[Skip to Content]
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
Purchase Options:
[Skip to Content Landing]
Figure 1.
Analytic Framework
Analytic Framework

Evidence reviews for the US Preventive Services Task Force (USPSTF) use an analytic framework to visually display the key questions that the review will address to allow the USPSTF to evaluate the effectiveness and safety of a preventive service. The questions are depicted by linkages that relate interventions and outcomes. A dashed line indicates a relationship between an intermediate outcome and a health outcome that is presumed to describe the natural progression of the disease. Further details are available in the USPSTF procedure manual.13

aHigh risk of cardiovascular disease includes adults with hypertension, dyslipidemia, diabetes, impaired fasting glucose or glucose tolerance, or a combination of these factors.

Figure 2.
Literature Search Flow Diagram
Literature Search Flow Diagram

Reasons for exclusion: Aim: Study aim was not relevant. Setting: Study was not conducted in a country relevant to US practice or not conducted in, recruited from, or feasible for primary care or a health system. Population: Study was not conducted in an included population. Outcomes: Study did not have relevant outcomes or had incomplete outcomes. Intervention: Intervention was out of scope. Design: Study did not use an included design. Publication Date: primary results published prior to 1990. Language: Publication not in English. Quality: Study was poor quality. USPSTF indicates US Preventive Services Task Force.

Table 1.  
Characteristics of All Included Trials
Characteristics of All Included Trials
Table 2.  
Pooled Results of Intermediate Outcomes for All Interventions and by Intervention Intensity
Pooled Results of Intermediate Outcomes for All Interventions and by Intervention Intensity
Table 3.  
Summary of Evidence, by Key Question
Summary of Evidence, by Key Question
1.
US Department of Health and Human Services, US Department of Agriculture.  2015-2020 Dietary Guidelines for Americans. Washington, DC: US Department of Health and Human Services; 2015.
2.
Physical Activity Guidelines Advisory Committee.  Physical Activity Guidelines Advisory Committee Report, 2008. Washington, DC: US Department of Health and Human Services; 2008.
3.
Ford  ES, Caspersen  CJ.  Sedentary behaviour and cardiovascular disease: a review of prospective studies.  Int J Epidemiol. 2012;41(5):1338-1353.PubMedArticle
4.
Chomistek  AK, Manson  JE, Stefanick  ML,  et al.  Relationship of sedentary behavior and physical activity to incident cardiovascular disease: results from the Women’s Health Initiative.  J Am Coll Cardiol. 2013;61(23):2346-2354.PubMedArticle
5.
Mozaffarian  D, Benjamin  EJ, Go  AS,  et al; Writing Group Members; American Heart Association Statistics Committee; Stroke Statistics Subcommittee.  Heart disease and stroke statistics—2016 update: a report from the American Heart Association.  Circulation. 2016;133(4):e38-e360.PubMedArticle
6.
LeFevre  ML; U.S. Preventive Services Task Force.  Behavioral counseling to promote a healthful diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: U.S. Preventive Services Task Force Recommendation Statement.  Ann Intern Med. 2014;161(8):587-593.PubMedArticle
7.
Moyer  VA; U.S. Preventive Services Task Force.  Behavioral counseling interventions to promote a healthful diet and physical activity for cardiovascular disease prevention in adults: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2012;157(5):367-371.PubMed
8.
Moyer  VA; U.S. Preventive Services Task Force.  Screening for and management of obesity in adults: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2012;157(5):373-378.PubMed
9.
Siu  AL; U.S. Preventive Services Task Force.  Screening for high blood pressure in adults: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2015;163(10):778-786.PubMedArticle
10.
Siu  AL; US Preventive Services Task Force.  Screening for abnormal blood glucose and type 2 diabetes mellitus: US Preventive Services Task Force recommendation statement.  Ann Intern Med. 2015;163(11):861-868.PubMedArticle
11.
Bibbins-Domingo  K; U.S. Preventive Services Task Force.  Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2016;164(12):836-845.PubMedArticle
12.
Siu  AL; U.S. Preventive Services Task Force.  Behavioral and pharmacotherapy interventions for tobacco smoking cessation in adults, including pregnant women: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2015;163(8):622-634.PubMedArticle
13.
US Preventive Services Task Force. US Preventive Services Task Force Procedure Manual. https://www.uspreventiveservicestaskforce.org/uspstf08/methods/procmanual.htm. 2011. Accessed July 25, 2015.
14.
Lin  JS, O’Connor  EA, Evans  CV, Senger  CA, Rowland  MG, Groom  HC.  Behavioral Counseling to Promote a Healthy Lifestyle for Cardiovascular Disease Prevention in Persons With Cardiovascular Risk Factors: An Updated Systematic Evidence Review for the US Preventive Services Task Force. Evidence Report No. 113. Rockville, MD: Agency for Healthcare Research and Quality; 2014. AHRQ publication 13-05179-EF-1.
15.
Lin  JS, O’Connor  E, Whitlock  EP,  et al.  Behavioral Counseling to Promote Physical Activity and a Healthful Diet to Prevent Cardiovascular Disease in Adults: Update of the Evidence for the US Preventive Services Task Force. Evidence Synthesis No. 79. Rockville, MD: Agency for Healthcare Research and Quality; 2010. AHRQ publication 11-05149-EF-1.
16.
DerSimonian  R, Laird  N.  Meta-analysis in clinical trials.  Control Clin Trials. 1986;7(3):177-188.PubMedArticle
17.
Cochrane Collaboration.  Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. London, United Kingdom: The Cochrane Collaboration; 2011.
18.
Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.  BMJ. 1997;315(7109):629-634.PubMedArticle
19.
Peters  JL, Sutton  AJ, Jones  DR, Abrams  KR, Rushton  L.  Comparison of two methods to detect publication bias in meta-analysis.  JAMA. 2006;295(6):676-680.PubMedArticle
20.
Berkman  N, Lohr  K, Ansari  M,  et al.  Grading the Strength of a Body of Evidence When Assessing Health Care Interventions for the Effective Health Care Program of the Agency for Healthcare Research and Quality: An Update: Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Rockville, MD: Agency for Healthcare Research and Quality; 2014. AHRQ publication 10(14)-EHC063-EF.
21.
Aadahl  M, Linneberg  A, Møller  TC,  et al.  Motivational counseling to reduce sitting time: a community-based randomized controlled trial in adults.  Am J Prev Med. 2014;47(5):576-586.PubMedArticle
22.
Aittasalo  M, Miilunpalo  S, Kukkonen-Harjula  K, Pasanen  M.  A randomized intervention of physical activity promotion and patient self-monitoring in primary health care.  Prev Med. 2006;42(1):40-46.PubMedArticle
23.
Albright  CL, Steffen  AD, Novotny  R,  et al.  Baseline results from Hawaii’s Nā Mikimiki Project: a physical activity intervention tailored to multiethnic postpartum women.  Women Health. 2012;52(3):265-291.PubMedArticle
24.
Albright  CL, Steffen  AD, Wilkens  LR,  et al.  Effectiveness of a 12-month randomized clinical trial to increase physical activity in multiethnic postpartum women: results from Hawaii’s Nā Mikimiki Project.  Prev Med. 2014;69:214-223.PubMedArticle
25.
Aldana  SG, Greenlaw  RL, Diehl  HA,  et al.  Effects of an intensive diet and physical activity modification program on the health risks of adults.  J Am Diet Assoc. 2005;105(3):371-381.PubMedArticle
26.
Aldana  SG, Greenlaw  RL, Diehl  HA,  et al.  The behavioral and clinical effects of therapeutic lifestyle change on middle-aged adults.  Prev Chronic Dis. 2006;3(1):A05.PubMed
27.
Alexander  GL, McClure  JB, Calvi  JH,  et al; MENU Choices Team.  A randomized clinical trial evaluating online interventions to improve fruit and vegetable consumption.  Am J Public Health. 2010;100(2):319-326.PubMedArticle
28.
Allen  P, Thompson  JL, Herman  CJ,  et al.  Impact of periodic follow-up testing among urban American Indian women with impaired fasting glucose.  Prev Chronic Dis. 2008;5(3):A76.PubMed
29.
Allison  MA, Aragaki  AK, Ray  RM,  et al.  A randomized trial of a low-fat diet intervention on blood pressure and hypertension: tertiary analysis of the WHI dietary modification trial.  Am J Hypertens. 2016;29(8):959-968.PubMedArticle
30.
Assaf  AR, Beresford  SA, Risica  PM,  et al.  Low-fat dietary pattern intervention and health-related quality of life: the Women’s Health Initiative randomized controlled dietary modification trial.  J Acad Nutr Diet. 2016;116(2):259-271.PubMedArticle
31.
Baron  JA, Gleason  R, Crowe  B, Mann  JI.  Preliminary trial of the effect of general practice based nutritional advice.  Br J Gen Pract. 1990;40(333):137-141.PubMed
32.
Bennett  GG, Foley  P, Levine  E,  et al.  Behavioral treatment for weight gain prevention among black women in primary care practice: a randomized clinical trial.  JAMA Intern Med. 2013;173(19):1770-1777.PubMedArticle
33.
Beresford  SA, Curry  SJ, Kristal  AR, Lazovich  D, Feng  Z, Wagner  EH.  A dietary intervention in primary care practice: the Eating Patterns Study.  Am J Public Health. 1997;87(4):610-616.PubMedArticle
34.
Bernstein  A, Nelson  ME, Tucker  KL,  et al.  A home-based nutrition intervention to increase consumption of fruits, vegetables, and calcium-rich foods in community dwelling elders.  J Am Diet Assoc. 2002;102(10):1421-1427.PubMedArticle
35.
Bickmore  TW, Silliman  RA, Nelson  K,  et al.  A randomized controlled trial of an automated exercise coach for older adults.  J Am Geriatr Soc. 2013;61(10):1676-1683.PubMedArticle
36.
Blumenthal  JA, Babyak  MA, Hinderliter  A,  et al.  Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study.  Arch Intern Med. 2010;170(2):126-135.PubMedArticle
37.
Bowen  D, Clifford  CK, Coates  R,  et al.  The Women’s Health Trial Feasibility Study in Minority Populations: design and baseline descriptions.  Ann Epidemiol. 1996;6(6):507-519.PubMedArticle
38.
Brekke  HK, Jansson  PA, Lenner  RA.  Long-term (1- and 2-year) effects of lifestyle intervention in type 2 diabetes relatives.  Diabetes Res Clin Pract. 2005;70(3):225-234.PubMedArticle
39.
Bryan  AD, Magnan  RE, Hooper  AE, Ciccolo  JT, Marcus  B, Hutchison  KE.  Colorado stride (COSTRIDE): testing genetic and physiological moderators of response to an intervention to increase physical activity.  Int J Behav Nutr Phys Act. 2013;10:139.PubMedArticle
40.
Burke  L, Jancey  J, Howat  P,  et al.  Physical activity and nutrition program for seniors (PANS): protocol of a randomized controlled trial.  BMC Public Health. 2010;10:751.PubMedArticle
41.
Burke  L, Lee  AH, Jancey  J,  et al.  Physical activity and nutrition behavioural outcomes of a home-based intervention program for seniors: a randomized controlled trial.  Int J Behav Nutr Phys Act. 2013;10:14.PubMedArticle
42.
Carpenter  RA, Finley  C, Barlow  CE.  Pilot test of a behavioral skill building intervention to improve overall diet quality.  J Nutr Educ Behav. 2004;36(1):20-24.PubMedArticle
43.
Carroll  JK, Lewis  BA, Marcus  BH, Lehman  EB, Shaffer  ML, Sciamanna  CN.  Computerized tailored physical activity reports: a randomized controlled trial.  Am J Prev Med. 2010;39(2):148-156.PubMedArticle
44.
Castro  CM, Pruitt  LA, Buman  MP, King  AC.  Physical activity program delivery by professionals versus volunteers: the TEAM randomized trial.  Health Psychol. 2011;30(3):285-294.PubMedArticle
45.
Clark  PG, Nigg  CR, Greene  G, Riebe  D, Saunders  SD; Study of Exercise and Nutrition in Older Rhode Islanders Project Team.  The Study of Exercise and Nutrition in Older Rhode Islanders (SENIOR): translating theory into research.  Health Educ Res. 2002;17(5):552-561.PubMedArticle
46.
Clark  PG, Rossi  JS, Greaney  ML,  et al.  Intervening on exercise and nutrition in older adults: the Rhode Island SENIOR Project.  J Aging Health. 2005;17(6):753-778.PubMedArticle
47.
Coates  RJ, Bowen  DJ, Kristal  AR,  et al.  The Women’s Health Trial Feasibility Study in Minority Populations: changes in dietary intakes.  Am J Epidemiol. 1999;149(12):1104-1112.PubMedArticle
48.
Cook  NR, Cutler  JA, Obarzanek  E,  et al.  Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the Trials of Hypertension Prevention (TOHP).  BMJ. 2007;334(7599):885-888.PubMedArticle
49.
De Vet  E, Oenema  A, Sheeran  P, Brug  J.  Should implementation intentions interventions be implemented in obesity prevention: the impact of if-then plans on daily physical activity in Dutch adults.  Int J Behav Nutr Phys Act. 2009;6:11.PubMedArticle
50.
Delichatsios  HK, Friedman  RH, Glanz  K,  et al.  Randomized trial of a “talking computer” to improve adults’ eating habits.  Am J Health Promot. 2001;15(4):215-224.PubMedArticle
51.
Dutton  GR, Napolitano  MA, Whiteley  JA, Marcus  BH.  Is physical activity a gateway behavior for diet? findings from a physical activity trial.  Prev Med. 2008;46(3):216-221.PubMedArticle
52.
Elley  CR, Kerse  N, Arroll  B, Robinson  E.  Effectiveness of counselling patients on physical activity in general practice: cluster randomised controlled trial.  BMJ. 2003;326(7393):793.PubMedArticle
53.
Estabrooks  PA, Smith-Ray  RL, Almeida  FA,  et al.  Move More: translating an efficacious group dynamics physical activity intervention into effective clinical practice.  Int J Sport Exerc Psychol. 2011;9(1):4-18.Article
54.
Fjeldsoe  BS, Miller  YD, Graves  N, Barnett  AG, Marshall  AL.  Randomized controlled trial of an improved version of MobileMums, an intervention for increasing physical activity in women with young children.  Ann Behav Med. 2015;49(4):487-499.PubMedArticle
55.
Foley  P, Levine  E, Askew  S,  et al.  Weight gain prevention among black women in the rural community health center setting: the Shape Program.  BMC Public Health. 2012;12:305.PubMedArticle
56.
Franko  DL, Cousineau  TM, Trant  M,  et al.  Motivation, self-efficacy, physical activity and nutrition in college students: randomized controlled trial of an internet-based education program.  Prev Med. 2008;47(4):369-377.PubMedArticle
57.
Fries  E, Edinboro  P, McClish  D,  et al.  Randomized trial of a low-intensity dietary intervention in rural residents: the Rural Physician Cancer Prevention Project.  Am J Prev Med. 2005;28(2):162-168.PubMedArticle
58.
Gao  S, Stone  RA, Hough  LJ,  et al.  Physical activity counseling in overweight and obese primary care patients: outcomes of the VA-STRIDE randomized controlled trial.  Prev Med Rep. 2015;3:113-120.PubMedArticle
59.
García-Ortiz  L, Grandes  G, Sánchez-Pérez  A,  et al; PEPAF Group.  Effect on cardiovascular risk of an intervention by family physicians to promote physical exercise among sedentary individuals.  Rev Esp Cardiol. 2010;63(11):1244-1252.PubMedArticle
60.
Gell  NM, Wadsworth  DD.  The use of text messaging to promote physical activity in working women: a randomized controlled trial.  J Phys Act Health. 2015;12(6):756-763.PubMedArticle
61.
Goldstein  MG, Pinto  BM, Marcus  BH,  et al.  Physician-based physical activity counseling for middle-aged and older adults: a randomized trial.  Ann Behav Med. 1999;21(1):40-47.PubMedArticle
62.
Grandes  G, Sanchez  A, Montoya  I, Ortega Sanchez-Pinilla  R, Torcal  J; PEPAF Group.  Two-year longitudinal analysis of a cluster randomized trial of physical activity promotion by general practitioners.  PLoS One. 2011;6(3):e18363.PubMedArticle
63.
Grandes  G, Sanchez  A, Sanchez-Pinilla  RO,  et al; PEPAF Group.  Effectiveness of physical activity advice and prescription by physicians in routine primary care: a cluster randomized trial.  Arch Intern Med. 2009;169(7):694-701.PubMedArticle
64.
Green  BB, McAfee  T, Hindmarsh  M, Madsen  L, Caplow  M, Buist  D.  Effectiveness of telephone support in increasing physical activity levels in primary care patients.  Am J Prev Med. 2002;22(3):177-183.PubMedArticle
65.
Greenberger  HM. Modifiers of the Effectiveness of a Diet Intervention in Family Members of Cardiovascular Disease Patients [dissertation]. New York, NY: Columbia University; 2010.
66.
Greene  GW, Fey-Yensan  N, Padula  C, Rossi  SR, Rossi  JS, Clark  PG.  Change in fruit and vegetable intake over 24 months in older adults: results of the SENIOR Project intervention.  Gerontologist. 2008;48(3):378-387.PubMedArticle
67.
Greenlee  H, Gaffney  AO, Aycinena  AC,  et al.  Cocinar Para Su Salud! randomized controlled trial of a culturally based dietary intervention among hispanic breast cancer survivors.  J Acad Nutr Diet. 2015;115(5):709-723.PubMedArticle
68.
Halbert  JA, Silagy  CA, Finucane  P, Withers  RT, Hamdorf  PA.  Recruitment of older adults for a randomized, controlled trial of exercise advice in a general practice setting.  J Am Geriatr Soc. 1999;47(4):477-481.PubMedArticle
69.
Halbert  JA, Silagy  CA, Finucane  PM, Withers  RT, Hamdorf  PA.  Physical activity and cardiovascular risk factors: effect of advice from an exercise specialist in Australian general practice.  Med J Aust. 2000;173(2):84-87.PubMed
70.
Hall  WD, Feng  Z, George  VA,  et al; Women’s Health Trial: Feasibility Study in Minority Populations.  Low-fat diet: effect on anthropometrics, blood pressure, glucose, and insulin in older women.  Ethn Dis. 2003;13(3):337-343.PubMed
71.
Hargreaves  EA, Mutrie  N, Fleming  JD.  A web-based intervention to encourage walking (StepWise): pilot randomized controlled trial.  JMIR Res Protoc. 2016;5(1):e14.PubMedArticle
72.
Harland  J, White  M, Drinkwater  C, Chinn  D, Farr  L, Howel  D.  The Newcastle exercise project: a randomised controlled trial of methods to promote physical activity in primary care.  BMJ. 1999;319(7213):828-832.PubMedArticle
73.
Harris  T, Kerry  SM, Victor  CR,  et al.  A primary care nurse–delivered walking intervention in older adults: PACE (pedometer accelerometer consultation evaluation)-Lift cluster randomised controlled trial.  PLoS Med. 2015;12(2):e1001783.PubMedArticle
74.
Hebert  PR, Bolt  RJ, Borhani  NO,  et al; Trials of Hypertension Prevention (TOHP) Collaborative Research Group.  Design of a multicenter trial to evaluate long-term life-style intervention in adults with high-normal blood pressure levels: Trials of Hypertension Prevention (phase II).  Ann Epidemiol. 1995;5(2):130-139.PubMedArticle
75.
Hellénius  ML, Dahlöf  C, Aberg  H, Krakau  I, de Faire  U.  Quality of life is not negatively affected by diet and exercise intervention in healthy men with cardiovascular risk factors.  Qual Life Res. 1995;4(1):13-20.PubMedArticle
76.
Hellénius  ML, de Faire  U, Berglund  B, Hamsten  A, Krakau  I.  Diet and exercise are equally effective in reducing risk for cardiovascular disease: results of a randomized controlled study in men with slightly to moderately raised cardiovascular risk factors.  Atherosclerosis. 1993;103(1):81-91.PubMedArticle
77.
Herman  C, Thompson  J, Wolfe  V,  et al. Six-month results from a healthy lifestyles diabetes primary prevention program among urban Native American women. Paper presented at: American Public Health Association 134th Annual Meeting and Exposition; November 4, 2006; Boston, MA.
78.
Hinderliter  AL, Sherwood  A, Craighead  LW,  et al.  The long-term effects of lifestyle change on blood pressure: one-year follow-up of the ENCORE study.  Am J Hypertens. 2014;27(5):734-741.PubMedArticle
79.
Hivert  MF, Langlois  MF, Bérard  P, Cuerrier  JP, Carpentier  AC.  Prevention of weight gain in young adults through a seminar-based intervention program.  Int J Obes (Lond). 2007;31(8):1262-1269.PubMedArticle
80.
Howard  BV, Manson  JE, Stefanick  ML,  et al.  Low-fat dietary pattern and weight change over 7 years: the Women’s Health Initiative Dietary Modification Trial.  JAMA. 2006;295(1):39-49.PubMedArticle
81.
Howard  BV, Van Horn  L, Hsia  J,  et al.  Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative randomized controlled dietary modification trial.  JAMA. 2006;295(6):655-666.PubMedArticle
82.
Hypertension Prevention Trial Research Group.  The Hypertension Prevention Trial: three-year effects of dietary changes on blood pressure.  Arch Intern Med. 1990;150(1):153-162.PubMedArticle
83.
Jacobs  N, Clays  E, De Bacquer  D,  et al.  Effect of a tailored behavior change program on a composite lifestyle change score: a randomized controlled trial.  Health Educ Res. 2011;26(5):886-895.PubMedArticle
84.
Jacobs  N, De Bourdeaudhuij  I, Thijs  H, Dendale  P, Claes  N.  Effect of a cardiovascular prevention program on health behavior and BMI in highly educated adults: a randomized controlled trial.  Patient Educ Couns. 2011;85(1):122-126.PubMedArticle
85.
Jeffery  RW, French  SA.  Preventing weight gain in adults: the Pound of Prevention study.  Am J Public Health. 1999;89(5):747-751.PubMedArticle
86.
John  JH, Ziebland  S, Yudkin  P, Roe  LS, Neil  HA; Oxford Fruit and Vegetable Study Group.  Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial.  Lancet. 2002;359(9322):1969-1974.PubMedArticle
87.
Kallings  LV. Physical Activity on Prescription: Studies on Physical Activity Level, Adherence, and Cardiovascular Risk Factors [dissertation]. Stockholm, Sweden: Karolinska Institutet; 2008.
88.
Kallings  LV, Sierra Johnson  J, Fisher  RM,  et al.  Beneficial effects of individualized physical activity on prescription on body composition and cardiometabolic risk factors: results from a randomized controlled trial.  Eur J Cardiovasc Prev Rehabil. 2009;16(1):80-84.PubMedArticle
89.
Kattelmann  KK, Bredbenner  CB, White  AA,  et al.  The effects of Young Adults Eating and Active for Health (YEAH): a theory-based web-delivered intervention.  J Nutr Educ Behav. 2014;46(6):S27-S41.PubMedArticle
90.
Katz  DL, Shuval  K, Comerford  BP, Faridi  Z, Njike  VY.  Impact of an educational intervention on internal medicine residents’ physical activity counselling: the Pressure System Model.  J Eval Clin Pract. 2008;14(2):294-299.PubMedArticle
91.
Kerr  DA, Harray  AJ, Pollard  CM,  et al.  The connecting health and technology study: a 6-month randomized controlled trial to improve nutrition behaviours using a mobile food record and text messaging support in young adults.  Int J Behav Nutr Phys Act. 2016;13(1):52.PubMedArticle
92.
Kerr  DA, Pollard  CM, Howat  P,  et al.  Connecting Health and Technology (CHAT): protocol of a randomized controlled trial to improve nutrition behaviours using mobile devices and tailored text messaging in young adults.  BMC Public Health. 2012;12:477.PubMedArticle
93.
Kerse  N, Elley  CR, Robinson  E, Arroll  B.  Is physical activity counseling effective for older people? a cluster randomized, controlled trial in primary care.  J Am Geriatr Soc. 2005;53(11):1951-1956.PubMedArticle
94.
King  AC, Castro  CM, Buman  MP, Hekler  EB, Urizar  GG  Jr, Ahn  DK.  Behavioral impacts of sequentially versus simultaneously delivered dietary plus physical activity interventions: the CALM trial.  Ann Behav Med. 2013;46(2):157-168.PubMedArticle
95.
King  AC, Friedman  R, Marcus  B,  et al.  Ongoing physical activity advice by humans versus computers: the Community Health Advice by Telephone (CHAT) trial.  Health Psychol. 2007;26(6):718-727.PubMedArticle
96.
Kinmonth  AL, Wareham  NJ, Hardeman  W,  et al.  Efficacy of a theory-based behavioural intervention to increase physical activity in an at-risk group in primary care (ProActive UK): a randomised trial.  Lancet. 2008;371(9606):41-48.PubMedArticle
97.
Kolt  GS, Schofield  GM, Kerse  N, Garrett  N, Oliver  M.  Effect of telephone counseling on physical activity for low-active older people in primary care: a randomized, controlled trial.  J Am Geriatr Soc. 2007;55(7):986-992.PubMedArticle
98.
Kristal  AR, Curry  SJ, Shattuck  AL, Feng  Z, Li  S.  A randomized trial of a tailored, self-help dietary intervention: the Puget Sound Eating Patterns study.  Prev Med. 2000;31(4):380-389.PubMedArticle
99.
Kuller  LH, Simkin-Silverman  LR, Wing  RR, Meilahn  EN, Ives  DG.  Women’s Healthy Lifestyle Project: a randomized clinical trial: results at 54 months.  Circulation. 2001;103(1):32-37.PubMedArticle
100.
Kumanyika  SK, Cook  NR, Cutler  JA,  et al; Trials of Hypertension Prevention Collaborative Research Group.  Sodium reduction for hypertension prevention in overweight adults: further results from the Trials of Hypertension Prevention Phase II.  J Hum Hypertens. 2005;19(1):33-45.PubMedArticle
101.
Kumanyika  SK, Hebert  PR, Cutler  JA,  et al; Trials of Hypertension Prevention Collaborative Research Group.  Feasibility and efficacy of sodium reduction in the Trials of Hypertension Prevention, phase I.  Hypertension. 1993;22(4):502-512.PubMedArticle
102.
Lawton  BA, Rose  SB, Elley  CR, Dowell  AC, Fenton  A, Moyes  SA.  Exercise on prescription for women aged 40-74 recruited through primary care: two year randomised controlled trial.  BMJ. 2008;337:a2509.PubMedArticle
103.
Lewis  BA, Williams  DM, Martinson  BC, Dunsiger  S, Marcus  BH.  Healthy for life: a randomized trial examining physical activity outcomes and psychosocial mediators.  Ann Behav Med. 2013;45(2):203-212.PubMedArticle
104.
Lutz  SF, Ammerman  AS, Atwood  JR, Campbell  MK, DeVellis  RF, Rosamond  WD.  Innovative newsletter interventions improve fruit and vegetable consumption in healthy adults.  J Am Diet Assoc. 1999;99(6):705-709.PubMedArticle
105.
Magnan  RE, Nilsson  R, Marcus  BH, Ciccolo  JT, Bryan  AD.  A transdisciplinary approach to the selection of moderators of an exercise promotion intervention: baseline data and rationale for Colorado STRIDE.  J Behav Med. 2013;36(1):20-33.PubMedArticle
106.
Mailey  EL, McAuley  E.  Impact of a brief intervention on physical activity and social cognitive determinants among working mothers: a randomized trial.  J Behav Med. 2014;37(2):343-355.PubMedArticle
107.
Marcus  BH, Dunsiger  SI, Pekmezi  D,  et al.  Twelve-month physical activity outcomes in Latinas in the Seamos Saludables trial.  Am J Prev Med. 2015;48(2):179-182.PubMedArticle
108.
Marcus  BH, Dunsiger  SI, Pekmezi  DW,  et al.  The Seamos Saludables study: a randomized controlled physical activity trial of Latinas.  Am J Prev Med. 2013;45(5):598-605.PubMedArticle
109.
Marcus  BH, Napolitano  MA, King  AC,  et al.  Telephone versus print delivery of an individualized motivationally tailored physical activity intervention: Project STRIDE.  Health Psychol. 2007;26(4):401-409.PubMedArticle
110.
Marcus  BH, Napolitano  MA, King  AC,  et al.  Examination of print and telephone channels for physical activity promotion: rationale, design, and baseline data from Project STRIDE.  Contemp Clin Trials. 2007;28(1):90-104.PubMedArticle
111.
Marsaux  CF, Celis-Morales  C, Fallaize  R,  et al.  Effects of a web-based personalized intervention on physical activity in European adults: a randomized controlled trial.  J Med Internet Res. 2015;17(10):e231.PubMedArticle
112.
Marshall  AL, Bauman  AE, Owen  N, Booth  ML, Crawford  D, Marcus  BH.  Population-based randomized controlled trial of a stage-targeted physical activity intervention.  Ann Behav Med. 2003;25(3):194-202.PubMedArticle
113.
Marshall  AL, Miller  YD, Graves  N, Barnett  AG, Fjeldsoe  BS.  Moving MobileMums forward: protocol for a larger randomized controlled trial of an improved physical activity program for women with young children.  BMC Public Health. 2013;13(1):593.PubMedArticle
114.
Martinson  BC, Crain  AL, Sherwood  NE, Hayes  M, Pronk  NP, O’Connor  PJ.  Maintaining physical activity among older adults: six-month outcomes of the Keep Active Minnesota randomized controlled trial.  Prev Med. 2008;46(2):111-119.PubMedArticle
115.
Martinson  BC, Sherwood  NE, Crain  AL,  et al.  Maintaining physical activity among older adults: 24-month outcomes of the Keep Active Minnesota randomized controlled trial.  Prev Med. 2010;51(1):37-44.PubMedArticle
116.
Meinert  CL, Borhani  NO, Langford  HG; Hypertension Prevention Trial Research Group.  Design, methods, and rationale in the Hypertension Prevention Trial.  Control Clin Trials. 1989;10(3)(suppl):1S-29S.PubMedArticle
117.
Mochari-Greenberger  H, Terry  MB, Mosca  L.  Sex, age, and race/ethnicity do not modify the effectiveness of a diet intervention among family members of hospitalized cardiovascular disease patients.  J Nutr Educ Behav. 2011;43(5):366-373.PubMedArticle
118.
Mosca  L, Mochari  H, Liao  M,  et al.  A novel family-based intervention trial to improve heart health: FIT Heart: results of a randomized controlled trial.  Circ Cardiovasc Qual Outcomes. 2008;1(2):98-106.PubMedArticle
119.
Napolitano  MA, Whiteley  JA, Papandonatos  G,  et al.  Outcomes from the women’s wellness project: a community-focused physical activity trial for women.  Prev Med. 2006;43(6):447-453.PubMedArticle
120.
Nishigaki  M, Tokunaga-Nakawatase  Y, Nishida  J,  et al.  Randomized controlled trial of the effectiveness of genetic counseling and a distance, computer-based, lifestyle intervention program for adult offspring of patients with type 2 diabetes: background, study protocol, and baseline patient characteristics.  J Nutr Metab. 2012;2012:831735.PubMedArticle
121.
Norris  SL, Grothaus  LC, Buchner  DM, Pratt  M.  Effectiveness of physician-based assessment and counseling for exercise in a staff model HMO.  Prev Med. 2000;30(6):513-523.PubMedArticle
122.
O’Neill  SM, Rubinstein  WS, Wang  C,  et al; Family Healthware Impact Trial group.  Familial risk for common diseases in primary care: the Family Healthware Impact Trial.  Am J Prev Med. 2009;36(6):506-514.PubMedArticle
123.
Parekh  S, King  D, Boyle  FM, Vandelanotte  C.  Randomized controlled trial of a computer-tailored multiple health behaviour intervention in general practice: 12-month follow-up results.  Int J Behav Nutr Phys Act. 2014;11(1):41.PubMedArticle
124.
Parekh  S, Vandelanotte  C, King  D, Boyle  FM.  Design and baseline characteristics of the 10 Small Steps Study: a randomised controlled trial of an intervention to promote healthy behaviour using a lifestyle score and personalised feedback.  BMC Public Health. 2012;12:179.PubMedArticle
125.
Pekmezi  D, Dunsiger  S, Gans  K,  et al.  Rationale, design, and baseline findings from Seamos Saludables: a randomized controlled trial testing the efficacy of a culturally and linguistically adapted, computer- tailored physical activity intervention for Latinas.  Contemp Clin Trials. 2012;33(6):1261-1271.PubMedArticle
126.
Pekmezi  DW, Neighbors  CJ, Lee  CS,  et al.  A culturally adapted physical activity intervention for Latinas: a randomized controlled trial.  Am J Prev Med. 2009;37(6):495-500.PubMedArticle
127.
Pinto  BM, Friedman  R, Marcus  BH, Kelley  H, Tennstedt  S, Gillman  MW.  Effects of a computer-based, telephone-counseling system on physical activity.  Am J Prev Med. 2002;23(2):113-120.PubMedArticle
128.
Pinto  BM, Goldstein  MG, Ashba  J, Sciamanna  CN, Jette  A.  Randomized controlled trial of physical activity counseling for older primary care patients.  Am J Prev Med. 2005;29(4):247-255.PubMedArticle
129.
Pinto  BM, Goldstein  MG, DePue  JD, Milan  FB.  Acceptability and feasibility of physician-based activity counseling: the PAL project.  Am J Prev Med. 1998;15(2):95-102.PubMedArticle
130.
Roderick  P, Ruddock  V, Hunt  P, Miller  G.  A randomized trial to evaluate the effectiveness of dietary advice by practice nurses in lowering diet-related coronary heart disease risk.  Br J Gen Pract. 1997;47(414):7-12.PubMed
131.
Ruffin  MT  IV, Nease  DE  Jr, Sen  A,  et al; Family History Impact Trial (FHITr) Group.  Effect of preventive messages tailored to family history on health behaviors: the Family Healthware Impact Trial.  Ann Fam Med. 2011;9(1):3-11.PubMedArticle
132.
Sacerdote  C, Fiorini  L, Rosato  R, Audenino  M, Valpreda  M, Vineis  P.  Randomized controlled trial: effect of nutritional counselling in general practice.  Int J Epidemiol. 2006;35(2):409-415.PubMedArticle
133.
Satterfield  S, Cutler  JA, Langford  HG,  et al.  Trials of Hypertension Prevention: phase I design.  Ann Epidemiol. 1991;1(5):455-471.PubMedArticle
134.
Shah  M, Jeffery  RW, Laing  B, Savre  SG, Van Natta  M, Strickland  D; Hypertension Prevention Trial Research Group.  Hypertension Prevention Trial (HPT): food pattern changes resulting from intervention on sodium, potassium, and energy intake.  J Am Diet Assoc. 1990;90(1):69-76.PubMed
135.
Sherwood  NE, Martinson  BC, Crain  AL, Hayes  MG, Pronk  NP, O’Connor  PJ.  A new approach to physical activity maintenance: rationale, design, and baseline data from the Keep Active Minnesota Trial.  BMC Geriatr. 2008;8:17.PubMedArticle
136.
Simkin-Silverman  L, Wing  RR, Hansen  DH,  et al.  Prevention of cardiovascular risk factor elevations in healthy premenopausal women.  Prev Med. 1995;24(5):509-517.PubMedArticle
137.
Simkin-Silverman  LR, Wing  RR, Boraz  MA, Kuller  LH.  Lifestyle intervention can prevent weight gain during menopause: results from a 5-year randomized clinical trial.  Ann Behav Med. 2003;26(3):212-220.PubMedArticle
138.
Simkin-Silverman  LR, Wing  RR, Boraz  MA, Meilahn  EN, Kuller  LH.  Maintenance of cardiovascular risk factor changes among middle-aged women in a lifestyle intervention trial.  Womens Health. 1998;4(3):255-271.PubMed
139.
Smith  BJ, Cinnadaio  N, Cheung  NW, Bauman  A, Tapsell  LC, van der Ploeg  HP.  Investigation of a lifestyle change strategy for high-risk women with a history of gestational diabetes.  Diabetes Res Clin Pract. 2014;106(3):e60-e63.PubMedArticle
140.
Springvloet  L, Lechner  L, de Vries  H, Candel  MJ, Oenema  A.  Short- and medium-term efficacy of a web-based computer-tailored nutrition education intervention for adults including cognitive and environmental feedback: randomized controlled trial.  J Med Internet Res. 2015;17(1):e23.PubMedArticle
141.
Springvloet  L, Lechner  L, de Vries  H, Oenema  A.  Long-term efficacy of a web-based computer-tailored nutrition education intervention for adults including cognitive and environmental feedback: a randomized controlled trial.  BMC Public Health. 2015;15:372.PubMedArticle
142.
Springvloet  L, Lechner  L, Oenema  A.  Planned development and evaluation protocol of two versions of a web-based computer-tailored nutrition education intervention aimed at adults, including cognitive and environmental feedback.  BMC Public Health. 2014;14:47.PubMedArticle
143.
Stewart  AL, Verboncoeur  CJ, McLellan  BY,  et al.  Physical activity outcomes of CHAMPS II: a physical activity promotion program for older adults.  J Gerontol A Biol Sci Med Sci. 2001;56(8):M465-M470.PubMedArticle
144.
Stopponi  MA, Alexander  GL, McClure  JB,  et al.  Recruitment to a randomized web-based nutritional intervention trial: characteristics of participants compared to non-participants.  J Med Internet Res. 2009;11(3):e38.PubMedArticle
145.
Taveras  EM, Blackburn  K, Gillman  MW,  et al.  First Steps for Mommy and Me: a pilot intervention to improve nutrition and physical activity behaviors of postpartum mothers and their infants.  Matern Child Health J. 2011;15(8):1217-1227.PubMedArticle
146.
Trials of Hypertension Prevention Collaborative Research Group.  The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels: results of the Trials of Hypertension Prevention, phase I.  JAMA. 1992;267(9):1213-1220.PubMedArticle
147.
Trials of Hypertension Prevention Collaborative Research Group.  Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: the Trials of Hypertension Prevention, phase II.  Arch Intern Med. 1997;157(6):657-667.PubMedArticle
148.
The Women’s Health Initiative Study Group.  Design of the Women’s Health Initiative clinical trial and observational study.  Control Clin Trials. 1998;19(1):61-109.PubMedArticle
149.
Thompson  JL, Allen  P, Helitzer  DL,  et al.  Reducing diabetes risk in American Indian women.  Am J Prev Med. 2008;34(3):192-201.PubMedArticle
150.
Thompson  WG, Kuhle  CL, Koepp  GA, McCrady-Spitzer  SK, Levine  JA.  “Go4Life” exercise counseling, accelerometer feedback, and activity levels in older people.  Arch Gerontol Geriatr. 2014;58(3):314-319.PubMedArticle
151.
Tinker  LF, Bonds  DE, Margolis  KL,  et al; Women’s Health Initiative.  Low-fat dietary pattern and risk of treated diabetes mellitus in postmenopausal women: the Women’s Health Initiative randomized controlled dietary modification trial.  Arch Intern Med. 2008;168(14):1500-1511.PubMedArticle
152.
Tokunaga-Nakawatase  Y, Nishigaki  M, Taru  C,  et al.  Computer-supported indirect-form lifestyle-modification support program using Lifestyle Intervention Support Software for Diabetes Prevention (LISS-DP) for people with a family history of type 2 diabetes in a medical checkup setting: a randomized controlled trial.  Prim Care Diabetes. 2014;8(3):207-214.PubMedArticle
153.
Valve  P, Lehtinen-Jacks  S, Eriksson  T,  et al.  LINDA—a solution-focused low-intensity intervention aimed at improving health behaviors of young females: a cluster-randomized controlled trial.  BMC Public Health. 2013;13:1044.PubMedArticle
154.
Van Hoecke  AS, Delecluse  C, Bogaerts  A, Boen  F.  The long-term effectiveness of need-supportive physical activity counseling compared with a standard referral in sedentary older adults.  J Aging Phys Act. 2014;22(2):186-198.PubMedArticle
155.
Van Hoecke  AS, Delecluse  C, Bogaerts  A, Boen  F.  Effects of need-supportive physical activity counseling on well-being: a 2-year follow-up among sedentary older adults.  J Phys Act Health. 2014;11(8):1492-1502.PubMedArticle
156.
van Stralen  MM, de Vries  H, Bolman  C, Mudde  AN, Lechner  L.  Exploring the efficacy and moderators of two computer-tailored physical activity interventions for older adults: a randomized controlled trial.  Ann Behav Med. 2010;39(2):139-150.PubMedArticle
157.
van Stralen  MM, de Vries  H, Mudde  AN, Bolman  C, Lechner  L.  The long-term efficacy of two computer-tailored physical activity interventions for older adults: main effects and mediators.  Health Psychol. 2011;30(4):442-452.PubMedArticle
158.
van Stralen  MM, de Vries  H, Mudde  AN, Bolman  C, Lechner  L.  Efficacy of two tailored interventions promoting physical activity in older adults.  Am J Prev Med. 2009;37(5):405-417.PubMedArticle
159.
Vandelanotte  C, De Bourdeaudhuij  I, Sallis  JF, Spittaels  H, Brug  J.  Efficacy of sequential or simultaneous interactive computer-tailored interventions for increasing physical activity and decreasing fat intake.  Ann Behav Med. 2005;29(2):138-146.PubMedArticle
160.
Vrdoljak  D, Marković  BB, Puljak  L, Lalić  DI, Kranjčević  K, Vučak  J.  Lifestyle intervention in general practice for physical activity, smoking, alcohol consumption and diet in elderly: a randomized controlled trial [published online August 24, 2013].  Arch Gerontol Geriatr. doi:10.1016/j.archger.2013.08.007PubMed
161.
Wadsworth  DD, Hallam  JS.  Effect of a web site intervention on physical activity of college females.  Am J Health Behav. 2010;34(1):60-69.PubMedArticle
162.
Warner  LM, Wolff  JK, Ziegelmann  JP, Schwarzer  R, Wurm  S.  Revisiting self-regulatory techniques to promote physical activity in older adults: null-findings from a randomised controlled trial.  Psychol Health. 2016;31(10):1145-1165.PubMedArticle
163.
Williams  K, Prevost  AT, Griffin  S,  et al.  The ProActive trial protocol—a randomised controlled trial of the efficacy of a family-based, domiciliary intervention programme to increase physical activity among individuals at high risk of diabetes [ISRCTN61323766].  BMC Public Health. 2004;4:48.PubMedArticle
164.
Albright  CL, Saiki  K, Steffen  AD, Woekel  E.  What barriers thwart postpartum women’s physical activity goals during a 12-month intervention? a process evaluation of the Nā Mikimiki Project.  Women Health. 2015;55(1):1-21. PubMedArticle
165.
Harris  T, Kerry  S, Victor  C,  et al.  Randomised controlled trial of a complex intervention by primary care nurses to increase walking time in patients aged 60-74 years: protocol of the PACE-Lift (Pedometer Accelerometer Consultation Evaluation–Lift) trial.  BMC Public Health. 2013;13:5. PubMedArticle
166.
Whitlock  G, Lewington  S, Sherliker  P,  et al; Prospective Studies Collaboration.  Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.  Lancet. 2009;373(9669):1083-1096.PubMedArticle
167.
Lewington  S, Whitlock  G, Clarke  R,  et al; Prospective Studies Collaboration.  Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths.  Lancet. 2007;370(9602):1829-1839.PubMedArticle
168.
Lewington  S, Clarke  R, Qizilbash  N, Peto  R, Collins  R; Prospective Studies Collaboration.  Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.  Lancet. 2002;360(9349):1903-1913.PubMedArticle
169.
Guirguis-Blake  JM, Evans  CV, Senger  CA, O’Connor  EA, Whitlock  EP.  Aspirin for the primary prevention of cardiovascular events: a systematic evidence review for the U.S. Preventive Services Task Force.  Ann Intern Med. 2016;164(12):804-813.PubMedArticle
170.
Leblanc  ES, O’Connor  E, Whitlock  EP, Patnode  CD, Kapka  T.  Effectiveness of primary care–relevant treatments for obesity in adults: a systematic evidence review for the U.S. Preventive Services Task Force.  Ann Intern Med. 2011;155(7):434-447.PubMedArticle
171.
Lin  JS, O’Connor  E, Evans  CV, Senger  CA, Rowland  MG, Groom  HC.  Behavioral counseling to promote a healthy lifestyle in persons with cardiovascular risk factors: a systematic review for the U.S. Preventive Services Task Force.  Ann Intern Med. 2014;161(8):568-578.PubMedArticle
172.
Patnode  CD, Henderson  JT, Thompson  JH, Senger  CA, Fortmann  SP, Whitlock  EP.  Behavioral counseling and pharmacotherapy interventions for tobacco cessation in adults, including pregnant women: a review of reviews for the U.S. Preventive Services Task Force.  Ann Intern Med. 2015;163(8):608-621.PubMedArticle
173.
Chou  R, Dana  T, Blazina  I,  et al.  Statins for Prevention of Cardiovascular Disease in Adults: Systematic Review for the US Preventive Services Task Force. Evidence Synthesis No. 132. Rockville, MD: Agency for Healthcare Research and Quality; 2015. AHRQ publication 13-05193-EF-1.
174.
Michie  S, Richardson  M, Johnston  M,  et al.  The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions.  Ann Behav Med. 2013;46(1):81-95.PubMedArticle
175.
Krist  AH, Baumann  LJ, Holtrop  JS, Wasserman  MR, Stange  KC, Woo  M.  Evaluating feasible and referable behavioral counseling interventions.  Am J Prev Med. 2015;49(3)(suppl 2):S138-S149.PubMedArticle
176.
Block  G, Hartman  AM, Dresser  CM, Carroll  MD, Gannon  J, Gardner  L.  A data-based approach to diet questionnaire design and testing.  Am J Epidemiol. 1986;124(3):453-469.PubMedArticle
177.
Block  G, Woods  M, Potosky  A, Clifford  C.  Validation of a self-administered diet history questionnaire using multiple diet records.  J Clin Epidemiol. 1990;43(12):1327-1335.PubMedArticle
178.
Newell  SA, Girgis  A, Sanson-Fisher  RW, Savolainen  NJ.  The accuracy of self-reported health behaviors and risk factors relating to cancer and cardiovascular disease in the general population: a critical review.  Am J Prev Med. 1999;17(3):211-229.PubMedArticle
179.
McNellis  RJ, Ory  MG, Lin  JS, O’Connor  EA.  Standards of evidence for behavioral counseling recommendations.  Am J Prev Med. 2015;49(3)(suppl 2):S150-S157.PubMedArticle
180.
Bibbins-Domingo  K, Grossman  DC, Curry  SJ,  et al; US Preventive Services Task Force.  Statin use for the primary prevention of cardiovascular disease in adults: US Preventive Services Task Force recommendation statement.  JAMA. 2016;316(19):1997-2007.PubMedArticle
Views 4,978
Citations 0
US Preventive Services Task Force
Evidence Report
July 11, 2017

Behavioral Counseling to Promote a Healthful Diet and Physical Activity for Cardiovascular Disease Prevention in Adults Without Known Cardiovascular Disease Risk FactorsUpdated Evidence Report and Systematic Review for the US Preventive Services Task Force

Author Affiliations
  • 1Kaiser Permanente Research Affiliates Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
JAMA. 2017;318(2):175-193. doi:10.1001/jama.2017.3303
Abstract

Importance  Unhealthful dietary patterns, low levels of physical activity, and high sedentary time increase the risk of cardiovascular disease.

Objective  To systematically review the evidence on the benefits and harms of behavioral counseling for the primary prevention of cardiovascular disease in adults without known cardiovascular risk factors to inform the US Preventive Services Task Force.

Data Sources  MEDLINE, PubMed, Cochrane Central Register of Controlled Trials, and PsycINFO for studies published in the English language between January 1, 2013, and May 25, 2016, and ongoing surveillance in targeted publications through March 24, 2017. Studies included in the previous review were reevaluated for inclusion.

Study Selection  Randomized clinical trials of behavioral interventions targeting improved diet, increased physical activity, decreased sedentary time, or a combination of these among adults without known hypertension, dyslipidemia, diabetes, or impaired fasting glucose.

Data Extraction and Synthesis  Independent critical appraisal and data abstraction by 2 reviewers.

Main Outcomes and Measures  Cardiometabolic health and intermediate outcomes, behavioral outcomes, and harms related to interventions.

Results  Eighty-eight studies (N = 121 190) in 145 publications were included. There was no consistent benefit of the interventions on all-cause or cardiovascular mortality or morbidity (4 trials [n = 51 356]) or health-related quality of life (10 trials [n = 52 423]). There was evidence of small, statistically significant between-group mean differences for systolic blood pressure (−1.26 mm Hg [95% CI, −1.77 to −0.75]; 22 trials [n = 57 953]), diastolic blood pressure (−0.49 mm Hg [95% CI, −0.82 to −0.16]; 23 trials [n = 58 022]), low-density lipoprotein cholesterol level (−2.58 mg/dL [95% CI, −4.30 to −0.85]; 13 trials [n = 5554]), total cholesterol level (−2.85 mg/dL [95% CI, −4.95 to −0.75]; 19 trials [n = 9325]), and body mass index (−0.41 [95% CI, −0.62 to −0.19]; 20 trials [n = 55 059]) at 6 to 12 months as well as small-to-modest associations with dietary and physical activity behaviors. There was no evidence of greater incidence of serious adverse events, injuries, or falls in intervention vs control participants.

Conclusions and Relevance  Diet and physical activity behavioral interventions for adults not at high risk for cardiovascular disease result in consistent modest benefits across a variety of important intermediate health outcomes across 6 to 12 months, including blood pressure, low-density lipoprotein and total cholesterol levels, and adiposity, with evidence of a dose-response effect, with higher-intensity interventions conferring greater improvements. There is very limited evidence on longer-term intermediate and health outcomes or on harmful effects of these interventions.

Introduction

Despite evidence that healthful dietary patterns, physical activity, and limited sedentary time are associated with reduced cardiovascular morbidity and mortality,14 most US adults are not meeting national recommendations for these behaviors.5 Counseling within primary care and interventions referred through primary care may be one strategy to improve these behaviors and subsequently prevent poor cardiovascular outcomes.

The US Preventive Services Task Force (USPSTF) has several recommendations related to cardiovascular disease (CVD) prevention, including guidance on healthy lifestyle counseling6,7; screening and treatment for obesity,8 hypertension,9 and abnormal blood glucose levels10; aspirin11 and statin12 use; and tobacco cessation interventions.12 The purpose of this review was to update the USPSTF review on the benefits and harms of behavioral counseling interventions for healthful diet, physical activity, and/or sedentary behavior for the primary prevention of cardiovascular disease among adults without known CVD or those with known hypertension, dyslipidemia, diabetes, or impaired fasting glucose. This review will help the USPSTF update their 2012 C grade recommendation that clinicians may choose to selectively counsel adults about healthful diet and physical activity.7

Methods
Scope of Review

This review addressed 4 key questions (KQs) as shown in Figure 1. Methodological details (including study selection, a list of excluded studies, and description of data analyses), as well as more detailed results (including detailed descriptions of all of the interventions and data on effect modification and subpopulation results), are publicly available in the full evidence report at https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/healthful-diet-and-physical-activity-for-cardiovascular-disease-prevention-in-adults-without-known-risk-factors-behavioral-counseling.

Data Sources and Searches

This review was designed as an extension of 2 prior systematic reviews conducted by the Kaiser Permanente Research Affiliates Evidence-based Practice Center for the USPSTF that focused on healthful diet and physical activity counseling for cardiovascular disease prevention among individuals with14 and without15 known CVD risk factors (ie, hypertension, dyslipidemia, diabetes, or impaired fasting glucose). As such, relevant studies from those reviews were reevaluated for potential inclusion. Then, the following databases were searched for new relevant English-language literature published between January 1, 2013, and May 25, 2016: MEDLINE, PubMed (publisher-supplied records only), PsycINFO, and the Cochrane Central Register of Controlled Trials (eMethods in the Supplement). Collectively, the literature searches encompassed literature published from 1966 through May 25, 2016. The database searches were supplemented by reviewing bibliographies from other relevant literature and from expert suggestions. ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. Since May 2016, ongoing surveillance was conducted using searches of a subset of core clinical journals identified by the USPSTF to identify major studies published in the interim that may affect the conclusions or understanding of the evidence and therefore the related USPSTF recommendation. The last surveillance was conducted on March 24, 2017, and identified no new studies.

Study Selection

Two reviewers independently reviewed all identified titles and abstracts and relevant full-text articles against prespecified inclusion and exclusion criteria (eTable 1 in the Supplement). Discrepancies were resolved through discussion and consensus. Eligible studies were fair- and good-quality randomized clinical trials that evaluated the effectiveness of primary care–relevant interventions focused on improving dietary habits, increasing physical activity, and/or reducing sedentary time with the primary aim of CVD primary prevention among adults 18 years or older. Studies were excluded from this review if they (1) targeted persons with known CVD, hypertension, dyslipidemia, diabetes, impaired fasting glucose or glucose tolerance, or a combination of these factors; (2) targeted persons categorized as high risk based on a cardiovascular risk–assessment tool; or (3) generically stated that participants must have 1 or more CVD risk factors to be included. In contrast, studies in adults who may be at elevated risk for CVD based on factors such as age, race/ethnicity, family history of CVD, overweight or obesity, high-normal blood pressure, or history of gestational diabetes, as well as those conducted among unselected samples or samples selected because of suboptimal behavior (eg, did not meet national physical activity guidelines) were included. Eligible interventions were those conducted in primary care or referred from primary care, or those deemed feasible for primary care or referral given the nature of the intervention delivery (eg, face-to-face counseling, telephone support), behavior change techniques (eg, goal setting, self-monitoring), or setting (eg, home, community). Studies had to report a behavioral outcome (ie, diet-, physical activity–, sedentary time–related measure), intermediate outcome (eg, blood pressure, lipid levels, weight, incidence of hypertension), or health outcome (ie, morbidity, mortality, health-related quality of life) or report adverse events related to the intervention.

Data Extraction and Quality Assessment

Two reviewers independently assessed the methodological quality of all eligible studies, using criteria outlined by the USPSTF (eTable 2 in the Supplement).13 Each study was assigned a final quality rating of good, fair, or poor; disagreements between the investigators were resolved through consensus after discussion and consultation with additional investigators. Studies were rated as poor quality and excluded if they had several important major risks of bias, including very high attrition at 6 to 12 months (eg, greater than 40%), differential attrition between intervention groups (eg, greater than 20%), lack of baseline comparability between groups without adjustment for those variables, or other issues in the conduct, analysis, or reporting of results of the trial that were judged to considerably bias the results (eg, possible selective reporting, inappropriate exclusion of participants from analyses, and questionable validity of randomization and allocation concealment procedures). One reviewer completed primary data abstraction, and a second reviewer checked all data for accuracy and completeness.

Data Synthesis and Analysis

Summary tables were created for study characteristics, population characteristics, intervention characteristics, and outcomes. The data on health outcomes (KQ1) and adverse events (KQ4) did not allow for pooled analyses and so were summarized descriptively. For intermediate health outcomes (KQ2) and behavioral outcomes (KQ3), random-effects meta-analyses using the method of DerSimonian and Laird were run to calculate the pooled differences in mean changes (for continuous data) and pooled odds ratio (for binary data).16 The between-group difference for each outcome as reported by each respective study was pooled favoring adjusted over unadjusted reported effect estimates. If a between-group effect estimate and variance were not provided, a crude effect estimate was calculated. Within each study, 1-year outcome data were chosen for meta-analyses if available; otherwise, the point closest to 1 year was chosen. If a trial had more than 1 active intervention group, data for the most intensive group or the group that was the most similar with other interventions included in the analysis were plotted. Methods consistent with the previous review15 were used to estimate and categorize the intensity (total contact in minutes) of each intervention group as low (≤30 minutes), medium (31-360 minutes), or high (>360 minutes). Results at all other points and for all intervention groups within each trial were reported in tabular format.

Statistical heterogeneity among the pooled studies was examined using standard χ2 tests, and the proportion of total variability in point estimates was approximated using the I2 statistic.17

Visual displays were first used to investigate whether the heterogeneity among the results was associated with any prespecified population or intervention characteristics; meta-regression was then used when indicated. To evaluate small-study effects, funnel plots and the Egger test18 (for continuous outcomes) or Peters test19 (for dichotomous outcomes) were used. Stata version 13.1 (Stata Corp) was used for all quantitative analyses. All significance testing was 2-sided, and results were considered statistically significant at P < .05.

The strength of the overall body of evidence for each KQ was graded as high, moderate, low, or insufficient based on established methods20 and addressed the consistency, precision, reporting bias, study quality, and dose response related to each outcome.

Results

A total of 10 045 titles and abstracts and 351 articles were reviewed to determine if they met the prespecified inclusion criteria, and 88 trials (87 randomized clinical trials [n = 121 106] and 1 nonrandomized clinical trial [n = 84]) reported in 145 publications were included (Figure 2).21165 Fifty trials were carried forward from the previous review22,26,31,33,34,38,42,47,49,50,52,56,57,61,63,64,66,69,72,76,79,82,85,86,88,90,9598,102,104,109,112,114,118,119,121,126128,130,132,136,143,146,147,149,151,159 and were synthesized with 38 newly identified trials.21,24,27,32,35,39,41,43,44,53,54,58,60,67,71,73,78,83,89,91,94,103,106,108,111,123,131,139,140,145,150,152154,156,160162 The included trials were highly variable in terms of their study populations, interventions, and specific outcome measures (Table 1). The majority of the trials took place in the United States and were conducted within or recruited from a primary care setting. There was great diversity in the interventions tested: 23 trials focused on healthful diet and physical activity, another 24 on healthful diet only, and 44 on physical activity only. Intervention intensity (total minutes of contact) ranged from 3 minutes to 2340 minutes (39 hours), with a mean of 6 hours and 11 minutes. Low-intensity interventions were mostly mailed, print-based interventions, whereas medium- and high-intensity interventions involved one-on-one individual and telephone counseling and group sessions.

Effects of Interventions on Health Outcomes

Key Question 1. Do primary care behavioral counseling interventions to improve diet, increase physical activity, and/or reduce sedentary behavior improve health outcomes in adults?

Twelve of the 88 included trials reported health outcomes.52,63,69,76,82,96,97,121,146,147,151,154 Only 2 of these trials62,154 were identified as part of the update, and both reported quality-of-life outcomes. Four trials (n = 51 356) reported all-cause or CVD-related mortality,82,146,147,151 of which 3 also reported cardiovascular events.146,147,151 All 4 of these trials focused on high-intensity diet interventions. Overall, few deaths were reported, and no differences were observed between treatment and control groups over 3 to 15 years of follow-up. The 3 trials that reported cardiovascular events or composite CVD outcomes showed some beneficial results, although results were mixed. The Women’s Health Initiative dietary modification trial (n = 48 835) showed no difference in major coronary heart disease events (ie, nonfatal myocardial infarction [MI] or coronary heart disease death) (adjusted hazard ratio [HR], 0.93 [95% CI, 0.83 to 1.05]) or fatal and nonfatal stroke (adjusted HR, 1.02 [95% CI, 0.90 to 1.17]) among women without a history of CVD between those randomized to low-fat diet counseling and those in a usual-care diet group over 8.1 years of follow-up.81 Similarly, a broader composite CVD outcome comprising nonfatal MI, coronary heart disease death, and coronary artery bypass graft surgery/percutaneous coronary intervention showed no significant difference between treatment groups (adjusted HR, 0.94 [95% CI, 0.86 to 1.02]).81 In contrast, long-term observational follow-up from the Trial of Hypertension Prevention (TOHP) phase I and II (n = 2415) showed a significant difference in CVD (defined as MI, stroke, revascularization, or CVD death) between treatment groups over 10 to 15 years of follow-up (HR, 0.70 [95% CI, 0.53 to 0.94]).48 When revascularization was excluded from the definition, however, significance was lost (adjusted HR, 0.72 [95% CI, 0.50 to 1.03]). Ten trials reported quality-of-life outcomes and reported modest improvements at 6 and 12 months among intervention participants but no consistent benefit of the intervention compared with control conditions.30,52,62,69,76,96,97,121,146,155

Effects of Interventions on Intermediate Health Outcomes

Key Question 2. Do primary care behavioral counseling interventions to improve diet, increase physical activity, and/or reduce sedentary behavior improve intermediate outcomes associated with cardiovascular disease (CVD) in adults?

Thirty-four of the included trials (n = 75 793) reported the effects of behavioral interventions on at least 1 intermediate outcome (ie, blood pressure, lipid levels, glucose levels, or adiposity measures); nearly half of the trials were of good quality.21,26,31,32,38,39,47,52,63,67,71,76,78,79,82,85,86,88,89,91,96,98,102,118,130,132,136,146,147,149151,153,161 When trials were pooled, healthful diet, physical activity interventions, or both were associated with small but statistically significant improvements in systolic blood pressure (22 trials), diastolic blood pressure (23 trials), low-density lipoprotein cholesterol (LDL-C) level (13 trials), total cholesterol level (19 trials), and adiposity measures (20 trials), compared with controls at 6 months or more (Table 1). Pooled between-group mean differences were −1.26 mm Hg (95% CI, −1.77 to −0.75) for systolic blood pressure, −0.49 mm Hg (95% CI, −0.82 to −0.16) for diastolic blood pressure, −2.58 mg/dL (95% CI, −4.30 to −0.85) for LDL-C level, and −2.85 mg/dL (95% CI, −4.95 to −0.75) for total cholesterol level—all in favor of intervention vs control groups with follow-up times of 6 months or more. For adiposity outcomes, interventions were associated with improvements in body mass index (mean difference, −0.41 [95% CI, −0.62 to −0.19]; calculated as weight in kilograms divided by height in meters squared), weight (mean difference, −1.04 kg [95% CI, −1.56 to −0.51]), and waist circumference (mean difference, −1.19 cm [95% CI, −1.79 to −0.59]), with considerable statistical heterogeneity (I2 > 90%) in all analyses. There was no evidence of an association between healthful diet, physical activity counseling, or both and levels of high-density lipoprotein cholesterol, triglycerides, or fasting glucose in pooled analyses (Table 2).

Among the intermediate outcomes showing a positive association, dose-response effects were evident, with increasing intervention intensity associated with larger improvements in intermediate outcomes (Table 2). High-intensity interventions were consistently associated with statistically significant benefit on intermediate outcomes, and the effect sizes were slightly higher in analyses limited to the subset of high-intensity interventions (6-12 trials per outcome), compared with the results of combining trials of all intensities. The associations between medium-intensity interventions (5-9 trials per outcome) and intermediate outcomes were less consistent and generally showed no benefit, with the exception of the outcome of weight. There was insufficient evidence (only 1-4 trials per outcome) to assess the association between low-intensity interventions and intermediate outcomes.

Meta-analyses stratified by diet-only messages, physical activity–only messages, or combined diet and physical activity messages were consistent with those seen in analyses stratified by intensity (results available in the full evidence report). Healthful diet interventions (with or without physical activity messages) (7-16 trials per outcome), which were mostly high-intensity interventions, consistently showed statistically significant favorable associations with intermediate outcomes. No such benefit was seen when limiting the analyses to physical activity–only trials, which were largely of low intensity, although there were far fewer trials included in these analyses (4-8 trials per outcome). There was no evidence of effect modification based on whether the intervention was linked to primary care (independent of intervention intensity), the number of intervention sessions, the duration of the intervention, whether the intervention included group sessions, the focus of the intervention message (eg, specific dietary message), the population risk for CVD, or study quality. Very few trials reported longer-term effects (ie, greater than 12 months of follow-up) on intermediate outcomes, and there was no consistent pattern in the effects over time among those that did. In addition, there was no evidence of small-study effects for any of the intermediate outcomes.

Effects of Interventions on Behavioral Outcomes

Key Question 3. Do primary care behavioral counseling interventions to improve diet, increase physical activity, and/or reduce sedentary behavior improve associated health behaviors in adults?

All but 232,153 of the 88 included studies (n = 117 589) reported the effects of a behavioral intervention on dietary, physical activity, and/or sedentary behavior outcomes. More than one-third of the studies that reported behavioral outcomes (36/86 studies) were newly identified as part of this update. Almost all of the behavioral outcomes were based on self-report; 3 trials measured urinary sodium excretion, and 11 trials used accelerometers or pedometers to capture objective measures of physical activity. The instruments, modes of administration, and summary measures were highly variable across trials that measured behavioral outcomes through self-report.

Overall, there was evidence that behavioral interventions generally improved participants’ dietary intake and physical activity levels. Mean between-group differences for dietary outcomes showed consistent benefit for healthful diet interventions (with or without physical activity messages) vs control groups at 6 months’ or greater follow-up, but the precision in the magnitude of effects was highly variable across trials; thus, pooled results are not presented. Between-group differences for dietary outcomes were in the magnitude of 65 kcal/d (favoring the control group) to −500 kcal/d (favoring the intervention group) in total energy intake (11 trials), 0.8 to −11 percentage points in the percentage of calories from fat (15 trials), and −0.3 to −4.1 percentage points in the percentage of calories from saturated fat (9 trials). Effects on fruit and vegetable intake ranged from between-group differences of −0.2 serving/d (favoring the control group) to 2.2 servings/d (favoring the intervention group) (16 trials); between-group differences in grams of fiber per day ranged from 1 g to 2.5 g in favor of the intervention group (6 trials). Reductions in sodium (urinary sodium excretion or self-reported dietary intake) ranged from −380 mg/d to −1380 mg/d (6 trials). Only 9 trials reported the effects of the interventions on dietary outcomes at greater than 12 months of follow-up (ie, 1.5 to 6 years of follow-up), with a lack of effect or slightly attenuated effect being seen over time.

Physical activity interventions (with or without dietary messages) were associated with a 35-minute (95% CI, 22.0 to 47.0) increase in physical activity per week compared with controls in pooled analyses at 6 to 12 months of follow-up (27 trials). The standardized effect size when pooling 46 trials that reported any continuous measure of physical activity (eg, minutes per day, minutes per week, metabolic-equivalent minutes per week, score) was a mean difference of 0.20 (95% CI, 0.14 to 0.26) in favor of the intervention group. Additionally, meta-analysis indicated that intervention group participants had an odds ratio of 1.32 (95% CI, 1.12 to 1.56) for meeting physical activity recommendations, compared with those in the control group (16 trials). Data on physical activity outcomes beyond 12 months were sparsely reported. Studies that limited their inclusion to participants with suboptimal levels of physical activity at baseline (eg, below the recommended level of 150 minutes per week) resulted in greater increases in physical activity compared with those that did not limit inclusion based on baseline physical activity levels. In contrast to findings for intermediate outcomes, there was no evidence of effect modification based on intervention intensity. Likewise, there was no evidence of a difference in effects for interventions focused only on physical activity messages vs those focused on both physical activity and healthful diet messages.

Only 4 trials reported measures of sedentary behavior independent of physical activity behavior. Of these 4 trials, 2 found statistically significant group × time effects on self-reported minutes of sitting, including 1 trial that specifically targeted reductions in daily television viewing and total sitting time.

Harms of Interventions

Key Question 4. What adverse events are associated with primary care behavioral counseling interventions to improve diet, increase physical activity, and/or reduce sedentary behavior in adults?

Harms of included interventions were sparsely reported and were inconsistently defined. Fourteen of the included trials (n = 8220) specifically mentioned the occurrence of harms or lack of harms.22,32,35,41,44,52,73,78,95,97,102,121,132,150 Across these studies, there were no serious adverse events related to the interventions reported, although none were hypothesized. Seven physical activity–focused trials (n = 3565) reported the incidence of injuries, fractures, or falls; only 1 trial among women aged 40 to 74 years reported significantly more injuries (19% vs 14%, P = .03) and falls (37% vs 29%, P < .001) among participants in the intervention group than in the control group, respectively, over 24 months of follow-up.102

Discussion

This systematic review was conducted to assist the USPSTF in updating its 2012 recommendation on healthful diet and physical activity counseling for the primary prevention of CVD in persons without CVD risk factors (ie, hypertension, dyslipidemia, diabetes, or impaired fasting glucose). Eighty-eight unique trials, nearly one-half of which (38 trials) were published since the previous USPSTF review, were included. The pooled estimates found in this updated systematic review were generally consistent in magnitude with the 2010 review on this topic15 and slightly lower in magnitude compared with the associations seen in the 2014 review among persons at high risk for CVD14 (eTable 3 in the Supplement).

Table 3 summarizes the findings for this evidence review. Healthful diet and physical activity behavioral interventions in persons without traditional CVD risk factors were associated with modest reductions in blood pressure, levels of total cholesterol and LDL-C, and adiposity measures at approximately 6 to 12 months of follow-up, compared with control conditions. The interventions varied considerably across the studies, such as in their behavioral focus (diet only, physical activity only, or diet plus physical activity messages), their delivery mode (group and individual in-person counseling, telephone counseling, print-based, or technology-based), and their intensity (number of sessions, length of sessions, and duration of the intervention). There was evidence of a dose-response relationship, with increasing intervention intensity being associated with larger improvements in intermediate outcomes, but there was insufficient evidence to assess the effects of low-intensity interventions alone on intermediate outcomes. There was considerably more evidence for behavioral outcomes, with 86 trials reporting the effects of counseling interventions on dietary intake, physical activity, and/or sedentary behaviors. The direction of effects for all behavioral outcomes were reasonably consistent and suggested generally a small benefit for dietary outcomes and a moderate benefit for physical activity. However, there was substantial variation in outcome measures and insufficient evidence on the effects of interventions on sedentary behaviors.

The evidence for the effects of interventions on longer-term health outcomes, including all-cause and CVD-specific mortality, CVD events, and health-related quality of life, as well as intermediate cardiometabolic outcomes past 1 year, was sparse and inconsistent, precluding a robust conclusion. Likewise, a limited number of trials reported on harms of the interventions, and none of these studies found any serious adverse events related to the interventions.

In the context of sparse randomized clinical trial evidence for the effect of healthful diet and physical activity interventions on health outcomes, observational evidence from very large, individual participant–data meta-analyses of prospective cohort studies can be used to estimate and bound the potential benefit of proportional differences in intermediate outcomes on the risk of morbidity and mortality. Such evidence suggests that small differences in blood pressure, blood cholesterol levels, and body mass index can translate into small differences in important health outcomes (see full evidence report).166168

This review represents only a subset of the literature on dietary and physical activity counseling. Trials focused on dietary or physical activity counseling in persons with known cardiovascular risk factors or to prevent or manage other health risks and conditions (eg, falls, cognitive impairment, cancer), as well as those focused on weight loss or weight management, were excluded. Many of these topics are the focus of other USPSTF reviews and recommendations.169173

Limitations

With complex interventions such as these, describing and synthesizing intervention characteristics is difficult. The included interventions varied considerably in terms of the nature of the advice, mode of delivery, and delivery schedule. Details of each intervention were abstracted, and an established taxonomy for describing the behavior change techniques used in the interventions174 was used. Consistent rules were used to estimate the total minutes of contact and to categorize each intervention group by intensity. Despite these attempts, there is a need for better reporting of intervention characteristics to facilitate evaluation and dissemination of evidence-based practices. As outlined by Krist et al,175 research on behavioral counseling interventions such as the type synthesized here would benefit from an application of checklists and frameworks, such as the Template for Intervention Description and Replication (TIDierR); Research, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM); and the Pragmatic-Explanatory Continuum Indicator Summary (PRECIS), to assess the feasibility and applicability of interventions as well as to improve replication and dissemination.

This review found no evidence of a difference in effects by the focus of the message, but analyses were highly confounded by the intensity of interventions. Also, only 1 of the included studies targeted reductions in sedentary behavior (ie, sitting time) as the main focus of the trial, and only 3 trials reported the outcomes of sedentary behavior. More research on the effects of counseling to reduce sedentary behavior in adults on behavioral and intermediate health outcomes is warranted. Very few studies explored whether effectiveness of the intervention varied among important subpopulations (older adults, racial and ethnic minority groups, and those with lower socioeconomic status). Such a priori analyses could assist in identifying groups of adults who might benefit more from such interventions.

Additionally, most of the trials relied on self-reported dietary and physical activity measures, with variable levels of evidence of the reliability and validity of the measures. Dietary intake was most often measured by food frequency questionnaires (such as the full-length or shorter versions of the Block food frequency questionnaire176,177), entries in food diaries, or 24-hour food recalls. The tools and summary variables used to measure physical activity were even more inconsistent. Physical activity was summarized in terms of total physical activity, leisure-specific physical activity, moderate- and/or vigorous-intensity physical activity, walking behaviors, and multiple other indicators; in addition, the results were expressed in different units across studies (eg, minutes per week, metabolic equivalent task–minutes per week, steps per day, summary “scores”). Each of these methods can be prone to bias.178 While researchers must fit the specific measurement instruments and summary variables to the needs of their particular study aims, research protocols, and sample characteristics, the field of research could benefit from more standardization of behavioral outcome measurement.179

Studies that were heterogeneous with respect to clinical and demographic characteristics, interventions, and settings were intentionally pooled. For most outcomes, the statistical heterogeneity of pooled analyses was unimportant (I2 < 40%) or moderate (I2 = 30%-60%) and therefore still reasonable to allow for interpreting of pooled estimates. However, given the clinical heterogeneity, interpreting the 95% confidence intervals instead of the summary estimate helps inform the true magnitude of effects on the individual outcomes.

Conclusions

Diet and physical activity behavioral interventions for adults not at high risk for cardiovascular disease result in consistent modest benefits across a variety of important intermediate health outcomes across 6 to 12 months, including blood pressure, low-density lipoprotein and total cholesterol levels, and adiposity, with evidence of a dose-response effect, with higher-intensity interventions conferring greater improvements. There is very limited evidence on longer-term intermediate and health outcomes or on harmful effects of these interventions.

Back to top
Article Information

Corresponding Author: Carrie D. Patnode, PhD, Kaiser Permanente Research Affiliates Evidence-based Practice Center, Center for Health Research, Kaiser Permanente Northwest, 3800 N Interstate Ave, Portland, OR 97227 (carrie.d.patnode@kpchr.org).

Accepted for Publication: March 10, 2017.

Author Contributions: Dr Patnode had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Patnode, Evans.

Acquisition, analysis, or interpretation of data: Patnode, Evans, Senger, Redmond.

Drafting of the manuscript: Patnode, Evans, Redmond.

Critical revision of the manuscript for important intellectual content: Patnode, Senger.

Statistical analysis: Patnode, Redmond.

Administrative, technical, or material support: Patnode, Evans, Senger.

Supervision: Patnode.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

Funding/Support: This research was funded under contract number HHSA-290-2012-00015-I, Task Order 6, from the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services, under a contract to support the USPSTF.

Role of the Funder/Sponsor: Investigators worked with USPSTF members and AHRQ staff to develop the scope, analytic framework, and key questions for this review. AHRQ had no role in study selection, quality assessment, or synthesis. AHRQ staff provided project oversight, reviewed the report to ensure that the analysis met methodological standards, and distributed the draft for peer review. Otherwise, AHRQ had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript findings. The opinions expressed in this document are those of the authors and do not reflect the official position of AHRQ or the US Department of Health and Human Services.

Additional Contributions: We gratefully acknowledge the following individuals for their contributions to this project: the AHRQ staff; the US Preventive Services Task Force; EPC staff members Keshia Bigler, MPH, Erin Coppola, BS, Smyth Lai, MLS, Elizabeth O’Connor, PhD, Ning Smith, PhD, and Elizabeth Hess, MA, ELS(D). USPSTF members, peer reviewers, and federal partner reviewers did not receive financial compensation for their contributions.

Additional Information: A draft version of this evidence report underwent external peer review from 7 content experts: David Brown, PhD (Centers for Disease Control and Prevention), Janet de Jesus, MS (National Heart, Lung, and Blood Institute), Paul James, MD (University of Iowa), Sarah Lewington, DPhil (University of Oxford), Alice Lichtenstein, DSc (Tufts University), JoAnn Manson, MD (Harvard University and Brigham and Women’s Hospital), and Deborah Young, PhD (Kaiser Permanente) and 4 federal partners: the Centers for Disease Control and Prevention (CDC), the National Institutes of Health (NIH), the Indian Health Service (IHS), and the Department of Veterans Affairs. Comments were presented to the USPSTF during its deliberation of the evidence and were considered in preparing the final evidence review.

Editorial Disclaimer: This evidence report is presented as a document in support of the accompanying USPSTF Recommendation Statement. It did not undergo additional peer review after submission to JAMA.

References
1.
US Department of Health and Human Services, US Department of Agriculture.  2015-2020 Dietary Guidelines for Americans. Washington, DC: US Department of Health and Human Services; 2015.
2.
Physical Activity Guidelines Advisory Committee.  Physical Activity Guidelines Advisory Committee Report, 2008. Washington, DC: US Department of Health and Human Services; 2008.
3.
Ford  ES, Caspersen  CJ.  Sedentary behaviour and cardiovascular disease: a review of prospective studies.  Int J Epidemiol. 2012;41(5):1338-1353.PubMedArticle
4.
Chomistek  AK, Manson  JE, Stefanick  ML,  et al.  Relationship of sedentary behavior and physical activity to incident cardiovascular disease: results from the Women’s Health Initiative.  J Am Coll Cardiol. 2013;61(23):2346-2354.PubMedArticle
5.
Mozaffarian  D, Benjamin  EJ, Go  AS,  et al; Writing Group Members; American Heart Association Statistics Committee; Stroke Statistics Subcommittee.  Heart disease and stroke statistics—2016 update: a report from the American Heart Association.  Circulation. 2016;133(4):e38-e360.PubMedArticle
6.
LeFevre  ML; U.S. Preventive Services Task Force.  Behavioral counseling to promote a healthful diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: U.S. Preventive Services Task Force Recommendation Statement.  Ann Intern Med. 2014;161(8):587-593.PubMedArticle
7.
Moyer  VA; U.S. Preventive Services Task Force.  Behavioral counseling interventions to promote a healthful diet and physical activity for cardiovascular disease prevention in adults: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2012;157(5):367-371.PubMed
8.
Moyer  VA; U.S. Preventive Services Task Force.  Screening for and management of obesity in adults: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2012;157(5):373-378.PubMed
9.
Siu  AL; U.S. Preventive Services Task Force.  Screening for high blood pressure in adults: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2015;163(10):778-786.PubMedArticle
10.
Siu  AL; US Preventive Services Task Force.  Screening for abnormal blood glucose and type 2 diabetes mellitus: US Preventive Services Task Force recommendation statement.  Ann Intern Med. 2015;163(11):861-868.PubMedArticle
11.
Bibbins-Domingo  K; U.S. Preventive Services Task Force.  Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2016;164(12):836-845.PubMedArticle
12.
Siu  AL; U.S. Preventive Services Task Force.  Behavioral and pharmacotherapy interventions for tobacco smoking cessation in adults, including pregnant women: U.S. Preventive Services Task Force recommendation statement.  Ann Intern Med. 2015;163(8):622-634.PubMedArticle
13.
US Preventive Services Task Force. US Preventive Services Task Force Procedure Manual. https://www.uspreventiveservicestaskforce.org/uspstf08/methods/procmanual.htm. 2011. Accessed July 25, 2015.
14.
Lin  JS, O’Connor  EA, Evans  CV, Senger  CA, Rowland  MG, Groom  HC.  Behavioral Counseling to Promote a Healthy Lifestyle for Cardiovascular Disease Prevention in Persons With Cardiovascular Risk Factors: An Updated Systematic Evidence Review for the US Preventive Services Task Force. Evidence Report No. 113. Rockville, MD: Agency for Healthcare Research and Quality; 2014. AHRQ publication 13-05179-EF-1.
15.
Lin  JS, O’Connor  E, Whitlock  EP,  et al.  Behavioral Counseling to Promote Physical Activity and a Healthful Diet to Prevent Cardiovascular Disease in Adults: Update of the Evidence for the US Preventive Services Task Force. Evidence Synthesis No. 79. Rockville, MD: Agency for Healthcare Research and Quality; 2010. AHRQ publication 11-05149-EF-1.
16.
DerSimonian  R, Laird  N.  Meta-analysis in clinical trials.  Control Clin Trials. 1986;7(3):177-188.PubMedArticle
17.
Cochrane Collaboration.  Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. London, United Kingdom: The Cochrane Collaboration; 2011.
18.
Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.  BMJ. 1997;315(7109):629-634.PubMedArticle
19.
Peters  JL, Sutton  AJ, Jones  DR, Abrams  KR, Rushton  L.  Comparison of two methods to detect publication bias in meta-analysis.  JAMA. 2006;295(6):676-680.PubMedArticle
20.
Berkman  N, Lohr  K, Ansari  M,  et al.  Grading the Strength of a Body of Evidence When Assessing Health Care Interventions for the Effective Health Care Program of the Agency for Healthcare Research and Quality: An Update: Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Rockville, MD: Agency for Healthcare Research and Quality; 2014. AHRQ publication 10(14)-EHC063-EF.
21.
Aadahl  M, Linneberg  A, Møller  TC,  et al.  Motivational counseling to reduce sitting time: a community-based randomized controlled trial in adults.  Am J Prev Med. 2014;47(5):576-586.PubMedArticle
22.
Aittasalo  M, Miilunpalo  S, Kukkonen-Harjula  K, Pasanen  M.  A randomized intervention of physical activity promotion and patient self-monitoring in primary health care.  Prev Med. 2006;42(1):40-46.PubMedArticle
23.
Albright  CL, Steffen  AD, Novotny  R,  et al.  Baseline results from Hawaii’s Nā Mikimiki Project: a physical activity intervention tailored to multiethnic postpartum women.  Women Health. 2012;52(3):265-291.PubMedArticle
24.
Albright  CL, Steffen  AD, Wilkens  LR,  et al.  Effectiveness of a 12-month randomized clinical trial to increase physical activity in multiethnic postpartum women: results from Hawaii’s Nā Mikimiki Project.  Prev Med. 2014;69:214-223.PubMedArticle
25.
Aldana  SG, Greenlaw  RL, Diehl  HA,  et al.  Effects of an intensive diet and physical activity modification program on the health risks of adults.  J Am Diet Assoc. 2005;105(3):371-381.PubMedArticle
26.
Aldana  SG, Greenlaw  RL, Diehl  HA,  et al.  The behavioral and clinical effects of therapeutic lifestyle change on middle-aged adults.  Prev Chronic Dis. 2006;3(1):A05.PubMed
27.
Alexander  GL, McClure  JB, Calvi  JH,  et al; MENU Choices Team.  A randomized clinical trial evaluating online interventions to improve fruit and vegetable consumption.  Am J Public Health. 2010;100(2):319-326.PubMedArticle
28.
Allen  P, Thompson  JL, Herman  CJ,  et al.  Impact of periodic follow-up testing among urban American Indian women with impaired fasting glucose.  Prev Chronic Dis. 2008;5(3):A76.PubMed
29.
Allison  MA, Aragaki  AK, Ray  RM,  et al.  A randomized trial of a low-fat diet intervention on blood pressure and hypertension: tertiary analysis of the WHI dietary modification trial.  Am J Hypertens. 2016;29(8):959-968.PubMedArticle
30.
Assaf  AR, Beresford  SA, Risica  PM,  et al.  Low-fat dietary pattern intervention and health-related quality of life: the Women’s Health Initiative randomized controlled dietary modification trial.  J Acad Nutr Diet. 2016;116(2):259-271.PubMedArticle
31.
Baron  JA, Gleason  R, Crowe  B, Mann  JI.  Preliminary trial of the effect of general practice based nutritional advice.  Br J Gen Pract. 1990;40(333):137-141.PubMed
32.
Bennett  GG, Foley  P, Levine  E,  et al.  Behavioral treatment for weight gain prevention among black women in primary care practice: a randomized clinical trial.  JAMA Intern Med. 2013;173(19):1770-1777.PubMedArticle
33.
Beresford  SA, Curry  SJ, Kristal  AR, Lazovich  D, Feng  Z, Wagner  EH.  A dietary intervention in primary care practice: the Eating Patterns Study.  Am J Public Health. 1997;87(4):610-616.PubMedArticle
34.
Bernstein  A, Nelson  ME, Tucker  KL,  et al.  A home-based nutrition intervention to increase consumption of fruits, vegetables, and calcium-rich foods in community dwelling elders.  J Am Diet Assoc. 2002;102(10):1421-1427.PubMedArticle
35.
Bickmore  TW, Silliman  RA, Nelson  K,  et al.  A randomized controlled trial of an automated exercise coach for older adults.  J Am Geriatr Soc. 2013;61(10):1676-1683.PubMedArticle
36.
Blumenthal  JA, Babyak  MA, Hinderliter  A,  et al.  Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study.  Arch Intern Med. 2010;170(2):126-135.PubMedArticle
37.
Bowen  D, Clifford  CK, Coates  R,  et al.  The Women’s Health Trial Feasibility Study in Minority Populations: design and baseline descriptions.  Ann Epidemiol. 1996;6(6):507-519.PubMedArticle
38.
Brekke  HK, Jansson  PA, Lenner  RA.  Long-term (1- and 2-year) effects of lifestyle intervention in type 2 diabetes relatives.  Diabetes Res Clin Pract. 2005;70(3):225-234.PubMedArticle
39.
Bryan  AD, Magnan  RE, Hooper  AE, Ciccolo  JT, Marcus  B, Hutchison  KE.  Colorado stride (COSTRIDE): testing genetic and physiological moderators of response to an intervention to increase physical activity.  Int J Behav Nutr Phys Act. 2013;10:139.PubMedArticle
40.
Burke  L, Jancey  J, Howat  P,  et al.  Physical activity and nutrition program for seniors (PANS): protocol of a randomized controlled trial.  BMC Public Health. 2010;10:751.PubMedArticle
41.
Burke  L, Lee  AH, Jancey  J,  et al.  Physical activity and nutrition behavioural outcomes of a home-based intervention program for seniors: a randomized controlled trial.  Int J Behav Nutr Phys Act. 2013;10:14.PubMedArticle
42.
Carpenter  RA, Finley  C, Barlow  CE.  Pilot test of a behavioral skill building intervention to improve overall diet quality.  J Nutr Educ Behav. 2004;36(1):20-24.PubMedArticle
43.
Carroll  JK, Lewis  BA, Marcus  BH, Lehman  EB, Shaffer  ML, Sciamanna  CN.  Computerized tailored physical activity reports: a randomized controlled trial.  Am J Prev Med. 2010;39(2):148-156.PubMedArticle
44.
Castro  CM, Pruitt  LA, Buman  MP, King  AC.  Physical activity program delivery by professionals versus volunteers: the TEAM randomized trial.  Health Psychol. 2011;30(3):285-294.PubMedArticle
45.
Clark  PG, Nigg  CR, Greene  G, Riebe  D, Saunders  SD; Study of Exercise and Nutrition in Older Rhode Islanders Project Team.  The Study of Exercise and Nutrition in Older Rhode Islanders (SENIOR): translating theory into research.  Health Educ Res. 2002;17(5):552-561.PubMedArticle
46.
Clark  PG, Rossi  JS, Greaney  ML,  et al.  Intervening on exercise and nutrition in older adults: the Rhode Island SENIOR Project.  J Aging Health. 2005;17(6):753-778.PubMedArticle
47.
Coates  RJ, Bowen  DJ, Kristal  AR,  et al.  The Women’s Health Trial Feasibility Study in Minority Populations: changes in dietary intakes.  Am J Epidemiol. 1999;149(12):1104-1112.PubMedArticle
48.
Cook  NR, Cutler  JA, Obarzanek  E,  et al.  Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the Trials of Hypertension Prevention (TOHP).  BMJ. 2007;334(7599):885-888.PubMedArticle
49.
De Vet  E, Oenema  A, Sheeran  P, Brug  J.  Should implementation intentions interventions be implemented in obesity prevention: the impact of if-then plans on daily physical activity in Dutch adults.  Int J Behav Nutr Phys Act. 2009;6:11.PubMedArticle
50.
Delichatsios  HK, Friedman  RH, Glanz  K,  et al.  Randomized trial of a “talking computer” to improve adults’ eating habits.  Am J Health Promot. 2001;15(4):215-224.PubMedArticle
51.
Dutton  GR, Napolitano  MA, Whiteley  JA, Marcus  BH.  Is physical activity a gateway behavior for diet? findings from a physical activity trial.  Prev Med. 2008;46(3):216-221.PubMedArticle
52.
Elley  CR, Kerse  N, Arroll  B, Robinson  E.  Effectiveness of counselling patients on physical activity in general practice: cluster randomised controlled trial.  BMJ. 2003;326(7393):793.PubMedArticle
53.
Estabrooks  PA, Smith-Ray  RL, Almeida  FA,  et al.  Move More: translating an efficacious group dynamics physical activity intervention into effective clinical practice.  Int J Sport Exerc Psychol. 2011;9(1):4-18.Article
54.
Fjeldsoe  BS, Miller  YD, Graves  N, Barnett  AG, Marshall  AL.  Randomized controlled trial of an improved version of MobileMums, an intervention for increasing physical activity in women with young children.  Ann Behav Med. 2015;49(4):487-499.PubMedArticle
55.
Foley  P, Levine  E, Askew  S,  et al.  Weight gain prevention among black women in the rural community health center setting: the Shape Program.  BMC Public Health. 2012;12:305.PubMedArticle
56.
Franko  DL, Cousineau  TM, Trant  M,  et al.  Motivation, self-efficacy, physical activity and nutrition in college students: randomized controlled trial of an internet-based education program.  Prev Med. 2008;47(4):369-377.PubMedArticle
57.
Fries  E, Edinboro  P, McClish  D,  et al.  Randomized trial of a low-intensity dietary intervention in rural residents: the Rural Physician Cancer Prevention Project.  Am J Prev Med. 2005;28(2):162-168.PubMedArticle
58.
Gao  S, Stone  RA, Hough  LJ,  et al.  Physical activity counseling in overweight and obese primary care patients: outcomes of the VA-STRIDE randomized controlled trial.  Prev Med Rep. 2015;3:113-120.PubMedArticle
59.
García-Ortiz  L, Grandes  G, Sánchez-Pérez  A,  et al; PEPAF Group.  Effect on cardiovascular risk of an intervention by family physicians to promote physical exercise among sedentary individuals.  Rev Esp Cardiol. 2010;63(11):1244-1252.PubMedArticle
60.
Gell  NM, Wadsworth  DD.  The use of text messaging to promote physical activity in working women: a randomized controlled trial.  J Phys Act Health. 2015;12(6):756-763.PubMedArticle
61.
Goldstein  MG, Pinto  BM, Marcus  BH,  et al.  Physician-based physical activity counseling for middle-aged and older adults: a randomized trial.  Ann Behav Med. 1999;21(1):40-47.PubMedArticle
62.
Grandes  G, Sanchez  A, Montoya  I, Ortega Sanchez-Pinilla  R, Torcal  J; PEPAF Group.  Two-year longitudinal analysis of a cluster randomized trial of physical activity promotion by general practitioners.  PLoS One. 2011;6(3):e18363.PubMedArticle
63.
Grandes  G, Sanchez  A, Sanchez-Pinilla  RO,  et al; PEPAF Group.  Effectiveness of physical activity advice and prescription by physicians in routine primary care: a cluster randomized trial.  Arch Intern Med. 2009;169(7):694-701.PubMedArticle
64.
Green  BB, McAfee  T, Hindmarsh  M, Madsen  L, Caplow  M, Buist  D.  Effectiveness of telephone support in increasing physical activity levels in primary care patients.  Am J Prev Med. 2002;22(3):177-183.PubMedArticle
65.
Greenberger  HM. Modifiers of the Effectiveness of a Diet Intervention in Family Members of Cardiovascular Disease Patients [dissertation]. New York, NY: Columbia University; 2010.
66.
Greene  GW, Fey-Yensan  N, Padula  C, Rossi  SR, Rossi  JS, Clark  PG.  Change in fruit and vegetable intake over 24 months in older adults: results of the SENIOR Project intervention.  Gerontologist. 2008;48(3):378-387.PubMedArticle
67.
Greenlee  H, Gaffney  AO, Aycinena  AC,  et al.  Cocinar Para Su Salud! randomized controlled trial of a culturally based dietary intervention among hispanic breast cancer survivors.  J Acad Nutr Diet. 2015;115(5):709-723.PubMedArticle
68.
Halbert  JA, Silagy  CA, Finucane  P, Withers  RT, Hamdorf  PA.  Recruitment of older adults for a randomized, controlled trial of exercise advice in a general practice setting.  J Am Geriatr Soc. 1999;47(4):477-481.PubMedArticle
69.
Halbert  JA, Silagy  CA, Finucane  PM, Withers  RT, Hamdorf  PA.  Physical activity and cardiovascular risk factors: effect of advice from an exercise specialist in Australian general practice.  Med J Aust. 2000;173(2):84-87.PubMed
70.
Hall  WD, Feng  Z, George  VA,  et al; Women’s Health Trial: Feasibility Study in Minority Populations.  Low-fat diet: effect on anthropometrics, blood pressure, glucose, and insulin in older women.  Ethn Dis. 2003;13(3):337-343.PubMed
71.
Hargreaves  EA, Mutrie  N, Fleming  JD.  A web-based intervention to encourage walking (StepWise): pilot randomized controlled trial.  JMIR Res Protoc. 2016;5(1):e14.PubMedArticle
72.
Harland  J, White  M, Drinkwater  C, Chinn  D, Farr  L, Howel  D.  The Newcastle exercise project: a randomised controlled trial of methods to promote physical activity in primary care.  BMJ. 1999;319(7213):828-832.PubMedArticle
73.
Harris  T, Kerry  SM, Victor  CR,  et al.  A primary care nurse–delivered walking intervention in older adults: PACE (pedometer accelerometer consultation evaluation)-Lift cluster randomised controlled trial.  PLoS Med. 2015;12(2):e1001783.PubMedArticle
74.
Hebert  PR, Bolt  RJ, Borhani  NO,  et al; Trials of Hypertension Prevention (TOHP) Collaborative Research Group.  Design of a multicenter trial to evaluate long-term life-style intervention in adults with high-normal blood pressure levels: Trials of Hypertension Prevention (phase II).  Ann Epidemiol. 1995;5(2):130-139.PubMedArticle
75.
Hellénius  ML, Dahlöf  C, Aberg  H, Krakau  I, de Faire  U.  Quality of life is not negatively affected by diet and exercise intervention in healthy men with cardiovascular risk factors.  Qual Life Res. 1995;4(1):13-20.PubMedArticle
76.
Hellénius  ML, de Faire  U, Berglund  B, Hamsten  A, Krakau  I.  Diet and exercise are equally effective in reducing risk for cardiovascular disease: results of a randomized controlled study in men with slightly to moderately raised cardiovascular risk factors.  Atherosclerosis. 1993;103(1):81-91.PubMedArticle
77.
Herman  C, Thompson  J, Wolfe  V,  et al. Six-month results from a healthy lifestyles diabetes primary prevention program among urban Native American women. Paper presented at: American Public Health Association 134th Annual Meeting and Exposition; November 4, 2006; Boston, MA.
78.
Hinderliter  AL, Sherwood  A, Craighead  LW,  et al.  The long-term effects of lifestyle change on blood pressure: one-year follow-up of the ENCORE study.  Am J Hypertens. 2014;27(5):734-741.PubMedArticle
79.
Hivert  MF, Langlois  MF, Bérard  P, Cuerrier  JP, Carpentier  AC.  Prevention of weight gain in young adults through a seminar-based intervention program.  Int J Obes (Lond). 2007;31(8):1262-1269.PubMedArticle
80.
Howard  BV, Manson  JE, Stefanick  ML,  et al.  Low-fat dietary pattern and weight change over 7 years: the Women’s Health Initiative Dietary Modification Trial.  JAMA. 2006;295(1):39-49.PubMedArticle
81.
Howard  BV, Van Horn  L, Hsia  J,  et al.  Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative randomized controlled dietary modification trial.  JAMA. 2006;295(6):655-666.PubMedArticle
82.
Hypertension Prevention Trial Research Group.  The Hypertension Prevention Trial: three-year effects of dietary changes on blood pressure.  Arch Intern Med. 1990;150(1):153-162.PubMedArticle
83.
Jacobs  N, Clays  E, De Bacquer  D,  et al.  Effect of a tailored behavior change program on a composite lifestyle change score: a randomized controlled trial.  Health Educ Res. 2011;26(5):886-895.PubMedArticle
84.
Jacobs  N, De Bourdeaudhuij  I, Thijs  H, Dendale  P, Claes  N.  Effect of a cardiovascular prevention program on health behavior and BMI in highly educated adults: a randomized controlled trial.  Patient Educ Couns. 2011;85(1):122-126.PubMedArticle
85.
Jeffery  RW, French  SA.  Preventing weight gain in adults: the Pound of Prevention study.  Am J Public Health. 1999;89(5):747-751.PubMedArticle
86.
John  JH, Ziebland  S, Yudkin  P, Roe  LS, Neil  HA; Oxford Fruit and Vegetable Study Group.  Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial.  Lancet. 2002;359(9322):1969-1974.PubMedArticle
87.
Kallings  LV. Physical Activity on Prescription: Studies on Physical Activity Level, Adherence, and Cardiovascular Risk Factors [dissertation]. Stockholm, Sweden: Karolinska Institutet; 2008.
88.
Kallings  LV, Sierra Johnson  J, Fisher  RM,  et al.  Beneficial effects of individualized physical activity on prescription on body composition and cardiometabolic risk factors: results from a randomized controlled trial.  Eur J Cardiovasc Prev Rehabil. 2009;16(1):80-84.PubMedArticle
89.
Kattelmann  KK, Bredbenner  CB, White  AA,  et al.  The effects of Young Adults Eating and Active for Health (YEAH): a theory-based web-delivered intervention.  J Nutr Educ Behav. 2014;46(6):S27-S41.PubMedArticle
90.
Katz  DL, Shuval  K, Comerford  BP, Faridi  Z, Njike  VY.  Impact of an educational intervention on internal medicine residents’ physical activity counselling: the Pressure System Model.  J Eval Clin Pract. 2008;14(2):294-299.PubMedArticle
91.
Kerr  DA, Harray  AJ, Pollard  CM,  et al.  The connecting health and technology study: a 6-month randomized controlled trial to improve nutrition behaviours using a mobile food record and text messaging support in young adults.  Int J Behav Nutr Phys Act. 2016;13(1):52.PubMedArticle
92.
Kerr  DA, Pollard  CM, Howat  P,  et al.  Connecting Health and Technology (CHAT): protocol of a randomized controlled trial to improve nutrition behaviours using mobile devices and tailored text messaging in young adults.  BMC Public Health. 2012;12:477.PubMedArticle
93.
Kerse  N, Elley  CR, Robinson  E, Arroll  B.  Is physical activity counseling effective for older people? a cluster randomized, controlled trial in primary care.  J Am Geriatr Soc. 2005;53(11):1951-1956.PubMedArticle
94.
King  AC, Castro  CM, Buman  MP, Hekler  EB, Urizar  GG  Jr, Ahn  DK.  Behavioral impacts of sequentially versus simultaneously delivered dietary plus physical activity interventions: the CALM trial.  Ann Behav Med. 2013;46(2):157-168.PubMedArticle
95.
King  AC, Friedman  R, Marcus  B,  et al.  Ongoing physical activity advice by humans versus computers: the Community Health Advice by Telephone (CHAT) trial.  Health Psychol. 2007;26(6):718-727.PubMedArticle
96.
Kinmonth  AL, Wareham  NJ, Hardeman  W,  et al.  Efficacy of a theory-based behavioural intervention to increase physical activity in an at-risk group in primary care (ProActive UK): a randomised trial.  Lancet. 2008;371(9606):41-48.PubMedArticle
97.
Kolt  GS, Schofield  GM, Kerse  N, Garrett  N, Oliver  M.  Effect of telephone counseling on physical activity for low-active older people in primary care: a randomized, controlled trial.  J Am Geriatr Soc. 2007;55(7):986-992.PubMedArticle
98.
Kristal  AR, Curry  SJ, Shattuck  AL, Feng  Z, Li  S.  A randomized trial of a tailored, self-help dietary intervention: the Puget Sound Eating Patterns study.  Prev Med. 2000;31(4):380-389.PubMedArticle
99.
Kuller  LH, Simkin-Silverman  LR, Wing  RR, Meilahn  EN, Ives  DG.  Women’s Healthy Lifestyle Project: a randomized clinical trial: results at 54 months.  Circulation. 2001;103(1):32-37.PubMedArticle
100.
Kumanyika  SK, Cook  NR, Cutler  JA,  et al; Trials of Hypertension Prevention Collaborative Research Group.  Sodium reduction for hypertension prevention in overweight adults: further results from the Trials of Hypertension Prevention Phase II.  J Hum Hypertens. 2005;19(1):33-45.PubMedArticle
101.
Kumanyika  SK, Hebert  PR, Cutler  JA,  et al; Trials of Hypertension Prevention Collaborative Research Group.  Feasibility and efficacy of sodium reduction in the Trials of Hypertension Prevention, phase I.  Hypertension. 1993;22(4):502-512.PubMedArticle
102.
Lawton  BA, Rose  SB, Elley  CR, Dowell  AC, Fenton  A, Moyes  SA.  Exercise on prescription for women aged 40-74 recruited through primary care: two year randomised controlled trial.  BMJ. 2008;337:a2509.PubMedArticle
103.
Lewis  BA, Williams  DM, Martinson  BC, Dunsiger  S, Marcus  BH.  Healthy for life: a randomized trial examining physical activity outcomes and psychosocial mediators.  Ann Behav Med. 2013;45(2):203-212.PubMedArticle
104.
Lutz  SF, Ammerman  AS, Atwood  JR, Campbell  MK, DeVellis  RF, Rosamond  WD.  Innovative newsletter interventions improve fruit and vegetable consumption in healthy adults.  J Am Diet Assoc. 1999;99(6):705-709.PubMedArticle
105.
Magnan  RE, Nilsson  R, Marcus  BH, Ciccolo  JT, Bryan  AD.  A transdisciplinary approach to the selection of moderators of an exercise promotion intervention: baseline data and rationale for Colorado STRIDE.  J Behav Med. 2013;36(1):20-33.PubMedArticle
106.
Mailey  EL, McAuley  E.  Impact of a brief intervention on physical activity and social cognitive determinants among working mothers: a randomized trial.  J Behav Med. 2014;37(2):343-355.PubMedArticle
107.
Marcus  BH, Dunsiger  SI, Pekmezi  D,  et al.  Twelve-month physical activity outcomes in Latinas in the Seamos Saludables trial.  Am J Prev Med. 2015;48(2):179-182.PubMedArticle
108.
Marcus  BH, Dunsiger  SI, Pekmezi  DW,  et al.  The Seamos Saludables study: a randomized controlled physical activity trial of Latinas.  Am J Prev Med. 2013;45(5):598-605.PubMedArticle
109.
Marcus  BH, Napolitano  MA, King  AC,  et al.  Telephone versus print delivery of an individualized motivationally tailored physical activity intervention: Project STRIDE.  Health Psychol. 2007;26(4):401-409.PubMedArticle
110.
Marcus  BH, Napolitano  MA, King  AC,  et al.  Examination of print and telephone channels for physical activity promotion: rationale, design, and baseline data from Project STRIDE.  Contemp Clin Trials. 2007;28(1):90-104.PubMedArticle
111.
Marsaux  CF, Celis-Morales  C, Fallaize  R,  et al.  Effects of a web-based personalized intervention on physical activity in European adults: a randomized controlled trial.  J Med Internet Res. 2015;17(10):e231.PubMedArticle
112.
Marshall  AL, Bauman  AE, Owen  N, Booth  ML, Crawford  D, Marcus  BH.  Population-based randomized controlled trial of a stage-targeted physical activity intervention.  Ann Behav Med. 2003;25(3):194-202.PubMedArticle
113.
Marshall  AL, Miller  YD, Graves  N, Barnett  AG, Fjeldsoe  BS.  Moving MobileMums forward: protocol for a larger randomized controlled trial of an improved physical activity program for women with young children.  BMC Public Health. 2013;13(1):593.PubMedArticle
114.
Martinson  BC, Crain  AL, Sherwood  NE, Hayes  M, Pronk  NP, O’Connor  PJ.  Maintaining physical activity among older adults: six-month outcomes of the Keep Active Minnesota randomized controlled trial.  Prev Med. 2008;46(2):111-119.PubMedArticle
115.
Martinson  BC, Sherwood  NE, Crain  AL,  et al.  Maintaining physical activity among older adults: 24-month outcomes of the Keep Active Minnesota randomized controlled trial.  Prev Med. 2010;51(1):37-44.PubMedArticle
116.
Meinert  CL, Borhani  NO, Langford  HG; Hypertension Prevention Trial Research Group.  Design, methods, and rationale in the Hypertension Prevention Trial.  Control Clin Trials. 1989;10(3)(suppl):1S-29S.PubMedArticle
117.
Mochari-Greenberger  H, Terry  MB, Mosca  L.  Sex, age, and race/ethnicity do not modify the effectiveness of a diet intervention among family members of hospitalized cardiovascular disease patients.  J Nutr Educ Behav. 2011;43(5):366-373.PubMedArticle
118.
Mosca  L, Mochari  H, Liao  M,  et al.  A novel family-based intervention trial to improve heart health: FIT Heart: results of a randomized controlled trial.  Circ Cardiovasc Qual Outcomes. 2008;1(2):98-106.PubMedArticle
119.
Napolitano  MA, Whiteley  JA, Papandonatos  G,  et al.  Outcomes from the women’s wellness project: a community-focused physical activity trial for women.  Prev Med. 2006;43(6):447-453.PubMedArticle
120.
Nishigaki  M, Tokunaga-Nakawatase  Y, Nishida  J,  et al.  Randomized controlled trial of the effectiveness of genetic counseling and a distance, computer-based, lifestyle intervention program for adult offspring of patients with type 2 diabetes: background, study protocol, and baseline patient characteristics.  J Nutr Metab. 2012;2012:831735.PubMedArticle
121.
Norris  SL, Grothaus  LC, Buchner  DM, Pratt  M.  Effectiveness of physician-based assessment and counseling for exercise in a staff model HMO.  Prev Med. 2000;30(6):513-523.PubMedArticle
122.
O’Neill  SM, Rubinstein  WS, Wang  C,  et al; Family Healthware Impact Trial group.  Familial risk for common diseases in primary care: the Family Healthware Impact Trial.  Am J Prev Med. 2009;36(6):506-514.PubMedArticle
123.
Parekh  S, King  D, Boyle  FM, Vandelanotte  C.  Randomized controlled trial of a computer-tailored multiple health behaviour intervention in general practice: 12-month follow-up results.  Int J Behav Nutr Phys Act. 2014;11(1):41.PubMedArticle
124.
Parekh  S, Vandelanotte  C, King  D, Boyle  FM.  Design and baseline characteristics of the 10 Small Steps Study: a randomised controlled trial of an intervention to promote healthy behaviour using a lifestyle score and personalised feedback.  BMC Public Health. 2012;12:179.PubMedArticle
125.
Pekmezi  D, Dunsiger  S, Gans  K,  et al.  Rationale, design, and baseline findings from Seamos Saludables: a randomized controlled trial testing the efficacy of a culturally and linguistically adapted, computer- tailored physical activity intervention for Latinas.  Contemp Clin Trials. 2012;33(6):1261-1271.PubMedArticle
126.
Pekmezi  DW, Neighbors  CJ, Lee  CS,  et al.  A culturally adapted physical activity intervention for Latinas: a randomized controlled trial.  Am J Prev Med. 2009;37(6):495-500.PubMedArticle
127.
Pinto  BM, Friedman  R, Marcus  BH, Kelley  H, Tennstedt  S, Gillman  MW.  Effects of a computer-based, telephone-counseling system on physical activity.  Am J Prev Med. 2002;23(2):113-120.PubMedArticle
128.
Pinto  BM, Goldstein  MG, Ashba  J, Sciamanna  CN, Jette  A.  Randomized controlled trial of physical activity counseling for older primary care patients.  Am J Prev Med. 2005;29(4):247-255.PubMedArticle
129.
Pinto  BM, Goldstein  MG, DePue  JD, Milan  FB.  Acceptability and feasibility of physician-based activity counseling: the PAL project.  Am J Prev Med. 1998;15(2):95-102.PubMedArticle
130.
Roderick  P, Ruddock  V, Hunt  P, Miller  G.  A randomized trial to evaluate the effectiveness of dietary advice by practice nurses in lowering diet-related coronary heart disease risk.  Br J Gen Pract. 1997;47(414):7-12.PubMed
131.
Ruffin  MT  IV, Nease  DE  Jr, Sen  A,  et al; Family History Impact Trial (FHITr) Group.  Effect of preventive messages tailored to family history on health behaviors: the Family Healthware Impact Trial.  Ann Fam Med. 2011;9(1):3-11.PubMedArticle
132.
Sacerdote  C, Fiorini  L, Rosato  R, Audenino  M, Valpreda  M, Vineis  P.  Randomized controlled trial: effect of nutritional counselling in general practice.  Int J Epidemiol. 2006;35(2):409-415.PubMedArticle
133.
Satterfield  S, Cutler  JA, Langford  HG,  et al.  Trials of Hypertension Prevention: phase I design.  Ann Epidemiol. 1991;1(5):455-471.PubMedArticle
134.
Shah  M, Jeffery  RW, Laing  B, Savre  SG, Van Natta  M, Strickland  D; Hypertension Prevention Trial Research Group.  Hypertension Prevention Trial (HPT): food pattern changes resulting from intervention on sodium, potassium, and energy intake.  J Am Diet Assoc. 1990;90(1):69-76.PubMed
135.
Sherwood  NE, Martinson  BC, Crain  AL, Hayes  MG, Pronk  NP, O’Connor  PJ.  A new approach to physical activity maintenance: rationale, design, and baseline data from the Keep Active Minnesota Trial.  BMC Geriatr. 2008;8:17.PubMedArticle
136.
Simkin-Silverman  L, Wing  RR, Hansen  DH,  et al.  Prevention of cardiovascular risk factor elevations in healthy premenopausal women.  Prev Med. 1995;24(5):509-517.PubMedArticle
137.
Simkin-Silverman  LR, Wing  RR, Boraz  MA, Kuller  LH.  Lifestyle intervention can prevent weight gain during menopause: results from a 5-year randomized clinical trial.  Ann Behav Med. 2003;26(3):212-220.PubMedArticle
138.
Simkin-Silverman  LR, Wing  RR, Boraz  MA, Meilahn  EN, Kuller  LH.  Maintenance of cardiovascular risk factor changes among middle-aged women in a lifestyle intervention trial.  Womens Health. 1998;4(3):255-271.PubMed
139.
Smith  BJ, Cinnadaio  N, Cheung  NW, Bauman  A, Tapsell  LC, van der Ploeg  HP.  Investigation of a lifestyle change strategy for high-risk women with a history of gestational diabetes.  Diabetes Res Clin Pract. 2014;106(3):e60-e63.PubMedArticle
140.
Springvloet  L, Lechner  L, de Vries  H, Candel  MJ, Oenema  A.  Short- and medium-term efficacy of a web-based computer-tailored nutrition education intervention for adults including cognitive and environmental feedback: randomized controlled trial.  J Med Internet Res. 2015;17(1):e23.PubMedArticle
141.
Springvloet  L, Lechner  L, de Vries  H, Oenema  A.  Long-term efficacy of a web-based computer-tailored nutrition education intervention for adults including cognitive and environmental feedback: a randomized controlled trial.  BMC Public Health. 2015;15:372.PubMedArticle
142.
Springvloet  L, Lechner  L, Oenema  A.  Planned development and evaluation protocol of two versions of a web-based computer-tailored nutrition education intervention aimed at adults, including cognitive and environmental feedback.  BMC Public Health. 2014;14:47.PubMedArticle
143.
Stewart  AL, Verboncoeur  CJ, McLellan  BY,  et al.  Physical activity outcomes of CHAMPS II: a physical activity promotion program for older adults.  J Gerontol A Biol Sci Med Sci. 2001;56(8):M465-M470.PubMedArticle
144.
Stopponi  MA, Alexander  GL, McClure  JB,  et al.  Recruitment to a randomized web-based nutritional intervention trial: characteristics of participants compared to non-participants.  J Med Internet Res. 2009;11(3):e38.PubMedArticle
145.
Taveras  EM, Blackburn  K, Gillman  MW,  et al.  First Steps for Mommy and Me: a pilot intervention to improve nutrition and physical activity behaviors of postpartum mothers and their infants.  Matern Child Health J. 2011;15(8):1217-1227.PubMedArticle
146.
Trials of Hypertension Prevention Collaborative Research Group.  The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels: results of the Trials of Hypertension Prevention, phase I.  JAMA. 1992;267(9):1213-1220.PubMedArticle
147.
Trials of Hypertension Prevention Collaborative Research Group.  Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: the Trials of Hypertension Prevention, phase II.  Arch Intern Med. 1997;157(6):657-667.PubMedArticle
148.
The Women’s Health Initiative Study Group.  Design of the Women’s Health Initiative clinical trial and observational study.  Control Clin Trials. 1998;19(1):61-109.PubMedArticle
149.
Thompson  JL, Allen  P, Helitzer  DL,  et al.  Reducing diabetes risk in American Indian women.  Am J Prev Med. 2008;34(3):192-201.PubMedArticle
150.
Thompson  WG, Kuhle  CL, Koepp  GA, McCrady-Spitzer  SK, Levine  JA.  “Go4Life” exercise counseling, accelerometer feedback, and activity levels in older people.  Arch Gerontol Geriatr. 2014;58(3):314-319.PubMedArticle
151.
Tinker  LF, Bonds  DE, Margolis  KL,  et al; Women’s Health Initiative.  Low-fat dietary pattern and risk of treated diabetes mellitus in postmenopausal women: the Women’s Health Initiative randomized controlled dietary modification trial.  Arch Intern Med. 2008;168(14):1500-1511.PubMedArticle
152.
Tokunaga-Nakawatase  Y, Nishigaki  M, Taru  C,  et al.  Computer-supported indirect-form lifestyle-modification support program using Lifestyle Intervention Support Software for Diabetes Prevention (LISS-DP) for people with a family history of type 2 diabetes in a medical checkup setting: a randomized controlled trial.  Prim Care Diabetes. 2014;8(3):207-214.PubMedArticle
153.
Valve  P, Lehtinen-Jacks  S, Eriksson  T,  et al.  LINDA—a solution-focused low-intensity intervention aimed at improving health behaviors of young females: a cluster-randomized controlled trial.  BMC Public Health. 2013;13:1044.PubMedArticle
154.
Van Hoecke  AS, Delecluse  C, Bogaerts  A, Boen  F.  The long-term effectiveness of need-supportive physical activity counseling compared with a standard referral in sedentary older adults.  J Aging Phys Act. 2014;22(2):186-198.PubMedArticle
155.
Van Hoecke  AS, Delecluse  C, Bogaerts  A, Boen  F.  Effects of need-supportive physical activity counseling on well-being: a 2-year follow-up among sedentary older adults.  J Phys Act Health. 2014;11(8):1492-1502.PubMedArticle
156.
van Stralen  MM, de Vries  H, Bolman  C, Mudde  AN, Lechner  L.  Exploring the efficacy and moderators of two computer-tailored physical activity interventions for older adults: a randomized controlled trial.  Ann Behav Med. 2010;39(2):139-150.PubMedArticle
157.
van Stralen  MM, de Vries  H, Mudde  AN, Bolman  C, Lechner  L.  The long-term efficacy of two computer-tailored physical activity interventions for older adults: main effects and mediators.  Health Psychol. 2011;30(4):442-452.PubMedArticle
158.
van Stralen  MM, de Vries  H, Mudde  AN, Bolman  C, Lechner  L.  Efficacy of two tailored interventions promoting physical activity in older adults.  Am J Prev Med. 2009;37(5):405-417.PubMedArticle
159.
Vandelanotte  C, De Bourdeaudhuij  I, Sallis  JF, Spittaels  H, Brug  J.  Efficacy of sequential or simultaneous interactive computer-tailored interventions for increasing physical activity and decreasing fat intake.  Ann Behav Med. 2005;29(2):138-146.PubMedArticle
160.
Vrdoljak  D, Marković  BB, Puljak  L, Lalić  DI, Kranjčević  K, Vučak  J.  Lifestyle intervention in general practice for physical activity, smoking, alcohol consumption and diet in elderly: a randomized controlled trial [published online August 24, 2013].  Arch Gerontol Geriatr. doi:10.1016/j.archger.2013.08.007PubMed
161.
Wadsworth  DD, Hallam  JS.  Effect of a web site intervention on physical activity of college females.  Am J Health Behav. 2010;34(1):60-69.PubMedArticle
162.
Warner  LM, Wolff  JK, Ziegelmann  JP, Schwarzer  R, Wurm  S.  Revisiting self-regulatory techniques to promote physical activity in older adults: null-findings from a randomised controlled trial.  Psychol Health. 2016;31(10):1145-1165.PubMedArticle
163.
Williams  K, Prevost  AT, Griffin  S,  et al.  The ProActive trial protocol—a randomised controlled trial of the efficacy of a family-based, domiciliary intervention programme to increase physical activity among individuals at high risk of diabetes [ISRCTN61323766].  BMC Public Health. 2004;4:48.PubMedArticle
164.
Albright  CL, Saiki  K, Steffen  AD, Woekel  E.  What barriers thwart postpartum women’s physical activity goals during a 12-month intervention? a process evaluation of the Nā Mikimiki Project.  Women Health. 2015;55(1):1-21. PubMedArticle
165.
Harris  T, Kerry  S, Victor  C,  et al.  Randomised controlled trial of a complex intervention by primary care nurses to increase walking time in patients aged 60-74 years: protocol of the PACE-Lift (Pedometer Accelerometer Consultation Evaluation–Lift) trial.  BMC Public Health. 2013;13:5. PubMedArticle
166.
Whitlock  G, Lewington  S, Sherliker  P,  et al; Prospective Studies Collaboration.  Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.  Lancet. 2009;373(9669):1083-1096.PubMedArticle
167.
Lewington  S, Whitlock  G, Clarke  R,  et al; Prospective Studies Collaboration.  Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths.  Lancet. 2007;370(9602):1829-1839.PubMedArticle
168.
Lewington  S, Clarke  R, Qizilbash  N, Peto  R, Collins  R; Prospective Studies Collaboration.  Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.  Lancet. 2002;360(9349):1903-1913.PubMedArticle
169.
Guirguis-Blake  JM, Evans  CV, Senger  CA, O’Connor  EA, Whitlock  EP.  Aspirin for the primary prevention of cardiovascular events: a systematic evidence review for the U.S. Preventive Services Task Force.  Ann Intern Med. 2016;164(12):804-813.PubMedArticle
170.
Leblanc  ES, O’Connor  E, Whitlock  EP, Patnode  CD, Kapka  T.  Effectiveness of primary care–relevant treatments for obesity in adults: a systematic evidence review for the U.S. Preventive Services Task Force.  Ann Intern Med. 2011;155(7):434-447.PubMedArticle
171.
Lin  JS, O’Connor  E, Evans  CV, Senger  CA, Rowland  MG, Groom  HC.  Behavioral counseling to promote a healthy lifestyle in persons with cardiovascular risk factors: a systematic review for the U.S. Preventive Services Task Force.  Ann Intern Med. 2014;161(8):568-578.PubMedArticle
172.
Patnode  CD, Henderson  JT, Thompson  JH, Senger  CA, Fortmann  SP, Whitlock  EP.  Behavioral counseling and pharmacotherapy interventions for tobacco cessation in adults, including pregnant women: a review of reviews for the U.S. Preventive Services Task Force.  Ann Intern Med. 2015;163(8):608-621.PubMedArticle
173.
Chou  R, Dana  T, Blazina  I,  et al.  Statins for Prevention of Cardiovascular Disease in Adults: Systematic Review for the US Preventive Services Task Force. Evidence Synthesis No. 132. Rockville, MD: Agency for Healthcare Research and Quality; 2015. AHRQ publication 13-05193-EF-1.
174.
Michie  S, Richardson  M, Johnston  M,  et al.  The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions.  Ann Behav Med. 2013;46(1):81-95.PubMedArticle
175.
Krist  AH, Baumann  LJ, Holtrop  JS, Wasserman  MR, Stange  KC, Woo  M.  Evaluating feasible and referable behavioral counseling interventions.  Am J Prev Med. 2015;49(3)(suppl 2):S138-S149.PubMedArticle
176.
Block  G, Hartman  AM, Dresser  CM, Carroll  MD, Gannon  J, Gardner  L.  A data-based approach to diet questionnaire design and testing.  Am J Epidemiol. 1986;124(3):453-469.PubMedArticle
177.
Block  G, Woods  M, Potosky  A, Clifford  C.  Validation of a self-administered diet history questionnaire using multiple diet records.  J Clin Epidemiol. 1990;43(12):1327-1335.PubMedArticle
178.
Newell  SA, Girgis  A, Sanson-Fisher  RW, Savolainen  NJ.  The accuracy of self-reported health behaviors and risk factors relating to cancer and cardiovascular disease in the general population: a critical review.  Am J Prev Med. 1999;17(3):211-229.PubMedArticle
179.
McNellis  RJ, Ory  MG, Lin  JS, O’Connor  EA.  Standards of evidence for behavioral counseling recommendations.  Am J Prev Med. 2015;49(3)(suppl 2):S150-S157.PubMedArticle
180.
Bibbins-Domingo  K, Grossman  DC, Curry  SJ,  et al; US Preventive Services Task Force.  Statin use for the primary prevention of cardiovascular disease in adults: US Preventive Services Task Force recommendation statement.  JAMA. 2016;316(19):1997-2007.PubMedArticle
×