[Skip to Content]
[Skip to Content Landing]
Special Topics
July/Aug 2012

Biomechanical Properties of the Facial Retaining Ligaments

Author Affiliations

Author Affiliations: Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology–Head and Neck Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (Dr Brandt); and Division of Plastic Surgery, Department of Surgery (Dr Hassa), Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology–Head and Neck Surgery (Drs Roth and Moore), and Department of Pathology (Dr Wehrli), Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.

Arch Facial Plast Surg. 2012;14(4):289-294. doi:10.1001/archfacial.2011.1533

Objective Osteocutaneous facial retaining ligaments play an important role in the aging face. We sought to better characterize the biophysical properties of these ligaments and, in doing so, provide an empirical basis for the natural descent seen in facial aging.

Methods Five fresh frozen cadaver heads yielding 10 hemifaces were dissected to expose the orbital, zygomatic, buccomaxillary, and mandibular osteocutaneous ligaments. Each ligament was assessed and subjected to biomechanical testing. The main outcome measures included ligament dimensions, stiffness, percentage of elongation, and force to initial and ultimate failure.

Results Initial and ultimate failure testing revealed the zygomatic ligament to be strongest, followed by the orbital, mandibular, and maxillary ligaments. The zygomatic ligament was also stiffest, followed by the orbital, maxillary, and mandibular ligaments. The percentage of elongation acted as a surrogate marker of elasticity, with the greatest elasticity maintained by the mandibular ligament, followed by the orbital, zygomatic, and buccomaxillary ligaments. Ligament dimensions and biophysical properties did not vary relative to cadaveric hemiface, age, or sex.

Conclusions To our knowledge, this is the first investigation to quantify the biomechanical properties of the facial retaining ligaments. Inherent ligament properties seem to be related to the changes observed in facial aging, although further study is required.