[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.205.87.3. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Views 0
Citations 0
Original Investigation
December 01, 2016

Correlation of Nasal Mucosal Temperature With Subjective Nasal Patency in Healthy Individuals

Author Affiliations
  • 1Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee
  • 2Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
JAMA Facial Plast Surg. Published online December 1, 2016. doi:10.1001/jamafacial.2016.1445
Key Points

Question  Does the sensation of nasal patency correlate with nasal mucosa temperature?

Findings  In a cohort of 22 healthy individuals, a statistically significant correlation was found between subjective nasal patency (assessed via Nasal Obstruction Symptom Evaluation and visual analog scale scores) and nasal mucosa temperature. However, this correlation was found in only 1 of 4 sites measured, a discrepancy that is potentially due to mucosal irritation caused by the temperature sensor, limiting the correlation to the first site measured.

Meaning  Nasal mucosal temperature may be a key mechanism of nasal airflow sensation. Future studies should use optical temperature sensors to prevent mucosa irritation.

Abstract

Importance  Historically, otolaryngologists have focused on nasal resistance to airflow and minimum airspace cross-sectional area as objective measures of nasal obstruction using methods such as rhinomanometry and acoustic rhinometry. However, subjective sensation of nasal patency may be more associated with activation of cold receptors by inspired air than with respiratory effort.

Objective  To investigate whether subjective nasal patency correlates with nasal mucosal temperature in healthy individuals.

Design, Setting, and Participants  Healthy adult volunteers first completed the Nasal Obstruction Symptom Evaluation (NOSE) and a unilateral visual analog scale to quantify subjective nasal patency. A miniaturized thermocouple sensor was then used to record nasal mucosal temperature bilaterally in 2 locations along the nasal septum: at the vestibule and across from the inferior turbinate head.

Main Outcomes and Measures  Nasal mucosal temperature and subjective patency scores in healthy individuals.

Results  The 22 healthy adult volunteers (12 [55%] male; mean [SD] age, 28.3 [7.0] years) had a mean (SD) NOSE score of 5.9 (8.4) (range, 0-30) and unilateral VAS score of 1.2 (1.4) (range, 0-5). The range of temperature oscillations during the breathing cycle, defined as the difference between end-expiratory and end-inspiratory temperatures, was greater during deep breaths (mean [SD] change in temperature, 6.2°C [2.6°C]) than during resting breathing (mean [SD] change in temperature, 4.2°C [2.3°C]) in both locations (P < .001). Mucosal temperature measured at the right vestibule had a statistically significant correlation with both right-side visual analog scale score (Pearson r = −0.55; 95% CI, −0.79 to −0.17; P = .008) and NOSE score (Pearson r = −0.47; 95% CI, −0.74 to −0.06; P = .03). No other statistically significant correlations were found between mucosal temperature and subjective nasal patency scores. Nasal mucosal temperature was lower (mean of 1.5°C lower) in the first cavity to be measured, which was the right cavity in all participants.

Conclusions and Relevance  The greater mucosal temperature oscillations during deep breathing are consistent with the common experience that airflow sensation is enhanced during deep breaths, thus supporting the hypothesis that mucosal cooling plays a central role in nasal airflow sensation. A possible correlation was found between subjective nasal patency scores and nasal mucosal temperature, but our results were inconsistent. The higher temperature in the left cavity suggests that the sensor irritated the nasal mucosa, affecting the correlation between patency scores and mucosal temperature. Future studies should consider noncontact temperature sensors to prevent mucosa irritation.

Level of Evidence  NA.

×