnick MR, Goldfarb S, Wexler L.  et al.  Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial: the Iohexol Cooperative Study.  Kidney Int. 1995;47:254-261PubMedArticle
26.
Barrett BJ, Parfrey PS, McDonald JR, Hefferton DM, Reddy ER, McManamon PJ. Nonionic low-osmolality versus ionic high-osmolality contrast material for intravenous use in patients perceived to be at high risk: randomized trial.  Radiology. 1992;183:105-110PubMed
27.
Harris KG, Smith TP, Cragg AH, Lemke JH. Nephrotoxicity from contrast material in renal insufficiency: ionic versus nonionic agents.  Radiology. 1991;179:849-852PubMed
28.
Schwab SJ, Hlatky MA, Pieper KS.  et al.  Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent.  N Engl J Med. 1989;320:149-153PubMedArticle
29.
Solomon R. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients.  Kidney Int. 2005;68:2256-2263PubMedArticle
30.
Sharma SK, Kini A. Effect of nonionic radiocontrast agents on the occurrence of contrast-induced nephropathy in patients with mild-moderate chronic renal insufficiency: pooled analysis of the randomized trials.  Catheter Cardiovasc Interv. 2005;65:386-393PubMedArticle
31.
Vlietstra RE, Nunn CM, Narvarte J, Browne KF. Contrast nephropathy after coronary angioplasty in chronic renal insufficiency.  Am Heart J. 1996;132:1049-1050PubMedArticle
32.
Davidson CJ, Hlatky M, Morris KG.  et al.  Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization: a prospective trial.  Ann Intern Med. 1989;110:119-124PubMedArticle
33.
Gruberg L, Mintz GS, Mehran R.  et al.  The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency.  J Am Coll Cardiol. 2000;36:1542-1548PubMedArticle
34.
Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography.  Am J Med. 1990;89:615-620PubMedArticle
35.
Parfrey PS, Griffiths SM, Barrett BJ.  et al.  Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both: a prospective controlled study.  N Engl J Med. 1989;320:143-149PubMedArticle
36.
Trivedi HS, Moore H, Nasr S.  et al.  A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity.  Nephron Clin Pract. 2003;93:C29-C34PubMedArticle
37.
Mueller C, Buerkle G, Buettner HJ.  et al.  Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty.  Arch Intern Med. 2002;162:329-336PubMedArticle
38.
Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents.  N Engl J Med. 1994;331:1416-1420PubMedArticle
39.
Gill NK, Piccione EA, Vido DA, Clark BA, Shannon RP. Gender as a risk factor for contrast nephropathy: effects of hydration and N-acetylcysteine.  Clin Cardiol. 2004;27:554-558PubMedArticle
40.
Mueller C, Buerkle G, Perruchoud AP, Buettner HJ. Female sex and risk of contrast nephropathy after percutaneous coronary intervention.  Can J Cardiol. 2004;20:505-509PubMed
41.
Maeder M, Klein M, Fehr T, Rickli H. Contrast nephropathy: review focusing on prevention.  J Am Coll Cardiol. 2004;44:1763-1771PubMedArticle
42.
Parfrey P. The clinical epidemiology of contrast-induced nephropathy.  Cardiovasc Intervent Radiol. 2005;28:(suppl 2)  S3-S11PubMedArticle
43.
Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media.  Radiology. 1993;188:171-178PubMed
44.
Marenzi G. Can contrast-induced nephropathy after percutaneous coronary intervention be accurately predicted with a risk score?  Nat Clin Pract Cardiovasc Med. 2005;2:80-81PubMedArticle
45.
Marenzi G, Lauri G, Assanelli E.  et al.  Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction.  J Am Coll Cardiol. 2004;44:1780-1785PubMedArticle
46.
Bader BD, Berger ED, Heede MB.  et al.  What is the best hydration regimen to prevent contrast media-induced nephrotoxicity?  Clin Nephrol. 2004;62:1-7PubMed
47.
Krasuski RA, Beard BM, Geoghagan JD, Thompson CM, Guidera SA. Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study.  J Invasive Cardiol. 2003;15:699-702PubMed
48.
Merten GJ, Burgess WP, Gray LV.  et al.  Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial.  JAMA. 2004;291:2328-2334PubMedArticle
49.
Stevens MA, McCullough PA, Tobin KJ.  et al.  A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: results of the P.R.I.N.C.E. Study.  J Am Coll Cardiol. 1999;33:403-411PubMedArticle
50.
Taylor AJ, Hotchkiss D, Morse RW, McCabe J. PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction.  Chest. 1998;114:1570-1574PubMedArticle
51.
Weinstein J-M, Heyman S, Brezis M. Potential deleterious effect of furosemide in radiocontrast nephropathy.  Nephron. 1992;62:413-415PubMedArticle
52.
Gare M, Haviv YS, Ben Yehuda A.  et al.  The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography.  J Am Coll Cardiol. 1999;34:1682-1688PubMedArticle
53.
Hans SS, Hans BA, Dhillon R, Dmuchowski C, Glover J. Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency.  Am Surg. 1998;64:432-436PubMed
54.
Weisberg LS, Kurnik PB, Kurnik BR. Risk of radiocontrast nephropathy in patients with and without diabetes mellitus.  Kidney Int. 1994;45:259-265PubMedArticle
55.
Allaqaband S, Tumuluri R, Malik AM.  et al.  Prospective randomized study of N-acetylcysteine, fenoldopam, and saline for prevention of radiocontrast-induced nephropathy.  Catheter Cardiovasc Interv. 2002;57:279-283PubMedArticle
56.
Briguori C, Colombo A, Airoldi F.  et al.  N-acetylcysteine versus fenoldopam mesylate to prevent contrast agent-associated nephrotoxicity.  J Am Coll Cardiol. 2004;44:762-765PubMedArticle
57.
Ng TM, Shurmur SW, Silver M, Nissen LR.  et al.  Comparison of N-acetylcysteine and fenoldopam for preventing contrast-induced nephropathy (CAFCIN).  Int J Cardiol. 2006;109:322-328PubMedArticle
58.
Stone GW, McCullough PA, Tumlin JA.  et al.  Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial.  JAMA. 2003;290:2284-2291PubMedArticle
59.
Tumlin JA, Wang A, Murray PT, Mathur VS. Fenoldopam mesylate blocks reductions in renal plasma flow after radiocontrast dye infusion: a pilot trial in the prevention of contrast nephropathy.  Am Heart J. 2002;143:894-903PubMedArticle
60.
Abizaid AS, Clark CE, Mintz GS.  et al.  Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency.  Am J Cardiol. 1999;83:260-263PubMedArticle
61.
Erley CM, Duda SH, Schlepckow S.  et al.  Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application.  Kidney Int. 1994;45:1425-1431PubMedArticle
62.
Erley CM, Duda SH, Rehfuss D.  et al.  Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline.  Nephrol Dial Transplant. 1999;14:1146-1149PubMedArticle
63.
Gandhi MR, Brown P, Romanowski CA.  et al.  The use of theophylline, an adenosine antagonist in the prevention of contrast media induced nephrotoxicity.  Br J Radiol. 1992;65:838PubMedArticle
64.
Huber W, Ilgmann K, Page M.  et al.  Effect of theophylline on contrast material-nephropathy in patients with chronic renal insufficiency: controlled, randomized, double-blinded study.  Radiology. 2002;223:772-779PubMedArticle
65.
Huber W, Schipek C, Ilgmann K.  et al.  Effectiveness of theophylline prophylaxis of renal impairment after coronary angiography in patients with chronic renal insufficiency.  Am J Cardiol. 2003;91:1157-1162PubMedArticle
66.
Kapoor A, Kumar S, Gulati S, Gambhir S, Sethi RS, Sinha N. The role of theophylline in contrast-induced nephropathy: a case-control study.  Nephrol Dial Transplant. 2002;17:1936-1941PubMedArticle
67.
Katholi RE, Taylor GJ, McCann WP.  et al.  Nephrotoxicity from contrast media: attenuation with theophylline.  Radiology. 1995;195:17-22PubMed
68.
Kolonko A, Wiecek A, Kokot F. The nonselective adenosine antagonist theophylline does prevent renal dysfunction induced by radiographic contrast agents.  J Nephrol. 1998;11:151-156PubMed
69.
Arici M, Usalan C, Altun B.  et al.  Radiocontrast-induced nephrotoxicity and urinary alpha-glutathione S-transferase levels: effect of amlodipine administration.  Int Urol Nephrol. 2003;35:255-261PubMedArticle
70.
Carraro M, Mancini W, Artero M.  et al.  Dose effect of nitrendipine on urinary enzymes and microproteins following non-ionic radiocontrast administration.  Nephrol Dial Transplant. 1996;11:444-448PubMedArticle
71.
Khoury Z, Schlicht JR, Como J.  et al.  The effect of prophylactic nifedipine on renal function in patients administered contrast media.  Pharmacotherapy. 1995;15:59-65PubMed
72.
Azmus AD, Gottschall C, Manica A.  et al.  Effectiveness of acetylcysteine in prevention of contrast nephropathy.  J Invasive Cardiol. 2005;17:80-84PubMed
73.
Baker CS, Wragg A, Kumar S, De Palma R, Baker LR, Knight CJ. A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study.  J Am Coll Cardiol. 2003;41:2114-2118PubMedArticle
74.
Briguori C, Manganelli F, Scarpato P.  et al.  Acetylcysteine and contrast agent-associated nephrotoxicity.  J Am Coll Cardiol. 2002;40:298-303PubMedArticle
75.
Diaz-Sandoval LJ, Kosowsky BD, Losordo DW. Acetylcysteine to prevent angiography-related renal tissue injury (the APART trial).  Am J Cardiol. 2002;89:356-358PubMedArticle
76.
Drager LF, Andrade L, Barros de Toledo JF, Laurindo FR, Machado Cesar LA, Seguro AC. Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury.  Nephrol Dial Transplant. 2004;19:1803-1807PubMedArticle
77.
Durham JD, Caputo C, Dokko J.  et al.  A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography.  Kidney Int. 2002;62:2202-2207PubMedArticle
78.
Efrati S, Dishy V, Averbukh M.  et al.  The effect of N-acetylcysteine on renal function, nitric oxide, and oxidative stress after angiography.  Kidney Int. 2003;64:2182-2187PubMedArticle
79.
Fung JW, Szeto CC, Chan WW.  et al.  Effect of N-acetylcysteine for prevention of contrast nephropathy in patients with moderate to severe renal insufficiency: a randomized trial.  Am J Kidney Dis. 2004;43:801-808PubMedArticle
80.
Goldenberg I, Shechter M, Matetzky S.  et al.  Oral acetylcysteine as an adjunct to saline hydration for the prevention of contrast-induced nephropathy following coronary angiography: a randomized controlled trial and review of the current literature.  Eur Heart J. 2004;25:212-218PubMedArticle
81.
Gomes VO, Poli de Figueredo CE, Caramori P.  et al.  N-acetylcysteine does not prevent contrast induced nephropathy after cardiac catheterisation with an ionic low osmolality contrast medium: a multicentre clinical trial.  Heart. 2005;91:774-778PubMedArticle
82.
Gulel O, Keles T, Eraslan H, Aydogdu S, Diker E, Ulusoy V. Prophylactic acetylcysteine usage for prevention of contrast nephropathy after coronary angiography.  J Cardiovasc Pharmacol. 2005;46:464-467PubMedArticle
83.
Kay J, Chow WH, Chan TM.  et al.  Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial.  JAMA. 2003;289:553-558PubMedArticle
84.
Kotlyar E, Keogh AM, Thavapalachandran S.  et al.  Prehydration alone is sufficient to prevent contrast-induced nephropathy after day-only angiography procedures—a randomised controlled trial.  Heart Lung Circ. 2005;14:245-251PubMedArticle
85.
MacNeill BD, Harding SA, Bazari H.  et al.  Prophylaxis of contrast-induced nephropathy in patients undergoing coronary angiography.  Catheter Cardiovasc Interv. 2003;60:458-461PubMedArticle
86.
Miner SE, Dzavik V, Nguyen-Ho P.  et al.  N-acetylcysteine reduces contrast-associated nephropathy but not clinical events during long-term follow-up.  Am Heart J. 2004;148:690-695PubMedArticle
87.
Ochoa A, Pellizzon G, Addala S.  et al.  Abbreviated dosing of N-acetylcysteine prevents contrast-induced nephropathy after elective and urgent coronary angiography and intervention.  J Interv Cardiol. 2004;17:159-165PubMedArticle
88.
Oldemeyer JB, Biddle WP, Wurdeman RL, Mooss AN, Cichowski E, Hilleman DE. Acetylcysteine in the prevention of contrast-induced nephropathy after coronary angiography.  Am Heart J. 2003;146:E23PubMedArticle
89.
Rashid ST, Salman M, Myint F.  et al.  Prevention of contrast-induced nephropathy in vascular patients undergoing angiography: a randomized controlled trial of intravenous N-acetylcysteine.  J Vasc Surg. 2004;40:1136-1141PubMedArticle
90.
Shyu KG, Cheng JJ, Kuan P. Acetylcysteine protects against acute renal damage in patients with abnormal renal function undergoing a coronary procedure.  J Am Coll Cardiol. 2002;40:1383-1388PubMedArticle
91.
Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine.  N Engl J Med. 2000;343:180-184PubMedArticle
92.
Webb JG, Pate GE, Humphries KH.  et al.  A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: lack of effect.  Am Heart J. 2004;148:422-429PubMedArticle
93.
Briguori C, Colombo A, Violante A.  et al.  Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity.  Eur Heart J. 2004;25:206-211PubMedArticle
94.
Frank H, Werner D, Lorusso V.  et al.  Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced-nephropathy in chronic renal failure.  Clin Nephrol. 2003;60:176-182PubMed
95.
Lehnert T, Keller E, Gondolf K, Schaffner T, Pavenstadt H, Schollmeyer P. Effect of haemodialysis after contrast medium administration in patients with renal insufficiency.  Nephrol Dial Transplant. 1998;13:358-362PubMedArticle
96.
Sterner G, Frennby B, Kurkus J, Nyman U. Does post-angiographic hemodialysis reduce the risk of contrast-medium nephropathy?  Scand J Urol Nephrol. 2000;34:323-326PubMedArticle
97.
Vogt B, Ferrari P, Schonholzer C.  et al.  Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful.  Am J Med. 2001;111:692-698PubMedArticle
98.
Marenzi G, Marana I, Lauri G.  et al.  The prevention of radiocontrast-agent-induced nephropathy by hemofiltration.  N Engl J Med. 2003;349:1333-1340PubMedArticle
99.
Marenzi G, Lauri G, Campodonico J.  et al.  Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients.  Am J Med. 2006;119:155-162PubMedArticle
100.
Albert SG, Shapiro MJ, Brown WW.  et al.  Analysis of radiocontrast-induced nephropathy by dual-labeled radionuclide clearance.  Invest Radiol. 1994;29:618-623PubMedArticle
101.
Gupta RK, Kapoor A, Tewari S, Sinha N, Sharma RK. Captopril for prevention of contrast-induced nephropathy in diabetic patients: a randomised study.  Indian Heart J. 1999;51:521-526PubMed
102.
Koch JA, Plum J, Grabensee B, Modder U. Prostaglandin E1: a new agent for the prevention of renal dysfunction in high risk patients caused by radiocontrast media? PGE1 Study Group.  Nephrol Dial Transplant. 2000;15:43-49PubMedArticle
103.
Kurnik BRC, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS. Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy.  Am J Kidney Dis. 1998;31:674-680PubMedArticle
104.
Liss P, Eklof H, Hellbert O.  et al.  Renal effects of CO2 and iodinated contrast media in patients undergoing renovascular intervention: a prospective, randomized study.  J Vasc Interv Radiol. 2005;16:57-65PubMedArticle
105.
Miller HI, Dascalu A, Rassin TA, Wollman Y, Chernichowsky T, Iaina A. Effects of an acute dose of L-arginine during coronary angiography in patients with chronic renal failure: a randomized, parallel, double-blind clinical trial.  Am J Nephrol. 2003;23:91-95PubMedArticle
106.
Russo D, Minutolo R, Cianciaruso B, Memoli B, Conte G, De Nicola L. Early effects of contrast media on renal hemodynamics and tubular function in chronic renal failure.  J Am Soc Nephrol. 1995;6:1451-1458PubMed
107.
Wang A, Holcslaw T, Bashore TM.  et al.  Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism.  Kidney Int. 2000;57:1675-1680PubMedArticle
108.
Katzberg RW, Morris TW, Schulman G.  et al.  Reactions to intravenous contrast media, part II: acute renal response in euvolemic and dehydrated dogs.  Radiology. 1983;147:331-334PubMed
109.
Asif A, Epstein DL, Epstein M. Dopamine-1 receptor agonist: renal effects and its potential role in the management of radiocontrast-induced nephropathy.  J Clin Pharmacol. 2004;44:1342-1351PubMedArticle
110.
Bagshaw SM, Ghali WA. Theophylline for prevention of contrast-induced nephropathy: a systematic review and meta-analysis.  Arch Intern Med. 2005;165:1087-1093PubMedArticle
111.
Arstall MA, Yang J, Stafford I, Betts WH, Horowitz JD. N-acetylcysteine in combination with nitroglycerin and streptokinase for the treatment of evolving acute myocardial infarction: safety and biochemical effects.  Circulation. 1995;92:2855-2862PubMedArticle
112.
Brunet J, Boily MJ, Cordeau S, Des RC. Effects of N-acetylcysteine in the rat heart reperfused after low-flow ischemia: evidence for a direct scavenging of hydroxyl radicals and a nitric oxide-dependent increase in coronary flow.  Free Radic Biol Med. 1995;19:627-638PubMedArticle
113.
Safirstein R, Andrade L, Vieira JM. Acetylcysteine and nephrotoxic effects of radiographic contrast agents—a new use for an old drug.  N Engl J Med. 2000;343:210-212PubMedArticle
114.
Pannu N, Manns B, Lee H, Tonelli M. Systematic review of the impact of N-acetylcysteine on contrast nephropathy.  Kidney Int. 2004;65:1366-1374PubMedArticle
115.
Bagshaw SM, Ghali WA. Acetylcysteine for prevention of contrast-induced nephropathy after intravascular angiography: a systematic review and meta-analysis.  BMC Med. 2004;2:38PubMedArticle
116.
Liu R, Nair D, Ix J, Moore DH, Bent S. N-acetylcysteine for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis.  J Gen Intern Med. 2005;20:193-200PubMedArticle
117.
Duong MH, MacKenzie TA, Malenka DJ. N-acetylcysteine prophylaxis significantly reduces the risk of radiocontrast-induced nephropathy: comprehensive meta-analysis.  Catheter Cardiovasc Interv. 2005;64:471-479PubMedArticle
118.
Nallamothu BK, Shojania KG, Saint S.  et al.  Is acetylcysteine effective in preventing contrast-related nephropathy? a meta-analysis.  Am J Med. 2004;117:938-947PubMedArticle
119.
Birck R, Krzossok S, Markowetz F, Schnulle P, van der Woude FJ, Braun C. Acetylcysteine for prevention of contrast nephropathy: meta-analysis.  Lancet. 2003;362:598-603PubMedArticle
120.
Isenbarger DW, Kent SM, O'Malley PG. Meta-analysis of randomized clinical trials on the usefulness of acetylcysteine for prevention of contrast nephropathy.  Am J Cardiol. 2003;92:1454-1458PubMedArticle
121.
Alonso A, Lau J, Jaber BL, Weintraub A, Sarnak MJ. Prevention of radiocontrast nephropathy with N-acetylcysteine in patients with chronic kidney disease: a meta-analysis of randomized, controlled trials.  Am J Kidney Dis. 2004;43:1-9PubMedArticle
122.
Misra D, Leibowitz K, Gowda RM, Shapiro M, Khan IA. Role of N-acetylcysteine in prevention of contrast-induced nephropathy after cardiovascular procedures: a meta-analysis.  Clin Cardiol. 2004;27:607-610PubMedArticle
123.
Kshirsagar AV, Poole C, Mottl A.  et al.  N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a meta-analysis of prospective controlled trials.  J Am Soc Nephrol. 2004;15:761-769PubMedArticle
124.
Guru V, Fremes SE. The role of N-acetylcysteine in preventing radiographic contrast-induced nephropathy.  Clin Nephrol. 2004;62:77-83PubMed
125.
Zagler A, Azadpour M, Mercado C, Hennekens CH. N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials.  Am Heart J. 2006;151:140-145PubMedArticle
126.
Ueda J, Furukawa T, Higashino K, Takahashi S, Araki Y, Sakaguchi K. Elimination of iomeprol by hemodialysis.  Eur J Radiol. 1996;23:197-200PubMedArticle
127.
Furukawa T, Ueda J, Takahashi S, Sakaguchi K. Elimination of low-osmolality contrast media by hemodialysis.  Acta Radiol. 1996;37:966-971PubMedArticle
128.
Waaler A, Svaland M, Fauchald P, Jakobsen JA, Kolmannskog F, Berg KJ. Elimination of iohexol, a low osmolar nonionic contrast medium, by hemodialysis in patients with chronic renal failure.  Nephron. 1990;56:81-85PubMedArticle
129.
Klarenbach SW, Pannu N, Tonelli MA, Manns BJ. Cost-effectiveness of hemofiltration to prevent contrast nephropathy in patients with chronic kidney disease.  Crit Care Med. 2006;34:1044-10517PubMedArticle
130.
Thomsen HS. How to avoid CIN: guidelines from the European Society of Urogenital Radiology.  Nephrol Dial Transplant. 2005;20:(suppl 1)  i18-i22PubMedArticle
Clinical Review
Clinician's Corner
June 21, 2006

Prophylaxis Strategies for Contrast-Induced Nephropathy

Author Affiliations
 

Clinical Review Section Editor: Michael S. Lauer, MD. We encourage authors to submit papers for consideration as a Clinical Review. Please contact Michael S. Lauer, MD, at lauerm@ccf.org.

 

Author Affiliations: Department of Medicine, Division of Nephrology (Drs Pannu and Tonelli and Ms Wiebe), Division of Critical Care (Drs Pannu and Tonelli), and Institute of Health Economics (Dr Tonelli), University of Alberta, Edmonton.

JAMA. 2006;295(23):2765-2779. doi:10.1001/jama.295.23.2765
Context

Context Contrast-induced nephropathy is associated with significant economic and clinical consequences, including prolonged hospitalization, the requirement for dialysis, and an increased risk of death.

Objectives To summarize the current state of evidence for prophylaxis of contrast-induced nephropathy, provide evidence-based recommendations regarding management of high-risk patients undergoing angiographic procedures, and identify new avenues for research.

Data Sources Systematic searches of peer-reviewed publications were performed in MEDLINE, EMBASE, and the Cochrane database from 1966 to January 2006. Search terms included radio contrast nephropathy, contrast media, acetylcysteine, theophylline, sodium bicarbonate, HMG Co-A reductase inhibitors, ascorbic acid, kidney diseases, renal insufficiency, kidney failure, nephropathy, fenoldopam, diuretics, and saline or half saline.

Study Selection Observational studies of risk factors and randomized controlled trials of prophylaxis strategies for contrast-induced nephropathy that specified a definition of contrast-induced nephropathy or postprocedure creatinine level as an outcome measure.

Evidence Synthesis Important patient-related risk factors for contrast-induced nephropathy include chronic kidney disease, diabetes mellitus, heart failure, older age, anemia, and left ventricular systolic dysfunction. Non–patient-related risk factors include high-osmolar contrast, ionic contrast, contrast viscosity, and contrast volume. Practice guidelines recommend obtaining preprocedural serum creatinine levels among patients with renal disease, diabetes, proteinuria, hypertension, gout, or congestive heart failure. Available evidence, largely based on small- to medium-sized trials, supports the use of hydration, bicarbonate, and low volumes of iso- or low-osmolar contrast in patients at risk. N-acetylcysteine or ascorbic acid may be of value in very high-risk patients.

Conclusions While several risk factors for contrast-induced nephropathy have been identified, the development of an effective prophylaxis strategy for contrast-induced nephropathy has been limited by our poor understanding of the pathophysiology and the clinical significance of this condition. Future research should focus on correctly identifying higher-risk patients and testing therapies in the setting of large well-powered clinical trials.

Nephropathy induced by contrast media is a recognized complication of diagnostic and therapeutic procedures requiring parenteral administration of contrast and is the third leading cause of hospital-acquired acute renal failure, accounting for 12% of cases.1 Contrast-induced nephropathy is associated with significant consequences, including prolonged hospitalization, the requirement for dialysis, and an increased risk of death.2,3 Clinical outcomes associated with acute renal failure following cardiac catheterization can be catastrophic, with an in-hospital mortality rate of 20% in unselected patients and a 1-year mortality rate of up to 66% in patients with acute myocardial infarction and preexisting renal dysfunction.35

This review will critically evaluate current evidence for strategies to prevent contrast-induced nephropathy, present an evidence-based approach to this clinically important problem, and identify key areas for future research.

METHODS

A literature search was performed for English-language journal articles reporting risk factors for contrast nephropathy. We searched MEDLINE and EMBASE to identify publications from 1966 to January 2006, using the key terms radio contrast nephropathy, contrast media, risk, diabetes, nephrotoxicity, creatinine, coronary disease, coronary procedures, dehydration, and hypovolemia. A total of 59 studies were identified by the authors as being potentially relevant.

A separate literature search was performed for English-language clinical trials in contrast nephropathy. We searched MEDLINE and EMBASE to identify trials from 1966 to January 2006, using the key terms radio contrast nephropathy, contrast media, acetylcysteine, theophylline, sodium bicarbonate, HMG Co-A reductase inhibitors, ascorbic acid, kidney diseases, renal insufficiency, kidney failure, nephropathy, fenoldopam, saline, and diuretics. The citations of existing reviews and trials identified were evaluated by 2 reviewers to identify pertinent trials. Any study considered relevant by one or both reviewers was retrieved for further consideration. A total of 331 studies were identified as potentially relevant, of which 63 were randomized controlled trials (RCTs) of prophylaxis strategies for contrast-induced nephropathy. Criteria for study selection were publication in a peer-reviewed journal, controlled study design, and English language. Quality assessment was based on concealment of treatment allocation, double-blind design, intention-to-treat analysis, and rate of loss to follow-up.

DEFINITIONS AND EPIDEMIOLOGY

Quiz Ref IDAlthough there is no universally accepted definition, contrast-induced nephropathy refers to the development of acute renal impairment following the intravascular administration of radiocontrast in the absence of other identifiable causes of renal failure. Most studies have used a 25% elevation in serum creatinine (SCr) or an absolute increase of 0.5 mg/dL (44 μmol/L) 2 to 7 days following contrast administration. Although relatively mild, these changes in kidney function are associated with clinically important adverse short- and long-term outcomes.2,3,6,7 The causal pathway linking the development of contrast-induced nephropathy to adverse cardiovascular outcomes has not been established. Whether contrast-induced nephropathy is directly responsible for the observed increase in mortality, or is simply a marker for illness acuity and/or comorbidity, remains unknown.

Based on these definitions, the incidence of contrast nephropathy in patients undergoing diagnostic interventions requiring contrast is low (1.6%-2.3%).8 Intra-arterial administration of radiocontrast might be more likely to lead to contrast-induced nephropathy than the intravenous route,9 although other causes of acute renal failure (such as atheroemboli) may also be triggered by arteriography. The incidence of contrast-induced nephropathy is dependent on the definition and is considerably lower when cases are defined based on a greater absolute increase in SCr level, or if the postprocedure SCr measurement is obtained earlier.10 Acute renal failure due to contrast-induced nephropathy is generally nonoliguric and reversible. In most cases, the SCr level peaks between 2 and 5 days after contrast exposure and returns to normal within 14 days.11,12 Registry data report the incidence of contrast-induced nephropathy requiring dialysis treatment to be approximately 0.4%.13

RISK FACTORS

The most commonly identified risk factors for contrast-induced nephropathy are listed in the Box. Most have been identified through retrospective analysis of databases cataloging coronary angiographic procedures. Unfortunately, periprocedural hydration and an accurate assessment of comorbidity have rarely been captured in these data sources, so estimates of the risk attributable to individual factors are unreliable.

Box Section Ref IDBox. Risk Factors for Contrast-Induced Nephropathy

Patient Related

  • Chronic kidney disease3,1319

  • Diabetes mellitus13,16,17,19

  • Urgent/elective procedure16

  • Intra-aortic balloon pump16,17,20

  • Congestive heart failure13,15,17,20

  • Age3,17

  • Hypertension21,22

  • Low hematocrit17,23

  • Hypotension17,22

  • Left ventricular ejection fraction <40%22

Not Patient Related

  • Contrast properties

    High osmolar contrast7,24

    Ionic contrast2528

    Contrast viscosity29,30

  • Contrast volume3,13,1619,3134

Patient-Related Factors

Patients with diabetes and chronic kidney disease appear to be at the highest risk for developing contrast-induced nephropathy. These patients have reported rates of contrast-induced nephropathy that are approximately 4-fold higher than those without diabetes or preexisting renal impairment.25,35

Quiz Ref IDHypovolemia and/or decreased effective circulating volume are well-recognized risk factors for contrast-induced nephropathy, but have never been directly assessed in clinical trials. Indirect evidence comes from studies that show a benefit of intravenous hydration36,37 and the deleterious effect of diuretics.38 Conditions resulting in a low effective circulating volume such as cardiogenic shock,16 use of an intra-aortic balloon pump,16,17,20 hypotension,17,22 congestive heart failure (CHF),13,15,17,20 and ejection fraction less than 40%22 are also identified risk factors for contrast-induced nephropathy.

Female sex is a frequently cited14,21,39 but somewhat controversial risk factor for contrast-induced nephropathy. A more recent analysis of 1383 patients40 suggests that women may have unfavorable baseline characteristics (older age, more frequent hypertension and diabetes, lower baseline kidney function) that put them at risk for contrast-induced nephropathy. After adjustment for these confounders, female sex did not appear to independently increase risk.

Non–Patient-Related Factors

Radiocontrast media are frequently classified on the basis of osmolality, which is determined by the ratio of iodine atoms to osmotically active particles.41,42 A comparison of commonly used radiocontrast agents is presented in Table 1.

A direct correlation between osmolality and nephrotoxicity is well established in contrast agents with an osmolality greater than 780 mOsm/kg. A 1992 meta-analysis43 pooling data from 25 randomized trials showed that the risk of contrast nephropathy was significantly greater with high-osmolality (>1400 mOsm/kg) radiocontrast agents in patients with preexisting renal disease.

While the previously publicized findings of a study comparing iohexol (a low-osmolar agent [600-800 mOsm/kg]) with iodixanol (an iso-osmolar agent [290 mOsm/kg]) initially suggested additional nephroprotection with a further reduction in radiocontrast osmolality,24 the differing physicochemical properties of radiocontrast agents may in fact be a more important mediator of nephrotoxicity. Pooled analyses evaluating the nephrotoxicity of differing contrast agents used in recent randomized interventional trials29,30 showed that iohexol was associated with a significantly increased risk of developing contrast-induced nephropathy compared with either iopamidol (another agent with similar osmolality) or iodixanol (an iso-osmolar radiocontrast agent) (contrast-induced nephropathy 25% vs 13.5% and 11%, respectively; both P<.05). More importantly, there was no significant difference in the reported rates of contrast nephropathy associated with iopamidol and iodixanol, which can perhaps be explained by the increased viscosity of iodixanol relative to many of the low-osmolar agents.

Whether ionic compounds are more nephrotoxic than nonionic compounds remains somewhat controversial, as previous studies are frequently confounded by differences in osmolality. Several randomized trials of ionic vs nonionic contrast showed no difference in rates of contrast-induced nephropathy.2528 However, post hoc analysis of one study did demonstrate that patients with preexisting renal dysfunction were less likely to develop contrast-induced nephropathy when nonionic radiocontrast media was used.25

RISK STRATIFICATION

Several attempts have been made to develop a clinical tool for the purposes of risk stratification,13,1517,44,45 but none have been validated prospectively or in other databases. In addition, none of the databases captured comorbidity or prophylactic interventions to prevent contrast nephropathy such as the administration of hydration. As all risk scores were derived from patients undergoing coronary angiography, they may not specifically apply to the use of parenterally administered contrast in other settings (ie, intravenous contrast).

Two risk scores16,17 for contrast-induced nephropathy developed from large interventional cardiology databases may be the most generalizable to this patient population. Bartholomew et al16 (n = 20 479) identified 8 variables that were associated with contrast-induced nephropathy (creatinine clearance <60 mL/min [1.0 mL/s], use of an intra-aortic ballon pump, urgent coronary procedure, diabetes, CHF, hypertension, peripheral vascular disease, contrast volume) and created 4 risk categories based on their analysis. They defined contrast-induced nephropathy as a greater than 1 mg/dL [88.4 μmol/L] rise in SCr with no specified time frame for post SCr measurement. By this definition, contrast-induced nephropathy occurred in 2% of patients. Patients in the highest risk group had a 28% risk of developing contrast nephropathy and a 17% risk of death. Mehran and colleagues17 (n = 8357) identified 3 additional characteristics that were associated with increased risk: older age, the presence of hypotension, and anemia. They used a less stringent definition of contrast-induced nephropathy (change in SCr ≥25% or ≥0.5 mg/dL [44.2 μmol/L] at 48 hours), which may partially account for the higher reported incidence of contrast-induced nephropathy (13.1%).

PROPHYLAXIS STRATEGIES

The mechanism by which contrast agents produce nephrotoxicity is poorly understood but probably includes a reduction in renal perfusion resulting in regional hypoxia, as well as direct tubular toxicity. Therapies studied to date have targeted renal vasoconstriction and hypoxia-induced oxidative stress with limited success.

Table 2, Table 3, and Table 4 summarize all identified RCTs investigating prophylaxis strategies for contrast-induced nephropathy. Most studies were small and were consequently underpowered to detect a clinically significant benefit. Few studies present sample size or power calculations, and most were not double-blinded (Table 5). Many were not analyzed as intention to treat, and loss to follow-up was rarely reported (Table 5).

Hydration

Early studies evaluating the renal effects of radiocontrast administration in dogs demonstrated a reduction in renal perfusion lasting up to 20 hours after radiocontrast administration.108 While no RCT has studied the benefits of hydration alone, it seems plausible that adequate hydration may counteract some of the putative hemodynamic effects that may lead to contrast-induced nephropathy.

We identified 10 studies that evaluated the effects of various hydration protocols and diuretics in the incidence of contrast-induced nephropathy. Four studies38,49,51,54 compared forced diuresis (furosemide and/or mannitol) with hydration, of which 3 showed a significant increase in the rate of contrast-induced nephropathy in the groups receiving diuretics. Two studies46,47 evaluated bolus intravenous infusions of 0.9% saline (250-300 mL) immediately before or during cardiac catheterization vs slow intravenous hydration 12 hours prior to the procedure. Neither found a significant difference between treatment groups; however, both studies were small (n = 39 and n = 37) and the event rates were low. Two additional studies36,50 compared oral hydration with prolonged intravenous hydration (12 hours before and after) and found contradictory results. Taylor et al50 (n = 36) found no difference between treatment groups, although the oral hydration group in this study received 6 hours of intravenous hydration in addition to their oral intake. Trivedi et al36 (n = 53) found that oral hydration alone appeared to be inferior to intravenous hydration with respect to the development of contrast-induced nephropathy (34.6% vs 3.7%; P = .005) in patients with normal renal function undergoing cardiac catheterization. Interestingly, the incidence of contrast-induced nephropathy in the oral hydration group was much higher than expected in this patient population.

In addition to timing and route of hydration, other factors, such as fluid tonicity and fluid composition, may also play a role. Single studies supporting the use of isotonic vs half isotonic saline37 and sodium bicarbonate48 suggest that isotonic fluids may be superior to hypotonic fluids, likely because of their enhanced ability to expand intravascular volume. Sodium bicarbonate may provide additional renoprotection by alkalinizing renal tubular fluid and thereby minimizing tubular damage.

Quiz Ref IDIn summary, there is suggestive, but incomplete, evidence supporting the use of hydration as a prophylaxis measure for contrast-induced nephropathy. Questions still remain about whether all patients benefit equally from this treatment, as well as the optimal type, route, volume, and timing of hydration administration. Although hydration is a generally benign therapy, it is logistically challenging to implement, as most angiographic procedures are performed on outpatients (in whom 6 to 12 hours of preprocedural hydration may not be possible). These issues deserve further study.

Vasodilators

Dopamine/Fenoldopam. The benefits of vasodilation and increased renal blood flow associated with “renal dose” dopamine were studied in 4 RCTs,5254,60 evaluating a variety of patients with both normal and impaired baseline renal function. While not directly comparable (all used different definitions of contrast-induced nephropathy), none showed a benefit of dopamine administration. Currently, there is no basis for the use of dopamine in preventing contrast-induced nephropathy.

Fenoldopam, a dopamine-1 receptor agonist with vasodilatory properties, has also been extensively studied. Three randomized trials55,58,59 (416 participants) have compared fenoldopam with placebo. The relative risk of contrast-induced nephropathy in one trial favored fenoldopam55 but was not significant. Continued interest in fenoldopam has persisted, despite the lack of benefit shown in the CONTRAST trial.58 Additional randomized studies comparing fenoldopam with N-acetylcysteine56,57 found no benefit associated with the use of fenoldopam.

Critics argue that the doses of dopamine and fenoldopam used in these trials may have been insufficient to produce renal vasodilation.109 Despite this, we do not feel that further studies are warranted, given the significant adverse effect profile of these drugs (ie, dopamine: arrhythmias; fenoldopam: systemic hypotension) and the difficulties associated with intravenous administration.

Theophylline. Small studies of theophylline as a potential prophylaxis agent for contrast nephropathy have yielded conflicting results. To date there have been 9 trials6068 (601 participants) comparing theophylline or aminophylline with no active treatment. Relative risks for contrast-induced nephropathy ranged from 0.07 to 1.7 (median, 0.25). Three of 5 favored theophylline (one was statistically significant). Differences in mean change from baseline in SCr level between treatment groups ranged from −0.29 to 0 mg/dL (median, −0.14 mg/dL). Six of 8 trials reporting outcomes of contrast-induced nephropathy or a change in SCr favored theophylline/aminophylline therapy (2 were statistically significant).

Meta-analysis has identified considerable heterogeneity among the studies.110 There was variability in the inclusion criteria, the method and schedule of theophylline/aminophylline administration, hydration protocols, and the type of contrast administered. Few of the trials compared the incidence of adverse events between treatment groups. We are unable to recommend theophylline as a prophylaxis agent based on the currently available data.

Calcium Channel Blockers/Other Agents. Three small RCTs of calcium channel blockers vs placebo6971 (240 participants in total) in patients with normal renal function who received contrast media showed no difference between treatment groups. However, these trials lacked sufficient statistical power to detect clinically significant outcomes. Small underpowered trials of other agents with vasodilating properties such as atrial natriuretic peptide,103 an endothelin antagonist,107 prostaglandin E1,102 angiotensin-converting enzyme inhibitors,101,106 and L-arginine105 have shown no benefit, and in some cases, potential harm107 with the use of these agents.

Antioxidants

N-Acetylcysteine.N-acetylcysteine has been the most widely studied of all prophylaxis strategies, although the mechanism for its purported nephroprotective action is unclear. N-acetylcysteine might act by scavenging oxygen free radicals111,112 or by enhancing the vasodilatory effects of nitric oxide.113

We identified 22 trials7293 (2918 participants) comparing N-acetylcysteine with placebo. Relative risks for contrast-induced nephropathy ranged from 0.11 to 1.5 (median, 0.72). Eleven of 20 trials that reported contrast-induced nephropathy and 13 of 20 trials that reported a change in SCr level as an outcome favored N-acetylcysteine prophylaxis (5 were statistically significant). Differences in treatment means in change from baseline SCr ranged from −0.6 to 0.1 mg/dL (median, −0.03 mg/dL). Negative values confer lesser reductions or larger improvements in renal function in the N-acetylcysteine groups.

Twelve meta-analyses have been published on this topic to date.114125 Nine have presented pooled risk estimates suggesting benefit, but most have found significant unexplained heterogeneity in the analyses leading to inconclusive results. Differences in contrast media, definitions of contrast-induced nephropathy, patient selection (undocumented differences in comorbidity), cointerventions, N-acetylcysteine dose and route of administration, as well as the timing of the procedure (urgent vs elective) may have contributed to the heterogeneity observed in the pooled analyses. New trials that address these issues are required before a final conclusion can be reached. We believe that the available data do not allow definitive conclusions about the efficacy of N-acetylcysteine for prevention of contrast nephropathy.

Ascorbic Acid. The results of a double-blind RCT evaluating the use of the antioxidant ascorbic acid10 to prevent contrast-induced nephropathy in 231 patients undergoing coronary angiography are encouraging and deserve further study. The authors defined contrast-induced nephropathy by a 25% or higher rise in SCr level 2 to 5 days postprocedure and found that ascorbic acid significantly reduced the risk of this outcome (odds ratio, 0.38; 95% confidence interval, 0.17-0.85).

Extracorporeal Removal of Contrast

Hemodialysis effectively removes radiocontrast126128 and has been proposed as a prophylaxis treatment for contrast-induced nephropathy. Four small randomized trials have considered this question in patients with impaired renal function.9497 Two found no benefit and the largest (n = 113) suggested that hemodialysis was harmful, since more patients in the treatment group required ongoing dialytic support.97

On the other hand, one group has reported that hemofiltration dramatically reduces the risk of contrast-induced nephropathy compared with hydration alone in 2 randomized trials of patients with impaired renal function.98,99 While encouraging, the provision of hemofiltration is invasive and impractical except in those at very high risk of contrast-induced nephropathy. A recent economic analysis129 suggests that hemofiltration may be cost-effective in patients with a baseline SCr measurement greater than 265 μmol/L if the magnitude of risk reduction seen in these studies is reproducible. The apparent benefits of hemofiltration need to be replicated in another center before it can be widely recommended.

SUGGESTED MANAGEMENT STRATEGY

Quiz Ref IDGiven the relatively low incidence of contrast-induced nephropathy, it would be impractical and costly to routinely measure SCr levels for all patients scheduled for diagnostic procedures requiring parenteral contrast administration. Guidelines published by the European Society of Urogenital Radiology suggest that all patients referred for contrast-enhanced diagnostic examinations should be asked about a history of renal disease, diabetes, proteinuria, renal surgery, hypertension, and/or gout.130 Given the identification of left ventricular function as a predictor of contrast-induced nephropathy in several retrospective analyses,16,17 we believe that a history of CHF should also be sought. Patients with any of these conditions and all patients undergoing angiographic procedures should have an SCr measurement within 7 days in advance of the scheduled examination. The detection of abnormal renal function with or without diabetes and CHF constitute high risk for contrast-induced nephropathy. In our opinion, those patients requiring urgent procedures before renal function can be measured should also be considered high risk. Our recommended management strategy for patients with risk factors for contrast-induced nephropathy is presented in the Figure.

FUTURE DIRECTIONS

Quiz Ref IDThe discovery of novel therapies for the prevention of contrast-induced nephropathy has been hampered by an incomplete understanding of its pathophysiology. Experimental and preclinical studies should remain a priority for investigators working in this field. However, existing trials evaluating currently available therapies also have significant limitations. Our review of the literature has identified 4 main problems with the randomized studies to date: (1) variation in the definition of contrast-induced nephropathy; (2) inability to accurately identify high-risk patients; (3) inconsistency in the administration of cotherapies like hydration; and (4) small sample sizes with suboptimal study designs.

Perhaps the most problematic issue is the wide variation in the definition of contrast-induced nephropathy. No standard definition has been used in clinical trials, and the clinical relevance of commonly used definitions (such as a 25% or ≥0.5 mg/dL [44.2 μmol/L] increase in SCr) remains unknown. While even modest increases in SCr have been associated with an increase in in-hospital and long-term mortality, it is hard to imagine a pathophysiological link between the two, unless the development of contrast-induced nephropathy is simply a marker for underlying comorbidity. Furthermore, no convincing data demonstrate that reducing the incidence of contrast nephropathy reduces the incidence of adverse outcomes. Therefore, we recommend development and adoption of a consensus definition of contrast-induced nephropathy based on more clinically relevant criteria. One example of such a definition might be the composite of doubling in SCr or the requirement for dialysis.

Second, study investigators have been unable to accurately identify high-risk patients for enrollment in contrast-induced nephropathy prophylaxis studies. Even among patients with preexisting renal impairment, the reported incidence of contrast-induced nephropathy varies between 20% and 50%. Further studies are required to identify additional risk factors for contrast-induced nephropathy and validate and refine existing risk scores. This information can be used to select high-risk patients for inclusion in future studies, thus increasing statistical power and the likelihood of obtaining useful information.

Third, clinical trials have been inconsistent in the administration of co-interventions such as hydration. In addition, the risk imposed by choice of radiocontrast agent and the route of administration has been largely ignored in clinical trials to date. We recommend that future trials ensure equal use of cointerventions between study groups, and that the type of contrast media be standardized.

Fourth, most studies have been small, often poor in quality (Table 5), and usually underpowered to detect a clinically significant difference in outcome. Future studies should be powered to detect differences in clinically meaningful outcomes such as mortality, the need for dialysis, or resource use. A large-scale multicenter study would likely be needed to accrue a sufficient number of patients. We discourage further attempts at small randomized studies, as they use valuable limited research resources yet generally do not yield definitive results. Unfortunately, there is little incentive for pharmaceutical companies to sponsor large clinical studies, as the interventions that have been proposed are unlikely to generate significant revenue. Further investigation in this area will probably need to be funded by national funding bodies.

CONCLUSIONS

In summary, contrast-induced nephropathy is a common condition that is associated with adverse outcomes and substantial resource use. Despite the clinical importance of contrast-induced nephropathy, much remains to be known about how best to prevent it. Well-designed and adequately powered randomized trials are urgently needed to study fundamental issues such as the optimal type, route, volume, and timing of hydration, as well as the role of other commonly advocated prophylaxis strategies such as N-acetylcysteine and fenoldopam.

Back to top
Article Information

Corresponding Author: Neesh Pannu, MD, 11-107 Clinical Sciences Bldg, 8440-112 St, Edmonton, Alberta, Canada, T6G 2G3 (npannu@ualberta.ca).

Author Contributions: Dr Pannu had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Pannu, Wiebe, Tonelli.

Acquisition of data: Pannu, Wiebe, Tonelli.

Analysis and interpretation of data: Pannu, Wiebe, Tonelli.

Drafting of the manuscript: Pannu, Wiebe.

Critical revision of the manuscript for important intellectual content: Pannu, Wiebe, Tonelli.

Statistical analysis: Pannu, Wiebe, Tonelli.

Obtained funding: Tonelli.

Administrative, technical, or material support: Pannu.

Financial Disclosures: None reported.

Funding/Support: The Alberta Kidney Disease Network (AKDN) provided financial support for this project. Dr Tonelli is supported by a Population Health Investigator award from the Alberta Heritage Foundation for Medical Research and a New Investigator award from the Canadian Institute of Health Research.

Role of the Sponsor: The AKDN is a collaborative research organization that was established and is led by members of the Divisions of Nephrology at the Universities of Alberta and Calgary (www.akdn.info). The AKDN did not play a role in the design or conduct of the study; in the analysis or interpretation of the data; or in the preparation, review, or approval of the manuscript. The AKDN has no financial matters discussed in the manuscript.

Acknowledgment: We would like to thank the following individuals from the University of Alberta: Jeannette Buckingham, MLIS, for librarian support; Maria B. Ospina, BSc, MSc, and Denise Adams, BSc, for additional reviewer support; Kenny Moreau for citation management, data entry, and text retrieval; Alex Stewart for text retrieval, and Scott Klarenbach, MD, MS for graphic art. As a nonacademic staff member, Mr Stewart received compensation for his work on this article.

REFERENCES
1.
Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency.  Am J Kidney Dis. 2002;39:930-936PubMedArticle
2.
Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality: a cohort analysis.  JAMA. 1996;275:1489-1494PubMedArticle
3.
Rihal CS, Textor SC, Grill DE.  et al.  Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention.  Circulation. 2002;105:2259-2264PubMedArticle
4.
Shlipak MG, Heidenreich PA, Noguchi H, Chertow GM, Browner WS, McClellan MB. Association of renal insufficiency with treatment and outcomes after myocardial infarction in elderly patients.  Ann Intern Med. 2002;137:555-562PubMedArticle
5.
Best PJ, Lennon R, Ting HH.  et al.  The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions.  J Am Coll Cardiol. 2002;39:1113-1119PubMedArticle
6.
McCullough PA, Sandberg KR. Epidemiology of contrast-induced nephropathy.  Rev Cardiovasc Med. 2003;4:(suppl 5)  S3-S9PubMed
7.
Barrett BJ, Parfrey PS, Vavasour HM.  et al.  Contrast nephropathy in patients with impaired renal function: high versus low osmolar media.  Kidney Int. 1992;41:1274-1279PubMedArticle
8.
Lasser EC, Lyon SG, Berry CC. Reports on contrast media reactions: analysis of data from reports to the U.S. Food and Drug Administration.  Radiology. 1997;203:605-610PubMed
9.
Moore RD, Steinberg EP, Powe NR.  et al.  Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial.  Radiology. 1992;182:649-655PubMed
10.
Spargias K, Alexopoulos E, Kyrzopoulos S.  et al.  Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention.  Circulation. 2004;110:2837-2842PubMedArticle
11.
Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy.  AJR Am J Roentgenol. 2004;183:1673-1689PubMedArticle
12.
Rudnick MR, Berns JS, Cohen RM, Goldfarb S. Nephrotoxic risks of renal angiography: contrast media-associated nephrotoxicity and atheroembolism–a critical review.  Am J Kidney Dis. 1994;24:713-727PubMed
13.
Freeman RV, O'Donnell M, Share D.  et al.  Nephropathy requiring dialysis after percutaneous coronary intervention and the critical role of an adjusted contrast dose.  Am J Cardiol. 2002;90:1068-1073PubMedArticle
14.
Ashby DT, Mehran R, Aymong EA.  et al.  Comparison of outcomes in men versus women having percutaneous coronary interventions in small coronary arteries.  Am J Cardiol. 2003;91:979-981PubMedArticle
15.
Cochran ST, Wong WS, Roe DJ. Predicting angiography-induced acute renal function impairment: clinical risk model.  AJR Am J Roentgenol. 1983;141:1027-1033PubMedArticle
16.
Bartholomew BA, Harjai KJ, Dukkipati S.  et al.  Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification.  Am J Cardiol. 2004;93:1515-1519PubMedArticle
17.
Mehran R, Aymong ED, Nikolsky E.  et al.  A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation.  J Am Coll Cardiol. 2004;44:1393-1399PubMed
18.
Taliercio CP, Vlietstra RE, Fisher LD, Burnett JC. Risks for renal dysfunction with cardiac angiography.  Ann Intern Med. 1986;104:501-504PubMedArticle
19.
McCullough PA, Wolyn R, Rocher LL, Levin RN, O'Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality.  Am J Med. 1997;103:368-375PubMedArticle
20.
Gruberg L, Mehran R, Dangas G.  et al.  Acute renal failure requiring dialysis after percutaneous coronary interventions.  Catheter Cardiovasc Interv. 2001;52:409-416PubMedArticle
21.
Iakovou I, Dangas G, Mehran R.  et al.  Impact of gender on the incidence and outcome of contrast-induced nephropathy after percutaneous coronary intervention.  J Invasive Cardiol. 2003;15:18-22PubMed
22.
Nikolsky E, Aymong ED, Dangas G, Mehran R. Radiocontrast nephropathy: identifying the high-risk patient and the implications of exacerbating renal function.  Rev Cardiovasc Med. 2003;4:(suppl 1)  S7-S14PubMedArticle
23.
Nikolsky E, Mehran R, Lasic Z.  et al.  Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions.  Kidney Int. 2005;67:706-713PubMedArticle
24.
Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography.  N Engl J Med. 2003;348:491-499PubMedArticle
25.
Rudnick MR, Goldfarb S, Wexler L.  et al.  Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial: the Iohexol Cooperative Study.  Kidney Int. 1995;47:254-261PubMedArticle
26.
Barrett BJ, Parfrey PS, McDonald JR, Hefferton DM, Reddy ER, McManamon PJ. Nonionic low-osmolality versus ionic high-osmolality contrast material for intravenous use in patients perceived to be at high risk: randomized trial.  Radiology. 1992;183:105-110PubMed
27.
Harris KG, Smith TP, Cragg AH, Lemke JH. Nephrotoxicity from contrast material in renal insufficiency: ionic versus nonionic agents.  Radiology. 1991;179:849-852PubMed
28.
Schwab SJ, Hlatky MA, Pieper KS.  et al.  Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent.  N Engl J Med. 1989;320:149-153PubMedArticle
29.
Solomon R. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients.  Kidney Int. 2005;68:2256-2263PubMedArticle
30.
Sharma SK, Kini A. Effect of nonionic radiocontrast agents on the occurrence of contrast-induced nephropathy in patients with mild-moderate chronic renal insufficiency: pooled analysis of the randomized trials.  Catheter Cardiovasc Interv. 2005;65:386-393PubMedArticle
31.
Vlietstra RE, Nunn CM, Narvarte J, Browne KF. Contrast nephropathy after coronary angioplasty in chronic renal insufficiency.  Am Heart J. 1996;132:1049-1050PubMedArticle
32.
Davidson CJ, Hlatky M, Morris KG.  et al.  Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization: a prospective trial.  Ann Intern Med. 1989;110:119-124PubMedArticle
33.
Gruberg L, Mintz GS, Mehran R.  et al.  The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency.  J Am Coll Cardiol. 2000;36:1542-1548PubMedArticle
34.
Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography.  Am J Med. 1990;89:615-620PubMedArticle
35.
Parfrey PS, Griffiths SM, Barrett BJ.  et al.  Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both: a prospective controlled study.  N Engl J Med. 1989;320:143-149PubMedArticle
36.
Trivedi HS, Moore H, Nasr S.  et al.  A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity.  Nephron Clin Pract. 2003;93:C29-C34PubMedArticle
37.
Mueller C, Buerkle G, Buettner HJ.  et al.  Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty.  Arch Intern Med. 2002;162:329-336PubMedArticle
38.
Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents.  N Engl J Med. 1994;331:1416-1420PubMedArticle
39.
Gill NK, Piccione EA, Vido DA, Clark BA, Shannon RP. Gender as a risk factor for contrast nephropathy: effects of hydration and N-acetylcysteine.  Clin Cardiol. 2004;27:554-558PubMedArticle
40.
Mueller C, Buerkle G, Perruchoud AP, Buettner HJ. Female sex and risk of contrast nephropathy after percutaneous coronary intervention.  Can J Cardiol. 2004;20:505-509PubMed
41.
Maeder M, Klein M, Fehr T, Rickli H. Contrast nephropathy: review focusing on prevention.  J Am Coll Cardiol. 2004;44:1763-1771PubMedArticle
42.
Parfrey P. The clinical epidemiology of contrast-induced nephropathy.  Cardiovasc Intervent Radiol. 2005;28:(suppl 2)  S3-S11PubMedArticle
43.
Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media.  Radiology. 1993;188:171-178PubMed
44.
Marenzi G. Can contrast-induced nephropathy after percutaneous coronary intervention be accurately predicted with a risk score?  Nat Clin Pract Cardiovasc Med. 2005;2:80-81PubMedArticle
45.
Marenzi G, Lauri G, Assanelli E.  et al.  Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction.  J Am Coll Cardiol. 2004;44:1780-1785PubMedArticle
46.
Bader BD, Berger ED, Heede MB.  et al.  What is the best hydration regimen to prevent contrast media-induced nephrotoxicity?  Clin Nephrol. 2004;62:1-7PubMed
47.
Krasuski RA, Beard BM, Geoghagan JD, Thompson CM, Guidera SA. Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study.  J Invasive Cardiol. 2003;15:699-702PubMed
48.
Merten GJ, Burgess WP, Gray LV.  et al.  Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial.  JAMA. 2004;291:2328-2334PubMedArticle
49.
Stevens MA, McCullough PA, Tobin KJ.  et al.  A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: results of the P.R.I.N.C.E. Study.  J Am Coll Cardiol. 1999;33:403-411PubMedArticle
50.
Taylor AJ, Hotchkiss D, Morse RW, McCabe J. PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction.  Chest. 1998;114:1570-1574PubMedArticle
51.
Weinstein J-M, Heyman S, Brezis M. Potential deleterious effect of furosemide in radiocontrast nephropathy.  Nephron. 1992;62:413-415PubMedArticle
52.
Gare M, Haviv YS, Ben Yehuda A.  et al.  The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography.  J Am Coll Cardiol. 1999;34:1682-1688PubMedArticle
53.
Hans SS, Hans BA, Dhillon R, Dmuchowski C, Glover J. Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency.  Am Surg. 1998;64:432-436PubMed
54.
Weisberg LS, Kurnik PB, Kurnik BR. Risk of radiocontrast nephropathy in patients with and without diabetes mellitus.  Kidney Int. 1994;45:259-265PubMedArticle
55.
Allaqaband S, Tumuluri R, Malik AM.  et al.  Prospective randomized study of N-acetylcysteine, fenoldopam, and saline for prevention of radiocontrast-induced nephropathy.  Catheter Cardiovasc Interv. 2002;57:279-283PubMedArticle
56.
Briguori C, Colombo A, Airoldi F.  et al.  N-acetylcysteine versus fenoldopam mesylate to prevent contrast agent-associated nephrotoxicity.  J Am Coll Cardiol. 2004;44:762-765PubMedArticle
57.
Ng TM, Shurmur SW, Silver M, Nissen LR.  et al.  Comparison of N-acetylcysteine and fenoldopam for preventing contrast-induced nephropathy (CAFCIN).  Int J Cardiol. 2006;109:322-328PubMedArticle
58.
Stone GW, McCullough PA, Tumlin JA.  et al.  Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial.  JAMA. 2003;290:2284-2291PubMedArticle
59.
Tumlin JA, Wang A, Murray PT, Mathur VS. Fenoldopam mesylate blocks reductions in renal plasma flow after radiocontrast dye infusion: a pilot trial in the prevention of contrast nephropathy.  Am Heart J. 2002;143:894-903PubMedArticle
60.
Abizaid AS, Clark CE, Mintz GS.  et al.  Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency.  Am J Cardiol. 1999;83:260-263PubMedArticle
61.
Erley CM, Duda SH, Schlepckow S.  et al.  Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application.  Kidney Int. 1994;45:1425-1431PubMedArticle
62.
Erley CM, Duda SH, Rehfuss D.  et al.  Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline.  Nephrol Dial Transplant. 1999;14:1146-1149PubMedArticle
63.
Gandhi MR, Brown P, Romanowski CA.  et al.  The use of theophylline, an adenosine antagonist in the prevention of contrast media induced nephrotoxicity.  Br J Radiol. 1992;65:838PubMedArticle
64.
Huber W, Ilgmann K, Page M.  et al.  Effect of theophylline on contrast material-nephropathy in patients with chronic renal insufficiency: controlled, randomized, double-blinded study.  Radiology. 2002;223:772-779PubMedArticle
65.
Huber W, Schipek C, Ilgmann K.  et al.  Effectiveness of theophylline prophylaxis of renal impairment after coronary angiography in patients with chronic renal insufficiency.  Am J Cardiol. 2003;91:1157-1162PubMedArticle
66.
Kapoor A, Kumar S, Gulati S, Gambhir S, Sethi RS, Sinha N. The role of theophylline in contrast-induced nephropathy: a case-control study.  Nephrol Dial Transplant. 2002;17:1936-1941PubMedArticle
67.
Katholi RE, Taylor GJ, McCann WP.  et al.  Nephrotoxicity from contrast media: attenuation with theophylline.  Radiology. 1995;195:17-22PubMed
68.
Kolonko A, Wiecek A, Kokot F. The nonselective adenosine antagonist theophylline does prevent renal dysfunction induced by radiographic contrast agents.  J Nephrol. 1998;11:151-156PubMed
69.
Arici M, Usalan C, Altun B.  et al.  Radiocontrast-induced nephrotoxicity and urinary alpha-glutathione S-transferase levels: effect of amlodipine administration.  Int Urol Nephrol. 2003;35:255-261PubMedArticle
70.
Carraro M, Mancini W, Artero M.  et al.  Dose effect of nitrendipine on urinary enzymes and microproteins following non-ionic radiocontrast administration.  Nephrol Dial Transplant. 1996;11:444-448PubMedArticle
71.
Khoury Z, Schlicht JR, Como J.  et al.  The effect of prophylactic nifedipine on renal function in patients administered contrast media.  Pharmacotherapy. 1995;15:59-65PubMed
72.
Azmus AD, Gottschall C, Manica A.  et al.  Effectiveness of acetylcysteine in prevention of contrast nephropathy.  J Invasive Cardiol. 2005;17:80-84PubMed
73.
Baker CS, Wragg A, Kumar S, De Palma R, Baker LR, Knight CJ. A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study.  J Am Coll Cardiol. 2003;41:2114-2118PubMedArticle
74.
Briguori C, Manganelli F, Scarpato P.  et al.  Acetylcysteine and contrast agent-associated nephrotoxicity.  J Am Coll Cardiol. 2002;40:298-303PubMedArticle
75.
Diaz-Sandoval LJ, Kosowsky BD, Losordo DW. Acetylcysteine to prevent angiography-related renal tissue injury (the APART trial).  Am J Cardiol. 2002;89:356-358PubMedArticle
76.
Drager LF, Andrade L, Barros de Toledo JF, Laurindo FR, Machado Cesar LA, Seguro AC. Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury.  Nephrol Dial Transplant. 2004;19:1803-1807PubMedArticle
77.
Durham JD, Caputo C, Dokko J.  et al.  A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography.  Kidney Int. 2002;62:2202-2207PubMedArticle
78.
Efrati S, Dishy V, Averbukh M.  et al.  The effect of N-acetylcysteine on renal function, nitric oxide, and oxidative stress after angiography.  Kidney Int. 2003;64:2182-2187PubMedArticle
79.
Fung JW, Szeto CC, Chan WW.  et al.  Effect of N-acetylcysteine for prevention of contrast nephropathy in patients with moderate to severe renal insufficiency: a randomized trial.  Am J Kidney Dis. 2004;43:801-808PubMedArticle
80.
Goldenberg I, Shechter M, Matetzky S.  et al.  Oral acetylcysteine as an adjunct to saline hydration for the prevention of contrast-induced nephropathy following coronary angiography: a randomized controlled trial and review of the current literature.  Eur Heart J. 2004;25:212-218PubMedArticle
81.
Gomes VO, Poli de Figueredo CE, Caramori P.  et al.  N-acetylcysteine does not prevent contrast induced nephropathy after cardiac catheterisation with an ionic low osmolality contrast medium: a multicentre clinical trial.  Heart. 2005;91:774-778PubMedArticle
82.
Gulel O, Keles T, Eraslan H, Aydogdu S, Diker E, Ulusoy V. Prophylactic acetylcysteine usage for prevention of contrast nephropathy after coronary angiography.  J Cardiovasc Pharmacol. 2005;46:464-467PubMedArticle
83.
Kay J, Chow WH, Chan TM.  et al.  Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial.  JAMA. 2003;289:553-558PubMedArticle
84.
Kotlyar E, Keogh AM, Thavapalachandran S.  et al.  Prehydration alone is sufficient to prevent contrast-induced nephropathy after day-only angiography procedures—a randomised controlled trial.  Heart Lung Circ. 2005;14:245-251PubMedArticle
85.
MacNeill BD, Harding SA, Bazari H.  et al.  Prophylaxis of contrast-induced nephropathy in patients undergoing coronary angiography.  Catheter Cardiovasc Interv. 2003;60:458-461PubMedArticle
86.
Miner SE, Dzavik V, Nguyen-Ho P.  et al.  N-acetylcysteine reduces contrast-associated nephropathy but not clinical events during long-term follow-up.  Am Heart J. 2004;148:690-695PubMedArticle
87.
Ochoa A, Pellizzon G, Addala S.  et al.  Abbreviated dosing of N-acetylcysteine prevents contrast-induced nephropathy after elective and urgent coronary angiography and intervention.  J Interv Cardiol. 2004;17:159-165PubMedArticle
88.
Oldemeyer JB, Biddle WP, Wurdeman RL, Mooss AN, Cichowski E, Hilleman DE. Acetylcysteine in the prevention of contrast-induced nephropathy after coronary angiography.  Am Heart J. 2003;146:E23PubMedArticle
89.
Rashid ST, Salman M, Myint F.  et al.  Prevention of contrast-induced nephropathy in vascular patients undergoing angiography: a randomized controlled trial of intravenous N-acetylcysteine.  J Vasc Surg. 2004;40:1136-1141PubMedArticle
90.
Shyu KG, Cheng JJ, Kuan P. Acetylcysteine protects against acute renal damage in patients with abnormal renal function undergoing a coronary procedure.  J Am Coll Cardiol. 2002;40:1383-1388PubMedArticle
91.
Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine.  N Engl J Med. 2000;343:180-184PubMedArticle
92.
Webb JG, Pate GE, Humphries KH.  et al.  A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: lack of effect.  Am Heart J. 2004;148:422-429PubMedArticle
93.
Briguori C, Colombo A, Violante A.  et al.  Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity.  Eur Heart J. 2004;25:206-211PubMedArticle
94.
Frank H, Werner D, Lorusso V.  et al.  Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced-nephropathy in chronic renal failure.  Clin Nephrol. 2003;60:176-182PubMed
95.
Lehnert T, Keller E, Gondolf K, Schaffner T, Pavenstadt H, Schollmeyer P. Effect of haemodialysis after contrast medium administration in patients with renal insufficiency.  Nephrol Dial Transplant. 1998;13:358-362PubMedArticle
96.
Sterner G, Frennby B, Kurkus J, Nyman U. Does post-angiographic hemodialysis reduce the risk of contrast-medium nephropathy?  Scand J Urol Nephrol. 2000;34:323-326PubMedArticle
97.
Vogt B, Ferrari P, Schonholzer C.  et al.  Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful.  Am J Med. 2001;111:692-698PubMedArticle
98.
Marenzi G, Marana I, Lauri G.  et al.  The prevention of radiocontrast-agent-induced nephropathy by hemofiltration.  N Engl J Med. 2003;349:1333-1340PubMedArticle
99.
Marenzi G, Lauri G, Campodonico J.  et al.  Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients.  Am J Med. 2006;119:155-162PubMedArticle
100.
Albert SG, Shapiro MJ, Brown WW.  et al.  Analysis of radiocontrast-induced nephropathy by dual-labeled radionuclide clearance.  Invest Radiol. 1994;29:618-623PubMedArticle
101.
Gupta RK, Kapoor A, Tewari S, Sinha N, Sharma RK. Captopril for prevention of contrast-induced nephropathy in diabetic patients: a randomised study.  Indian Heart J. 1999;51:521-526PubMed
102.
Koch JA, Plum J, Grabensee B, Modder U. Prostaglandin E1: a new agent for the prevention of renal dysfunction in high risk patients caused by radiocontrast media? PGE1 Study Group.  Nephrol Dial Transplant. 2000;15:43-49PubMedArticle
103.
Kurnik BRC, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS. Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy.  Am J Kidney Dis. 1998;31:674-680PubMedArticle
104.
Liss P, Eklof H, Hellbert O.  et al.  Renal effects of CO2 and iodinated contrast media in patients undergoing renovascular intervention: a prospective, randomized study.  J Vasc Interv Radiol. 2005;16:57-65PubMedArticle
105.
Miller HI, Dascalu A, Rassin TA, Wollman Y, Chernichowsky T, Iaina A. Effects of an acute dose of L-arginine during coronary angiography in patients with chronic renal failure: a randomized, parallel, double-blind clinical trial.  Am J Nephrol. 2003;23:91-95PubMedArticle
106.
Russo D, Minutolo R, Cianciaruso B, Memoli B, Conte G, De Nicola L. Early effects of contrast media on renal hemodynamics and tubular function in chronic renal failure.  J Am Soc Nephrol. 1995;6:1451-1458PubMed
107.
Wang A, Holcslaw T, Bashore TM.  et al.  Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism.  Kidney Int. 2000;57:1675-1680PubMedArticle
108.
Katzberg RW, Morris TW, Schulman G.  et al.  Reactions to intravenous contrast media, part II: acute renal response in euvolemic and dehydrated dogs.  Radiology. 1983;147:331-334PubMed
109.
Asif A, Epstein DL, Epstein M. Dopamine-1 receptor agonist: renal effects and its potential role in the management of radiocontrast-induced nephropathy.  J Clin Pharmacol. 2004;44:1342-1351PubMedArticle
110.
Bagshaw SM, Ghali WA. Theophylline for prevention of contrast-induced nephropathy: a systematic review and meta-analysis.  Arch Intern Med. 2005;165:1087-1093PubMedArticle
111.
Arstall MA, Yang J, Stafford I, Betts WH, Horowitz JD. N-acetylcysteine in combination with nitroglycerin and streptokinase for the treatment of evolving acute myocardial infarction: safety and biochemical effects.  Circulation. 1995;92:2855-2862PubMedArticle
112.
Brunet J, Boily MJ, Cordeau S, Des RC. Effects of N-acetylcysteine in the rat heart reperfused after low-flow ischemia: evidence for a direct scavenging of hydroxyl radicals and a nitric oxide-dependent increase in coronary flow.  Free Radic Biol Med. 1995;19:627-638PubMedArticle
113.
Safirstein R, Andrade L, Vieira JM. Acetylcysteine and nephrotoxic effects of radiographic contrast agents—a new use for an old drug.  N Engl J Med. 2000;343:210-212PubMedArticle
114.
Pannu N, Manns B, Lee H, Tonelli M. Systematic review of the impact of N-acetylcysteine on contrast nephropathy.  Kidney Int. 2004;65:1366-1374PubMedArticle
115.
Bagshaw SM, Ghali WA. Acetylcysteine for prevention of contrast-induced nephropathy after intravascular angiography: a systematic review and meta-analysis.  BMC Med. 2004;2:38PubMedArticle
116.
Liu R, Nair D, Ix J, Moore DH, Bent S. N-acetylcysteine for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis.  J Gen Intern Med. 2005;20:193-200PubMedArticle
117.
Duong MH, MacKenzie TA, Malenka DJ. N-acetylcysteine prophylaxis significantly reduces the risk of radiocontrast-induced nephropathy: comprehensive meta-analysis.  Catheter Cardiovasc Interv. 2005;64:471-479PubMedArticle
118.
Nallamothu BK, Shojania KG, Saint S.  et al.  Is acetylcysteine effective in preventing contrast-related nephropathy? a meta-analysis.  Am J Med. 2004;117:938-947PubMedArticle
119.
Birck R, Krzossok S, Markowetz F, Schnulle P, van der Woude FJ, Braun C. Acetylcysteine for prevention of contrast nephropathy: meta-analysis.  Lancet. 2003;362:598-603PubMedArticle
120.
Isenbarger DW, Kent SM, O'Malley PG. Meta-analysis of randomized clinical trials on the usefulness of acetylcysteine for prevention of contrast nephropathy.  Am J Cardiol. 2003;92:1454-1458PubMedArticle
121.
Alonso A, Lau J, Jaber BL, Weintraub A, Sarnak MJ. Prevention of radiocontrast nephropathy with N-acetylcysteine in patients with chronic kidney disease: a meta-analysis of randomized, controlled trials.  Am J Kidney Dis. 2004;43:1-9PubMedArticle
122.
Misra D, Leibowitz K, Gowda RM, Shapiro M, Khan IA. Role of N-acetylcysteine in prevention of contrast-induced nephropathy after cardiovascular procedures: a meta-analysis.  Clin Cardiol. 2004;27:607-610PubMedArticle
123.
Kshirsagar AV, Poole C, Mottl A.  et al.  N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a meta-analysis of prospective controlled trials.  J Am Soc Nephrol. 2004;15:761-769PubMedArticle
124.
Guru V, Fremes SE. The role of N-acetylcysteine in preventing radiographic contrast-induced nephropathy.  Clin Nephrol. 2004;62:77-83PubMed
125.
Zagler A, Azadpour M, Mercado C, Hennekens CH. N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials.  Am Heart J. 2006;151:140-145PubMedArticle
126.
Ueda J, Furukawa T, Higashino K, Takahashi S, Araki Y, Sakaguchi K. Elimination of iomeprol by hemodialysis.  Eur J Radiol. 1996;23:197-200PubMedArticle
127.
Furukawa T, Ueda J, Takahashi S, Sakaguchi K. Elimination of low-osmolality contrast media by hemodialysis.  Acta Radiol. 1996;37:966-971PubMedArticle
128.
Waaler A, Svaland M, Fauchald P, Jakobsen JA, Kolmannskog F, Berg KJ. Elimination of iohexol, a low osmolar nonionic contrast medium, by hemodialysis in patients with chronic renal failure.  Nephron. 1990;56:81-85PubMedArticle
129.
Klarenbach SW, Pannu N, Tonelli MA, Manns BJ. Cost-effectiveness of hemofiltration to prevent contrast nephropathy in patients with chronic kidney disease.  Crit Care Med. 2006;34:1044-10517PubMedArticle
130.
Thomsen HS. How to avoid CIN: guidelines from the European Society of Urogenital Radiology.  Nephrol Dial Transplant. 2005;20:(suppl 1)  i18-i22PubMedArticle
×