[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.211.120.181. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Download PDF
1.
Bucher  HCGriffith  LEGuyatt  GH Effect of HMGcoA reductase inhibitors on stroke: a meta-analysis of randomized, controlled trials. Ann Intern Med. 1998;12889- 95
PubMedArticle
2.
Hebert  PGaziano  MChan  KHennekens  C Cholesterol lowering with statin drugs, risk of stroke, and total mortality. JAMA. 1997;278313- 321
PubMedArticle
3.
Davidson  MH Safety profiles for the HMG-CoA reductase inhibitors: treatment and trust. Drugs. 2001;61197- 206
PubMedArticle
4.
Simons  J The $10 billion pill: hold the fries, please: Lipitor, the cholesterol-lowering drug, has become the best selling pharmaceutical in history: here's how Pfizer did it. Fortune. 2003;147 ((1)) 58
5.
Clark  T Pfizer braces for rivals to main drugs: Viagra, Lipitor. National Post. 15 August2003;IN8
6.
Appleby  J Drug spending surged 17% last year: figure has nearly doubled in 4 years. USA Today. 2002;A1
7.
Not Available, Pfizer reports 38% increase in net income in fourth quarter. San Diego Union Tribune 24 January2002;C3
8.
Brown  D Heart drug far surpasses expectations. Washington Post. 2001;A1
9.
Kendall  MJNuttall  SL The heart protection study: statins for all those at risk? J Clin Pharm Ther. 2002;271- 4
PubMedArticle
10.
Haney  DQ Cholesterol drug is very secret weapon. San Diego Union Tribune. 1999;E2
11.
Dales  MJM Statination. Intern Med News. 1 February2000;55
12.
SoRelle  R Baycol withdrawn from market. Circulation. 2001;104E9015- E9016
PubMedArticle
13.
Pasternak  RCSmith  SC  JrBairey-Merz  CNGrundy  SMCleeman  JILenfant  CAmerican College of Cardiology; American Heart Association; National Heart Lung and Blood Institute, ACC/AHA/NHLBI clinical advisory on the use and safety of statins. J Am Coll Cardiol. 2002;40567- 572
PubMedArticle
14.
Phillips  PSHaas  RHBannykh  S  et al.  Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med. 2002;137581- 585
PubMedArticle
15.
Gaist  DJeppesen  MAndersen  LAGarcia Rodriguez  JHallas  JSindrup  SH Statins and risk of polyneuropathy: a case-control study. Neurology. 2002;581333- 1337
PubMedArticle
16.
Donaghy  M Assessing the risk of drug-induced neurological disorders. Neurology. 2002;581321- 1322
PubMedArticle
17.
Heeschen  CHamm  CWLaufs  USnapinn  SBohm  MWhite  HD Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation. 2002;1051446- 1452
PubMedArticle
18.
Scott  HDLaake  K Statins for the reduction of risk of Alzheimer's disease. Cochrane Database Syst Rev. 2001;3CD003160.
PubMed
19.
Lesser  GKandiah  KLibow  LS  et al.  Elevated serum total and LDL cholesterol in very old patients with Alzheimer's disease. Dement Geriatr Cogn Disord. 2001;12138- 145
PubMedArticle
20.
Lehtonen  ALuutonen  S High-density lipoprotein cholesterol levels of very old people in the diagnosis of dementia. Age Ageing. 1986;15267- 270
PubMedArticle
21.
Wehr  HParnowski  TPuzynski  S  et al.  Apolipoprotein E genotype and lipid and lipoprotein levels in dementia. Dement Geriatr Cogn Disord. 2000;1170- 73
PubMedArticle
22.
Lefer  AMScalia  RLefer  DJ Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res. 2001;49281- 287
PubMedArticle
23.
Lefer  DJ Statins as potent antiinflammatory drugs. Circulation. 2002;1062041- 2042
PubMedArticle
24.
Dobrucki  LWKalinowski  LDobrucki  ITMalinski  T Statin-stimulated nitric oxide release from endothelium. Med Sci Monit. 2001;7622- 627
PubMed
25.
Amin-Hanjani  SStagliano  NEYamada  MHuang  PLLiao  JKMoskowitz  MA Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke. 2001;32980- 986
PubMedArticle
26.
Sessa  WC Can modulation of endothelial nitric oxide synthase explain the vasculoprotective actions of statins? Trends Mol Med. 2001;7189- 191
PubMedArticle
27.
Wolozin  BKellman  WRuosseau  PCelesia  GGSiegel  G Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol. 2000;571439- 1443
PubMedArticle
28.
Hebert  PRGaziano  JMHennekens  CH An overview of trials of cholesterol lowering and risk of stroke. Arch Intern Med. 1995;15550- 55
PubMedArticle
29.
McDowell  I Alzheimer's disease: insights from epidemiology. Aging (Milano). 2001;13143- 162
PubMed
30.
Snowdon  DAKemper  SJMortimer  JAGreiner  LHWekstein  DRMarkesbery  WR Linguistic ability in early life and cognitive function and Alzheimer's disease in late life: findings from the Nun Study. JAMA. 1996;275528- 532
PubMedArticle
31.
Prince  MLovestone  SCervilla  J  et al.  The association between APOE and dementia does not seem to be mediated by vascular factors. Neurology. 2000;54397- 402
PubMedArticle
32.
Dietschy  JMTurley  SD Cholesterol metabolism in the brain. Curr Opin Lipidol. 2001;12105- 112
PubMedArticle
33.
Khan  AA Cholesterol metabolism in the myelin of rat brain. Experientia. 1968;24814- 815
PubMedArticle
34.
Spohn  MDavison  AN Cholesterol metabolism in myelin and other subcellular fractions of rat brain. J Lipid Res. 1972;13563- 570
PubMed
35.
Koenig  SH Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med. 1991;20285- 291
PubMedArticle
36.
Jurevics  HMorell  P Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem. 1995;64895- 901
PubMedArticle
37.
Cintra  ALindberg  JChadi  G  et al.  Basic fibroblast growth factor and steroid receptors in the aging hippocampus of the brown Norway rat: immunocytochemical analysis in combination with stereology. Neurochem Int. 1994;2539- 45
PubMedArticle
38.
McEwen  BSCameron  HChao  HM  et al.  Resolving a mystery: progress in understanding the function of adrenal steroid receptors in hippocampus. Prog Brain Res. 1994;100149- 155
PubMed
39.
Cremel  GFilliol  DJancsik  VRendon  A Cholesterol distribution in rat liver and brain mitochondria as determined by stopped-flow kinetics with filipin. Arch Biochem Biophys. 1990;278142- 147
PubMedArticle
40.
Stevenson  PMScott  CDGalas  ET Interactions between ATP and cholesterol side-chain cleavage in mitochondria isolated from superovulated rat ovaries. Int J Biochem. 1985;171357- 1362
PubMedArticle
41.
Vol'skii  GG Binding of glucocorticoid hormones and cholesterol to rat brain and liver mitochondria [in Russian]. Biokhimiia. 1982;47647- 652
PubMed
42.
Speranza  MLGaiti  ADe Medio  GEMontanini  IPorcellati  G The inhibition of mitochondrial respiration by β-benzal butyric acid and the possible relationship to cholesterol biosynthesis. Biochem Pharmacol. 1970;192737- 2743
PubMedArticle
43.
Pedersen  HSMortensen  SARohde  M  et al.  High serum coenzyme Q10, positively correlated with age, selenium and cholesterol, in Inuit of Greenland: a pilot study. Biofactors. 1999;9319- 323
PubMedArticle
44.
Willis  RAFolkers  KTucker  JLYe  CQXia  LJTamagawa  H Lovastatin decreases coenzyme Q levels in rats. Proc Natl Acad Sci U S A. 1990;878928- 8930
PubMedArticle
45.
De Pinieux  GChariot  PAmmi-Said  M  et al.  Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol. 1996;42333- 337
PubMedArticle
46.
Barbiroli  BFrassineti  CMartinelli  P  et al.  Coenzyme Q10 improves mitochondrial respiration in patients with mitochondrial cytopathies: an in vivo study on brain and skeletal muscle by phosphorous magnetic resonance spectroscopy. Cell Mol Biol (Noisy-le-grand). 1997;43741- 749
PubMed
47.
Chen  RSHuang  CCChu  NS Coenzyme Q10 treatment in mitochondrial encephalomyopathies: short-term double-blind, crossover study. Eur Neurol. 1997;37212- 218
PubMedArticle
48.
Sobreira  CHirano  MShanske  S  et al.  Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology. 1997;481238- 1243
PubMedArticle
49.
Fosslien  E Mitochondrial medicine—molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci. 2001;3125- 67
PubMed
50.
Boitier  EDegoul  FDesguerre  I  et al.  A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency. J Neurol Sci. 1998;15641- 46
PubMedArticle
51.
Blasiak  JWalter  Z Protective action of cholesterol against changes in membrane fluidity induced by malathion. Acta Biochim Pol. 1992;3949- 52
PubMed
52.
Blasiak  J Protective action of cholesterol against changes in membrane fluidity induced by methylparathion. Acta Biochim Pol. 1993;4035- 38
PubMed
53.
Tsujita  MIchikawa  Y Substrate-binding region of cytochrome P-450SCC (P-450 XIA1): identification and primary structure of the cholesterol binding region in cytochrome P-450SCC. Biochim Biophys Acta. 1993;1161124- 130
PubMedArticle
54.
Proksch  EFeingold  KRElias  PM Epidermal HMG CoA reductase activity in essential fatty acid deficiency: barrier requirements rather than eicosanoid generation regulate cholesterol synthesis. J Invest Dermatol. 1992;99216- 220
PubMedArticle
55.
Helmuth  L Neuroscience: pesticide causes Parkinson's in rats. Science. 2000;2901068
PubMedArticle
56.
Ritz  BYu  F Parkinson's disease mortality and pesticide exposure in California 1984-1994. Int J Epidemiol. 2000;29323- 329
PubMedArticle
57.
Hubble  JPCao  THassanein  RENeuberger  JSKoller  WC Risk factors for Parkinson's disease. Neurology. 1993;431693- 1697
PubMedArticle
58.
Semchuk  KMLove  EJLee  RG Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology. 1992;421328- 1335
PubMedArticle
59.
Betarbet  RSherer  TBMacKenzie  GGarcia-Osuna  MPanov  AVGreenamyre  JT Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000;31301- 1306
PubMedArticle
60.
Blasiak  JWalter  Z Protective action of cholesterol against changes in membrane fluidity induced by malathion. Acta Biochim Pol. 1992;3949- 52
PubMed
61.
Li  W-FCosta  LFurlong  C Serum paraoxonase status: a major factor in determining resistance to organophosphates. J Toxicol Environ Health. 1993;40337- 346
PubMedArticle
62.
Costa  LGMcDonald  BEMurphy  SD  et al.  Serum paraoxonase and its influence on paraoxon and chlorpyrifos-oxon toxicity in rats. Toxicol Appl Pharmacol. 1990;10366- 76
PubMedArticle
63.
Costa  LGRichter  RJMurphy  SDOmenn  GSMotulsky  AG Species differences in serum paraoxonase activity correlate with sensitivity to paraoxon toxicity. Costa  LGalli  CMurphy  SToxicology of Pesticides Experimental, Clinical, and Regulatory Aspects. Berlin, Germany Springer-Verlag1987;263- 266NATO ASI series, vol H13.
64.
Mutch  EBlain  PGWilliams  FM Interindividual variations in enzymes controlling organophosphate toxicity in man. Hum Exp Toxicol. 1992;11109- 116
PubMedArticle
65.
Mackness  BMackness  MIArrol  STurkie  WDurrington  PN Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon. Br J Pharmacol. 1997;122265- 268
PubMedArticle
66.
Fricker  RDReardon  ESpektor  DM  et al.  A Review of the Scientific Literature as It Pertains to Gulf War Illnesses, Volume 12: Pesticide Use During the Gulf War: A Survey of Gulf War Veterans.  Santa Monica, Calif RAND2000;MR-1018/12-OSD.
67.
Cherry  NMackness  MDurrington  P  et al.  Paraoxonase (PON1) polymorphisms in farmers attributing ill health to sheep dip. Lancet. 2002;359763- 764
PubMedArticle
68.
Haley  RWBillecke  Sla Du  BN Association of low PON1 type Q (type A) arylesterase activity with neurological symptom complexes in Gulf War veterans. Toxicol Appl Pharmacol. 1999;157227- 233
PubMedArticle
69.
Mackness  BDurrington  PNMackness  MI Low paraoxonase in Persian Gulf War veterans self-reporting Gulf War syndrome. Biochem Biophys Res Commun. 2000;276729- 733
PubMedArticle
70.
Furlong  CE PON1 status and neurologic symptom complexes in Gulf War veterans. Genome Res. 2000;10153- 155
PubMedArticle
71.
Weverling-Rignsburger  ABlauw  GLagaay  AKnook  DMeinders  AWestendorp  R Total cholesterol and risk of mortality in the oldest old. Lancet. 1997;3501119- 1123
PubMedArticle
72.
Roth  TRichardson  GRSullivan  JPLee  RMMerlotti  LRoehrs  T Comparative effects of pravastatin and lovastatin on nighttime sleep and daytime performance. Clin Cardiol. 1992;15426- 432
PubMedArticle
73.
Muldoon  MFBarger  SDRyan  CM  et al.  Effects of lovastatin on cognitive function and psychological well-being. Am J Med. 2000;108538- 546
PubMedArticle
74.
Velussi  MCernigoi  AMTortul  CMerni  M Atorvastatin for the management of type 2 diabetic patients with dyslipidaemia: a mid-term (9 months) treatment experience. Diabetes Nutr Metab. 1999;12407- 412
PubMed
75.
Borghi  CPrandin  MGCosta  FVBacchelli  SDegli Esposti  DAmbrosioni  E Use of statins and blood pressure control in treated hypertensive patients with hypercholesterolemia. J Cardiovasc Pharmacol. 2000;35549- 555
PubMedArticle
76.
Glorioso  NTroffa  CFiligheddu  F  et al.  Effect of the HMG-CoA reductase inhibitors on blood pressure in patients with essential hypertension and primary hypercholesterolemia. Hypertension. 1999;341281- 1286
PubMedArticle
77.
Marumo  HSatoh  KYamamoto  AKaneta  SIchihara  K Simvastatin and atorvastatin enhance hypotensive effect of diltiazem in rats. Yakugaku Zasshi. 2001;121761- 764
PubMedArticle
78.
Sposito  ACMansur  APCoelho  ORNicolau  JCRamires  JA Additional reduction in blood pressure after cholesterol-lowering treatment by statins (lova-statin or pravastatin) in hypercholesterolemic patients using angiotensin-converting enzyme inhibitors (enalapril or lisinopril). Am J Cardiol. 1999;831497- 1499A8
PubMedArticle
79.
Furberg  CD Natural statins and stroke risk. Circulation. 1999;99185- 188
PubMedArticle
80.
Boshuizen  HCIzaks  GJvan Buuren  SLigthart  GJ Blood pressure and mortality in elderly people aged 85 and older: community based study. BMJ. 1998;3161780- 1784
PubMedArticle
81.
Guo  ZViitanen  MFratiglioni  LWinblad  B Low blood pressure and dementia in elderly people: the Kungsholmen project. BMJ. 1996;312805- 808
PubMedArticle
82.
Kannel  WBD'Agostino  RBSilbershatz  H Blood pressure and cardiovascular morbidity and mortality rates in the elderly. Am Heart J. 1997;134758- 763
PubMedArticle
83.
Langer  RDGaniats  TGBarrett-Connor  E Paradoxical survival of elderly men with high blood pressure. BMJ. 1989;2981356- 1357
PubMedArticle
84.
Langer  RDGaniats  TGBarrett-Connor  E Factors associated with paradoxical survival at higher blood pressures in the very old. Am J Epidemiol. 1991;13429- 38[published correction appears in Am J Epidemiol 1993;138:774].
PubMed
85.
Langer  RDCriqui  MHBarrett-Connor  ELKlauber  MRGaniats  TG Blood pressure change and survival after age 75. Hypertension. 1993;22551- 559
PubMedArticle
86.
Lee  MLRosner  BAWeiss  ST Relationship of blood pressure to cardiovascular death: the effects of pulse pressure in the elderly. Ann Epidemiol. 1999;9101- 107
PubMedArticle
87.
M'Buyamba-Kabangu  JRLongo-Mbenza  BTambwe  MJDikassa  LNMbala-Mukendi  M J-shaped relationship between mortality and admission blood pressure in black patients with acute stroke. J Hypertens. 1995;131863- 1868
PubMed
88.
Paterniti  SVerdier-Taillefer  MHGeneste  CBisserbe  JCAlperovitch  A Low blood pressure and risk of depression in the elderly: a prospective community-based study. Br J Psychiatry. 2000;176464- 467
PubMedArticle
89.
Vatten  LJHolmen  JKruger  OForsen  LTverdal  A Low blood pressure and mortality in the elderly: a 6-year follow-up of 18,022 Norwegian men and women age 65 years and older. Epidemiology. 1995;670- 73
PubMedArticle
90.
Kario  KMotai  KMitsuhashi  T  et al.  Autonomic nervous system dysfunction in elderly hypertensive patients with abnormal diurnal blood pressure variation: relation to silent cerebrovascular disease. Hypertension. 1997;301504- 1510
PubMedArticle
91.
Watanabe  NImai  YNagai  K  et al.  Nocturnal blood pressure and silent cerebrovascular lesions in elderly Japanese. Stroke. 1996;271319- 1327
PubMedArticle
92.
Nedostup  AVFedorova  VIDmitriev  KV Labile hypertension in elderly: clinical features, autonomic regulation of circulation, approaches to treatment [in Russian]. Klin Med (Mosk). 2000;7827- 32
PubMed
93.
King  DSJones  EWWofford  MR  et al.  Cognitive impairment associated with atorvastatin [abstract]. Pharmacotherapy. 2001;21 (371) Abstract 36.
94.
Graedon  JGraedon  T The people's pharmacy: can low cholesterol cause confusion? Available at: http://healthcentral.com/peoplespharmacy/pharmfulltext.cfm?ID=36572&storytype=PPherbdrug. Accessed June 19, 2000.
95.
Hamelin  BATurgeon  J Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998;1926- 37
PubMedArticle
96.
Kostis  JBRosen  RCWilson  AC Central nervous system effects of HMG CoA reductase inhibitors: lovastatin and pravastatin on sleep and cognitive performance in patients with hypercholesterolemia. J Clin Pharmacol. 1994;34989- 996
PubMedArticle
97.
Yamazaki  MTokui  TIshigami  MSugiyama  Y Tissue-selective uptake of pravastatin in rats: contribution of a specific carrier-mediated uptake system. Biopharm Drug Dispos. 1996;17775- 789
PubMedArticle
98.
Yamazaki  MKobayashi  KSugiyama  Y Primary active transport of pravastatin across the liver canalicular membrane in normal and mutant Eisai hyperbilirubinaemic rats. Biopharm Drug Dispos. Biopharm Drug Dispos. 1996;17645- 659[published correction appears in 1997;18:i].
PubMedArticle
99.
Yamazaki  MAkiyama  SNishigaki  RSugiyama  Y Uptake is the rate-limiting step in the overall hepatic elimination of pravastatin at steady-state in rats. Pharm Res. 1996;131559- 1564
PubMedArticle
100.
Nakai  DNakagomi  RFuruta  Y  et al.  Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther. 2001;297861- 867
PubMed
101.
Kurakata  SKada  MShimada  YKomai  TNomoto  K Effects of different inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, pravastatin sodium and simvastatin, on sterol synthesis and immunological functions in human lymphocytes in vitro. Immunopharmacology. 1996;3451- 61
PubMedArticle
102.
Sirtori  CR Tissue selectivity of hydroxymethylglutaryl coenzyme A (HMG CoA) reductase inhibitors. Pharmacol Ther. 1993;60431- 459
PubMedArticle
103.
Pan  HY Clinical pharmacology of pravastatin, a selective inhibitor of HMG-CoA reductase. Eur J Clin Pharmacol. 1991;40(suppl 1)S15- S18
PubMedArticle
104.
Golomb  BA Cholesterol and violence: is there a connection? Ann Intern Med. 1998;128478- 487
PubMedArticle
105.
Jacobs  DBlackburn  HHiggins  M  et al.  Report of the Conference on Low Blood Cholesterol: mortality associations. Circulation. 1992;861046- 1060
PubMedArticle
106.
Neaton  JBlackburn  HJacobs  D  et al.  Serum cholesterol level and mortality findings for men screened in the Multiple Risk Factor Intervention Trial. Arch Intern Med. 1992;1521490- 1500
PubMedArticle
107.
Lindberg  GRastam  LGullberg  BEklund  G Low serum cholesterol concentration and short term mortality from injuries in men and women. BMJ. 1992;305277- 279
PubMedArticle
108.
Partonen  THaukka  JVirtamo  JTaylor  PRLonnqvist  J Association of low serum total cholesterol with major depression and suicide. Br J Psychiatry. 1999;175259- 262
PubMedArticle
109.
Zureik  MCourbon  DDucimetiere  P Serum cholesterol concentration and death from suicide in men: Paris prospective study I. BMJ. 1996;313649- 650
PubMedArticle
110.
Hansenne  MAnsseau  M Harm avoidance and serotonin. Biol Psychol. 1999;5177- 81
PubMedArticle
111.
Hansenne  MPitchot  WMoreno  AG  et al.  Harm avoidance dimension of the tridimensional personality questionnaire and serotonin-1A activity in depressed patients. Biol Psychiatry. 1997;42959- 961
PubMedArticle
112.
Nelson  ECCloninger  CRPrzybeck  TRCsernansky  JG Platelet serotonergic markers and tridimensional personality questionnaire measures in a clinical sample. Biol Psychiatry. 1996;40271- 278
PubMedArticle
113.
Tanskanen  AVartiainen  ETuomilehto  JViinamaki  HLehtonen  JPuska  P High serum cholesterol and risk of suicide. Am J Psychiatry. 2000;157648- 650
PubMedArticle
114.
Tanskanen  ATuomilehto  JViinamaeki  H Cholesterol, depression and suicide. Br J Psychiatry. 2000;176398- 399
PubMedArticle
115.
Golomb  BAStattin  HMednick  SA Low cholesterol and violent crime. J Psychiatr Res. 2000;34301- 309
PubMedArticle
116.
Hillbrand  MFoster  HHirt  M Variables associated with violence in a forensic population. J Interpers Violence. 1988;3371- 380Article
117.
Gallerani  MManfredini  RCaracciolo  SScapoli  CMolinari  SFersini  C Serum cholesterol concentrations in parasuicide. BMJ. 1995;3101632- 1636
PubMedArticle
118.
Golier  JAMarzuk  PMLeon  ACWeiner  CTardiff  K Low serum cholesterol level and attempted suicide. Am J Psychiatry. 1995;152419- 423
PubMed
119.
Sullivan  PJoyce  PBulik  CMulder  ROakley-Browne  M Total cholesterol and suicidality in depression. Biol Psychiatry. 1994;36472- 477
PubMedArticle
120.
Modai  IValevski  ADror  SWeizman  A Serum cholesterol levels and suicidal tendencies in psychiatric inpatients. J Clin Psychiatry. 1994;55252- 254
PubMed
121.
Takei  NKunugi  HNanko  SAoki  HIyo  RKazamatsuri  H Low serum cholesterol and suicide attempts. Br J Psychiatry. 1994;164702- 703
PubMed
122.
Hillbrand  MFoster  H Serum cholesterol levels and severity of aggression [abstract]. Psychol Rep. 1993;72270
PubMedArticle
123.
Hillbrand  MSpitz  RFoster  H Serum cholesterol and aggression in hospitalized male forensic patients. J Behav Med. 1995;1833- 43
PubMedArticle
124.
Virkkunen  M Serum cholesterol in antisocial personality. Neuropsychobiology. 1979;527- 30
PubMedArticle
125.
Virkkunen  M Serum cholesterol levels in homicidal offenders: a low cholesterol level is connected with a habitually violent tendency under the influence of alcohol. Neuropsychobiology. 1983;1065- 69
PubMedArticle
126.
Virkkunen  MPenttinen  H Serum cholesterol in aggressive conduct disorder: a preliminary study. Biol Psychiatry. 1984;19435- 439
PubMed
127.
Spitz  RHillbrand  MFoster  HJ Serum cholesterol levels and frequency of aggression. Psychol Rep. 1994;74622
PubMedArticle
128.
Mufti  RBalon  RArfken  C Low cholesterol and violence. Psychiatr Serv. 1998;49221- 224
PubMed
129.
Kaplan  JRManuck  SBShively  C The effects of fat and cholesterol on social behavior in monkeys. Psychosom Med. 1991;53634- 642Article
130.
Kaplan  JRShively  CFontenot  D  et al.  Demonstration of an association among dietary cholesterol, central serotonergic activity, and social behavior in monkeys. Psychosom Med. 1994;56479- 484
PubMedArticle
131.
Kaplan  JRFontenot  MBManuck  SBMuldoon  MF An inverse association between dietary lipids and agonistic and affiliative behavior in Macaca fascicularis. Am J Primatol. 1996;38333- 347Article
132.
Bramblett  CCoelho  AMott  G Behavior and serum cholesterol in a social group of cercopithecus aethiops. Primates. 1981;2296- 102Article
133.
Davey Smith  GPekkanen  J Should there be a moratorium on the use of cholesterol lowering drugs? BMJ. 1992;304431- 434
PubMedArticle
134.
Muldoon  MManuck  SMatthews  K Lowering cholesterol concentrations and mortality: a review of primary prevention trials. BMJ. 1990;301309- 314
PubMedArticle
135.
Muldoon  MRossouw  JManuck  SGluech  CKaplan  JKaufmann  P Low or lowered cholesterol and risk of death from suicide and trauma. Metabolism. 1993;4245- 56
PubMedArticle
136.
Law  MThompson  SWald  N Assessing possible hazards of reducing serum cholesterol. BMJ. 1994;308373- 379
PubMedArticle
137.
Cummings  PPsaty  B The association between cholesterol and death from injury. Ann Intern Med. 1994;120848- 855
PubMedArticle
138.
Ravnskov  U Cholesterol lowering trials in coronary heart disease: frequency of citation and outcome. BMJ. 1992;30515- 19
PubMedArticle
139.
Wysowski  DGross  T Deaths due to accidents and violence in two recent trials of cholesterol-lowering drugs. Arch Intern Med. 1990;1502169- 2172
PubMedArticle
140.
Stein  JHMcBride  PE Benefits of cholesterol screening and therapy for primary prevention of cardiovascular disease: a new paradigm. J Am Board Fam Pract. 1998;1172- 77
PubMedArticle
141.
Anderson  IParry-Billings  MNewsholme  E Dieting reduces plasma tryptophan and alters brain 5-HT function in women. Psychol Med. 1990;20785- 791
PubMedArticle
142.
Muldoon  MKaplan  JManuck  SMann  J Effects of a low-fat diet on brain serotonergic responsivity in cynomolgus monkeys. Biol Psychiatry. 1992;31739- 742
PubMedArticle
143.
Ringo  DLindley  SFaull  KFaustman  W Cholesterol and serotonin: seeking a possible link between blood cholesterol and CSF 5-HIAA. Biol Psychiatry. 1994;35957- 959
PubMedArticle
144.
Delva  NMatthews  DCowen  P Brain serotonin (5-HT) neuroendocrine function in patients taking cholesterol-lowering drugs. Biol Psychiatry. 1996;39100- 106
PubMedArticle
145.
Steegmans  PFekkes  DHoes  ABak  Avan der Does  EGrobbee  D Low serum cholesterol concentration and serotonin metabolism in men [letter]. BMJ. 1996;312221
PubMedArticle
146.
Golomb  BATenkanen  LAlikoski  T  et al.  Insulin sensitivity markers: predictors of accidents and suicides in Helsinki Heart Study screenees. J Clin Epidemiol. 2002;551- 7
PubMedArticle
147.
Coccaro  EF Central serotonin and impulsive aggression. Br J Psychiatry Suppl. December1989;852- 62
PubMed
148.
Brown  GGoodwin  FBallenger  JGoyer  PMajor  L Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res. 1979;1131- 139
PubMedArticle
149.
Brown  GLinnoila  M CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. J Clin Psychiatry. 1990;5131- 41
PubMed
150.
Asberg  M Neurotransmitters and suicidal behavior: the evidence from cerebrospinal fluid studies. Ann N Y Acad Sci. 1997;836158- 181
PubMedArticle
151.
Gibbons  JBarr  GBridger  WLiebowitz  S Manipulations of dietary tryptophan: effects on mouse killing and brain serotonin in the rat. Brain Res. 1979;169139- 153
PubMedArticle
152.
Kantak  KMHegstrand  LREichlman  B Dietary tryptophan modulation and aggressive behavior in mice. Pharmacol Biochem Behav. 1980;12675- 679
PubMedArticle
153.
Kantak  KMHegstrand  LREichelman  B Dietary tryptophan reversal of septal lesion and 5,7-DHT lesion elicited shock-induced fighting. Psychopharmacology. 1981;74157- 160
PubMedArticle
154.
Sheard  MDavis  M p-Chloroamphetamine: short and long term effects upon shock-elicited aggression. Eur J Pharmacol. 1976;40295- 302
PubMedArticle
155.
Gibbons  JBarr  GBridger  W Effects of parachlorophenylalanine and 5-hydroxytryptophan on mouse killing behavior in killer rats. Pharmacol Biochem Behav. 1978;991- 98
PubMedArticle
156.
Grant  LCoscina  DGrossman  SFreedman  D Muricide after serotonin-depleting lesions of midbrain raphe nuclei. Pharmacol Biochem Behav. 1973;177- 80
PubMedArticle
157.
Yamamoto  TUeki  S Characteristics in aggressive behavior induced by midbrain raphe lesions in rats. Physiol Behav. 1977;19105- 110
PubMedArticle
158.
Paxinos  GBurt  JAtrens  DJackson  D 5-Hydroxytryptamine depletion with para-chlorophenylalanine: effects on eating, drinking, irritability, muricide, and copulation. Pharmacol Biochem Behav. 1977;6439- 447
PubMedArticle
159.
Paxinos  GAtrens  D 5,7 Dihydroxytryptamine lesions: effects on body weight, irritability and muricide. Aggress Behav. 1977;3107- 118Article
160.
Saudou  RAmara  DDierich  A  et al.  Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science. 1994;2651875- 1878
PubMedArticle
161.
Miczek  KWeerts  EHaney  MTidey  J Neurobiological mechanisms controlling aggression: preclinical developments for pharmacotherapeutic interventions. Neurosci Biobehav Rev. 1994;1897- 110
PubMedArticle
162.
Blanchard  DRodgers  RHendrie  CHori  K "Taming" of wild rats (Rattus rattus) by 5HT1A agonists buspirone and gepirone. Pharmacol Biochem Behav. 1988;31269- 278
PubMedArticle
163.
Berzsenyi  PGalateo  EValzelli  L Fluoxetine activity of muricidal aggression induced in rats by p-chlorophenylalanine. Aggress Behav. 1983;9333- 338Article
164.
Åsberg  M Monoamine neurotransmitters in human aggressiveness and violence: a selective review. Criminal Behav Mental Health. 1994;4303- 327
165.
Mann  JJArango  VMarzuk  PMTheccanat  SReis  DJ Evidence for the 5-HT hypothesis of suicide: a review of post-mortem studies. Br J Psychiatry Suppl. 1989;87- 14
PubMed
166.
Lidberg  LÅsberg  MSundquist-Stensman  U 5-Hydroxyindoleacetic acid in attempted suicides who kill their children [letter]. Lancet. 1984;2928
PubMedArticle
167.
Lidberg  LTuck  JÅsberg  MScalia-Tomba  GBertilsson  L Homicide, suicide and CSF 5HIAA. Acta Psychiatr Scand. 1985;71230- 236
PubMedArticle
168.
Gedye  A Buspirone alone or with serotonergic diet reduced aggression in a developmentally disabled adult. Biol Psychiatry. 1991;3088- 91
PubMedArticle
169.
Ratey  JSovner  RParks  ARogentine  K Buspirone treatment of aggression and anxiety in mentally retarded patients: a multiple-baseline, placebo lead-in study. J Clin Psychiatry. 1991;52159- 162
PubMed
170.
Morand  CYoung  SNErvin  FR Clinical response of aggressive schizophrenics to oral tryptophan. Biol Psychiatry. 1983;18575- 578
PubMed
171.
Bioulac  BBenezech  MRenaud  BRoche  DNoel  B Biogenic amines in 47,XYY syndrome. Neuropsychopharmacology. 1978;4366- 370
172.
Bioulac  BBenezech  MRenaud  BNoel  BRoche  D Serotonergic dysfunction in the 47,XYY syndrome. Biol Psychiatry. 1980;15917- 923
PubMed
173.
Sheard  MMarini  JBridges  C The effect of lithium on impulsive aggression behavior in man. Am J Psychiatry. 1976;1331409- 1413
PubMed
174.
Raine  A Autonomic nervous system activity and violence. Stoff  DCairns  RAggression and Violence: Genetic, Neurobiological, and Biosocial Perspectives. Mahwah, NJ Lawrence Erlbaum Associates Inc1996;145- 168
175.
Raine  A Autonomic nervous system factors underlying disinhibited, antisocial, and violent behavior: biosocial perspectives and treatment implications. Ann N Y Acad Sci. 1996;79446- 59
PubMedArticle
176.
Pitts  T Reduced heart rate levels in aggressive children. Adrian Raine  AEBrennan  PFarrington  DPBiosocial Bases of Violence. New York, NY Plenum Press1997;317- 320
177.
Gottman  JJacobson  NRushe  RShortt  J The relationship between heart rate reactivity, emotionally aggressive behavior, and general violence in batterers. J Fam Psychol. 1995;9227- 248Article
178.
Scarpa  ARaine  A Psychophysiology of anger and violent behavior. Psychiatr Clin North Am. 1997;20375- 394
PubMedArticle
179.
Woodman  DHinton  JO'Neill  M Relationship between violence and catecholamines [abstract]. Percept Mot Skills. 1977;45702
PubMedArticle
180.
Woodman  DHinton  JO'Neill  M Plasma catecholamines, stress and aggression in maximum security patients. Biol Psychol. 1978;6147- 154
PubMedArticle
181.
Woodman  DHinton  J Catecholamine balance during stress anticipation: an abnormality in maximum security hospital patients. J Psychosom Res. 1978;22477- 483
PubMedArticle
182.
Brenneman  DRutledge  C Alteration of catecholamine uptake in cerebral cortex from rats fed a saturated fat diet. Brain Res. 1979;179295- 304
PubMedArticle
183.
Broderick  RBialecki  RTulenko  T Cholesterol-induced changes in rabbit arterial smooth muscle sensitivity to adrenergic stimulation. Am J Physiol. 1989;257H170- H178
PubMed
184.
McMurchie  EPatten  GCharnock  JMcLennan  P The interaction of dietary fatty acids and cholesterol on catecholamine-stimulated adenylate cyclase activity in the rat heart. Biochem Biophys Acta. 1987;898137- 153
PubMedArticle
185.
McMurchie  EPatten  G Dietary cholesterol influences cardiac beta-adrenergic receptor adenylate cyclase activity in the marmoset monkey by changes in membrane cholesterol status. Biochem Biophys Acta. 1988;942324- 332
PubMedArticle
186.
Vogele  C Serum lipid concentrations, hostility and cardiovascular reactions to mental stress. Int J Psychophysiol. 1998;28167- 179
PubMedArticle
187.
Scandinavian Simvastatin Survival Study Group, Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;3441383- 1389
PubMed
188.
Davey Smith  GSong  FSheldon  T Cholesterol lowering and mortality: the importance of considering initial level of risk. BMJ. 1993;3061367- 1373
PubMedArticle
189.
Corsini  AMazzotti  MRaiteri  M  et al.  Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitors of HMG-CoA reductase. Atherosclerosis. 1993;101117- 125
PubMedArticle
190.
Corsini  AArnaboldi  LQuarato  P  et al.  Pharmacological control of biosynthesis pathway of mevalonate: effect on the proliferation of arterial smooth muscle cells [in French]. C R Seances Soc Biol Fil. 1997;191169- 194
PubMed
191.
Corsini  AArnaboldi  LRaiteri  M  et al.  Effect of the new HMG-CoA reductase inhibitor cerivastatin (BAY W 6228) on migration, proliferation and cholesterol synthesis in arterial myocytes. Pharmacol Res. 1996;3355- 61
PubMedArticle
192.
Corsini  ABernini  FQuarato  P  et al.  Non-lipid-related effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Cardiology. 1996;87458- 468
PubMedArticle
193.
Corsini  AMaggi  FMCatapano  AL Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharmacol Res. 1995;319- 27
PubMedArticle
194.
Corsini  APazzucconi  FPfister  PPaoletti  RSirtori  CR Inhibitor of proliferation of arterial smooth-muscle cells by fluvastatin [letter]. Lancet. 1996;3481584
PubMedArticle
195.
Chilton  RJ Lipid and nonlipid benefits of statins. J Am Osteopath Assoc. 2003;103(7, suppl 3)S12- S17
PubMed
196.
Hernandez-Presa  MBustos  COertega  M  et al.  Atorvastatin abolishes macrophage infiltration and reduces neointimal formation and MCP-1 expression in a rabbit model of atherosclerosis: role of nuclear factor kB. Circulation. 1997;96(suppl)I- 291
197.
Laufs  ULa Fata  VPlutzky  JLiao  JK Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;971129- 1135Article
198.
Lennernas  HFager  G Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors: similarities and differences. Clin Pharmacokinet. 1997;32403- 425
PubMedArticle
199.
Leonhardt  WKurktschiev  TMeissner  D  et al.  Effects of fluvastatin therapy on lipids, antioxidants, oxidation of low density lipoproteins and trace metals. Eur J Clin Pharmacol. 1997;5365- 69
PubMedArticle
200.
Raiteri  MArnaboldi  LQuarato  PPaoletti  RFumagalli  RCorsini  A The pharmacology of the statins: the evidence of a direct antiatherosclerotic action [in Italian]. Ann Ital Med Int. 1995;10(suppl)35S- 42S
PubMed
201.
Massy  ZKeane  WKasiske  B Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet. 1996;347102- 103
PubMedArticle
202.
Mitani  HBandoh  TIshikawa  JKimura  MTotsuka  THayashi  S Inhibitory effects of fluvastatin, a new HMG-CoA reductase inhibitor, on the increase in vascular ACE activity in cholesterol-fed rabbits. Br J Pharmacol. 1996;1191269- 1275
PubMedArticle
203.
Mitropoulos  KAArmitage  JMCollins  R  et al. Oxford Cholesterol Study Group, Randomized placebo-controlled study of the effects of simvastatin on haemostatic variables, lipoproteins and free fatty acids. Eur Heart J. 1997;18235- 241
PubMedArticle
204.
Reissen  RFenchel  M HMG-CoA reductase inhibitors alter the expression of extracellular matrix in human vascular smooth muscle cells [abstract]. Circulation. 1997;96(suppl)I- 487
205.
Tsuda  YSatoh  KKitadai  MTakahashi  TIzumi  YHosomi  N Effects of pravastatin sodium and simvastatin on plasma fibrinogen level and blood rheology in type II hyperlipoproteinemia. Atherosclerosis. 1996;122225- 233
PubMedArticle
206.
Williams  KSukhova  GAnthony  MLibby  P The cholesterol-lowering independent effects of pravastatin on the artery wall of monkeys [abstract]. Circulation. 1997;96(suppl)I- 607Article
207.
Downs  JRClearfield  MWeis  S  et al.  Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS: Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;2791615- 1622
PubMedArticle
208.
Bradford  RShear  CChremos  A  et al.  Expanded Clinical Evaluation of Lova-statin (EXCEL) Study results, I: efficacy in modifying plasma lipoproteins and adverse event profile in 8245 patients with moderate hypercholesterolemia. Arch Intern Med. 1991;15143- 49
PubMedArticle
209.
Eckernas  SARoos  BEKvidal  P  et al.  The effects of simvastatin and pravastatin on objective and subjective measures of nocturnal sleep: a comparison of two structurally different HMG CoA reductase inhibitors in patients with primary moderate hypercholesterolaemia. Br J Clin Pharmacol. 1993;35284- 289
PubMed
210.
Kamei  YShirakawa  SIshizuka  Y  et al.  Effect of pravastatin on human sleep. Jpn J Psychiatry Neurol. 1993;47643- 646
PubMed
211.
Buajordet  IMadsen  SOlsen  H Statins—the pattern of adverse effects with emphasis on mental reactions: data from a national and an international database [in Norwegian]. Tidsskr Nor Laegeforen. 1997;1173210- 3213
PubMed
212.
England  JDViles  AWalsh  JCStewart  PM Muscle side effects associated with simvastatin therapy. Med J Aust. 1990;153562- 563
PubMed
213.
Reust  CSCurry  SCGuidry  JR Lovastatin use and muscle damage in healthy volunteers undergoing eccentric muscle exercise. West J Med. 1991;154198- 200
PubMed
214.
Flint  OPMasters  BAGregg  REDurham  SK HMG CoA reductase inhibitor-induced myotoxicity: pravastatin and lovastatin inhibit the geranylgeranylation of low-molecular-weight proteins in neonatal rat muscle cell culture. Toxicol Appl Pharmacol. 1997;14599- 110
PubMedArticle
215.
Pierno  SDe Luca  ATricarico  D  et al.  Potential risk of myopathy by HMG-CoA reductase inhibitors: a comparison of pravastatin and simvastatin effects on membrane electrical properties of rat skeletal muscle fibers. J Pharmacol Exp Ther. 1995;2751490- 1496
PubMed
216.
Sinzinger  HSchmid  PO'Grady  J Two different types of exercise-induced muscle pain without myopathy and CK-elevation during HMG-co-enzyme-A-reductase inhibitor treatment. Atherosclerosis. 1999;143459- 460
PubMedArticle
217.
Sinzinger  H Does vitamin E beneficially affect muscle pains during HMG-Co-A-reductase inhibitors without CK-elevation [letter]? Atherosclerosis. 2000;149225
PubMedArticle
218.
England  JDWalsh  JCStewart  PBoyd  IRohan  AHalmagyi  GM Mitochondrial myopathy developing on treatment with the HMG CoA reductase inhibitors—simvastatin and pravastatin. Aust N Z J Med. 1995;25374- 375
PubMedArticle
219.
Waclawik  AJLindal  SEngel  AG Experimental lovastatin myopathy. J Neuropathol Exp Neurol. 1993;52542- 549
PubMedArticle
220.
Scalvini  TMarocolo  DCerudelli  BSleiman  IBalestrieri  GPGiustina  G Pravastatin-associated myopathy: report of a case. Recenti Prog Med. 1995;86198- 200
PubMed
221.
Wicher-Muniak  EZmudka  KDabros  WDudek  DStachura  J Simvastatin-induced myopathy in a patient treated for hypercholesterolemia: morphological aspects. Pol J Pathol. 1997;4869- 74
PubMed
222.
Schalke  BBSchmidt  BToyka  KHartung  HP Pravastatin-associated inflammatory myopathy. N Engl J Med. 1992;327649- 650
PubMed
223.
Kaikkonen  JNyyssonen  KTuomainen  TPRistonmaa  USalonen  JT Determinants of plasma coenzyme Q10 in humans. FEBS Lett. 1999;443163- 166
PubMedArticle
224.
Miyake  YShouzu  ANishikawa  M  et al.  Effect of treatment with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on serum coenzyme Q10 in diabetic patients. Arzneimittelforschung. 1999;49324- 329
PubMed
225.
Mortensen  SALeth  AAgner  ERohde  M Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol Aspects Med. 1997;18(suppl)S137- S144
PubMedArticle
226.
McCarty  MF Toward a wholly nutritional therapy for type 2 diabetes. Med Hypotheses. 2000;54483- 487
PubMedArticle
227.
Kelly  GS Insulin resistance: lifestyle and nutritional interventions. Altern Med Rev. 2000;5109- 132
PubMed
228.
Danysz  AOledzka  KBukowska-Kiliszek  M Influence of coenzyme Q-10 on the hypotensive effects of enalapril and nitrendipine in spontaneously hypertensive rats. Pol J Pharmacol. 1994;46457- 461
PubMedArticle
229.
Li  NSawamura  MNara  Y  et al.  HMG-CoA reductase inhibitor affects blood pressure and vascular reactivity. Clin Exp Pharmacol Physiol Suppl. 1995;22(suppl 1)S316- S317
PubMedArticle
230.
Li  NSawamura  MNara  YIkeda  KYamori  Y Pravastatin affects blood pressure and vascular reactivity. Heart Vessels. 1996;1164- 68
PubMedArticle
231.
Freeman  DJNorrie  JSattar  N  et al.  Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation. 2001;103357- 362
PubMedArticle
232.
Patterson  SGottdiener  JHecht  GVargot  SKrantz  D Effects of acute mental stress on serum lipids: mediating effects of plasma volume. Psychosom Med. 1993;55525- 532
PubMedArticle
233.
Muldoon  MHerbert  TPatterson  SKameneva  MRaible  RManuck  S Effects of acute psychological stress on serum lipid levels, hemoconcentration, and blood viscosity. Arch Intern Med. 1995;155615- 620
PubMedArticle
234.
Reifman  AWindle  M High cholesterol levels in patients with panic disorder: comment [letter]. Am J Psychiatry. 1993;150527
PubMed
235.
Peter  HTabrizian  SHand  I Serum cholesterol in patients with obsessive compulsive disorder during treatment with behavior therapy and SSRI or placebo. Int J Psychiatry Med. 2000;3027- 39
PubMedArticle
236.
Kuczmierczyk  ARBarbee  JGBologna  NATownsend  MH Serum cholesterol levels in patients with generalized anxiety disorder (GAD) and with GAD and comorbid major depression. Can J Psychiatry. 1996;41465- 468
PubMed
237.
Bajwa  WKAsnis  GMSanderson  WCIrfan  Avan Praag  HM High cholesterol levels in patients with panic disorder. Am J Psychiatry. 1992;149376- 378
PubMed
238.
Hayward  CTaylor  CRoth  WKing  RAgras  W Plasma lipid levels in patients with panic disorder or agoraphobia. Am J Psychiatry. 1989;146917- 919
PubMed
239.
Kagan  BLLeskin  GHaas  BWilkins  JFoy  D Elevated lipid levels in Vietnam veterans with chronic posttraumatic stress disorder. Biol Psychiatry. 1999;45374- 377
PubMedArticle
240.
Golomb  BAJaworski  B Statins and dementia. Arch Neurol. 2001;581169- 1170
PubMedArticle
241.
Jick  HZornberg  GLJick  SSSeshadri  SDrachman  DA Statins and the risk of dementia. Lancet. 2000;3561627- 1631[published correction appears in Lancet. 2001;357:562].
PubMedArticle
242.
Wolozin  BKellman  WRuosseau  PCelesia  GGSiegel  G Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol. 2000;571439- 1443
PubMedArticle
Original Investigation
January 26, 2004

Conceptual Foundations of the UCSD Statin StudyA Randomized Controlled Trial Assessing the Impact of Statins on Cognition, Behavior, and Biochemistry

Author Affiliations

From the Departments of Medicine (Drs Golomb and Criqui), Economics (Dr White), Psychiatry (Dr Dimsdale), Family and Preventive Medicine (Drs Golomb and Criqui), and Psychology (Dr Golomb), University of California, San Diego. The authors have no relevant financial interest in this article.

Arch Intern Med. 2004;164(2):153-162. doi:10.1001/archinte.164.2.153
Abstract

Background  Statin cholesterol-lowering drugs are among the most prescribed drugs in the United States. Their cardiac benefits are substantial and well supported. However, there has been persistent controversy regarding possible favorable or adverse effects of statins or of cholesterol reduction on cognition, mood, and behavior (including aggressive or violent behavior).

Methods  The literature pertaining to the relationship of cholesterol or statins to several noncardiac domains was reviewed, including the link between statins (or cholesterol) and cognition, aggression, and serotonin.

Results  There are reasons to think both favorable and adverse effects of statins and low cholesterol on cognition may pertain; the balance of these factors requires further elucidation. A substantial body of literature links low cholesterol level to aggressive behavior; statin randomized trials have not supported a connection, but they have not been designed to address this issue. A limited number of reports suggest a connection between reduced cholesterol level and reduced serotonin level, but more information is needed with serotonin measures that are practical for clinical use. Whether lipophilic and hydrophilic statins differ in their impact should be assessed.

Conclusion  There is a strong need for randomized controlled trial data to more clearly establish the impact of hydrophilic and lipophilic statins on cognition, aggression, and serotonin, as well as on other measures relevant to risks and quality-of-life impact in noncardiac domains.

Statins, or 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are important and widely prescribed drugs, with incontrovertible cardiac benefits. Nevertheless, there are questions regarding whether statins may cause noncardiac effects, including central nervous system (CNS) effects, that may have important consequences. This article describes the conceptual foundation for the University of California, San Diego (UCSD) Statin Study, a double-blind, placebo-controlled study funded by the National Heart, Lung, and Blood Institute, an institute of the National Institutes of Health, that seeks to address the impact of statins on cognition, behavior, serotonin, and other noncardiac indexes.

In this randomized controlled trial (RCT), 1000 subjects will be randomized equally to receive pravastatin sodium, 40 mg; simvastatin, 20 mg; or placebo for 6 months, and will receive a postdiscontinuation follow-up visit at 8 months. Eligible subjects are men 20 years or older or postmenopausal women with low-density lipoprotein cholesterol levels of 115 to 190 mg/dL (3.0-4.9 mmol/L). Subjects with existing cardiovascular disease or diabetes mellitus, or with contraindications to receiving statin treatments, are not eligible for enrollment. We hypothesize that statins may lead, on average, to reductions in cognitive function and increases in irritability, and that effects on irritability (if any) may be mediated by reductions in central serotonin levels. Primary end points include a composite cognitive measure including the Elithorn Maze, Grooved Pegboard Test, Digit Vigilance Test, and Recurrent Words; an aggression measure, the Point Subtraction Aggression Paradigm; and whole blood serotonin level, which is inversely related to central serotonin level. All hypotheses will receive 2-sided testing.

Statins have major benefits to heart disease and nonfatal stroke1,2 and are widely considered to have a favorable safety profile.3 The top-selling statin sold between $7 billion and $8 billion in 2002 and is projected to increase sales to $10 billion in 2003.4,5 Statins were cited as major contributors to the 17% increase in costs for prescription drug use in 20016 and have included the number 1 and 2 most prescribed drugs worldwide.7 Further increases are expected in the wake of recent revisions of lipid-lowering guidelines, which are expected to triple statin use to approximately 36 million users8; additional increases are anticipated from the subsequent Heart Protection Study finding that no cholesterol level is too low for cardiovascular benefit to be reaped in those at cardiovascular risk,9 which may extend treatment to those with "favorable" lipid profiles. Media reports quote experts as asserting that statins are so effective and so safe that they should be "put in the water supply."8,10,11

As the very real cardiovascular benefits of these drugs are spawning dramatic expansion of those eligible to receive them, the need to more fully understand the full range of effects of statins, including effects on noncardiovascular outcomes—both favorable and adverse—becomes more urgent. Indeed, recently concerns regarding statin noncardiac effects have been heightened in the wake of (1) market withdrawal of cerivastatin sodium (Baycol) because of fatal rhabdomyolysis,12 leading to the joint American College of Cardiology–American Heart Association–National Heart, Lung, and Blood Institute advisory13; (2) recent confirmation that myopathy that does not elevate creatine kinase level occurs with statins and is demonstrable on biopsy14; and (3) recent demonstration of a 16-fold excess risk of peripheral neuropathy associated with statin use.15,16 Cognitive issues have assumed special importance. Media reports have highlighted postulated benefits of statins to cognition (eg, NBC Nightly News, March 14, 2002), based on observational findings.1,2 Nevertheless, these possible observational benefits appear to be contravened by findings from a small randomized study, in which lovastatin was associated with modest reductions in cognitive function relative to placebo.3 These discrepancies, among others, underscore the need for high-quality randomized trial data to help address and resolve uncertainties in noncardiac and particularly central effects of statins. Clearly, continued identification of important noncardiac benefits and risks of statins mandates renewed efforts to understand the full scope of statins effects, favorable9,17 and adverse. Only then can a reasoned approach to risk-benefit assessment be applied to clinical decisions to commence or continue statin treatment.

This report reviews the conceptual issues that underlie the UCSD Statin Study, a randomized trial that will compare equipotent low-density lipoprotein–lowering doses of simvastatin (20 mg), pravastatin sodium (40 mg), and placebo in a total of 1000 subjects, examining noncardiac end points emphasizing, but not confined to, CNS-related issues, including cognition, behavior, and serotonin biochemistry.

THE ISSUES
CHOLESTEROL, STATINS, AND COGNITION
Favorable Statin Effects

Mechanisms by which statins may affect cognition favorably have been proposed.

Cholesterol appears to play a role in β-amyloid production in Alzheimer disease (AD), and blockade of cholesterol production by statins has been theorized to protect against AD.18 Two observational studies have reported that patients taking statins have lower rates of AD,1,2 and studies have shown that those with AD may have higher cholesterol levels. Older elderly patients with AD have higher cholesterol levels than older elderly patients with other dementias19 and than those without dementia.20 The ϵ-4 genotype of apolipoprotein E, which is linked to AD and also to vascular dementia, is associated with elevated lipids levels.21

Statins protect against nonfatal (though not fatal) stroke,1,2 perhaps in part through reductions in blood pressure (see sixth paragraph of "Counters to Favorable Statin Effects, and Adverse Statin Effects"), antithrombotic effects,22,23 and augmentation of endothelial nitric oxide with enhanced cerebral perfusion,2426 and stroke or cerebrovascular ischemia is a major contributor to cognitive loss in the elderly. (The more severe manifestations of ischemic cognitive loss are widely recognized and are termed multi-infarct dementia). Through these mechanisms, statins could protect cognitive function with aging. However, the apparent link between statin use and lower rates of AD in observational studies need not imply that statins protect; first, those treated with statins have higher cholesterol levels before, and often despite, treatment.10 Statin users were also noted to have higher rates of transient ischemic attacks in one of those studies,27 yet one could not assert that statins cause transient ischemic attacks, and indeed randomized trial evidence shows that statins protect against them,2,28 a reminder that observational findings may be in opposition to results from randomized trials.

In addition, statins are costly drugs more often received by persons of higher education or socioeconomic status, which in turn is associated with reduced incidence of AD. (This may be because it takes less time for the effect of AD, if present, to be perceived.29 Head injury and lower intellect from any cause are also linked to increased risk of diagnosis of AD during life.29,30)

On the other hand, there is also evidence that AD is associated with higher cholesterol levels. The finding that older elderly patients with AD have higher cholesterol levels than older elderly patients with other dementias19 could partially reflect a contribution by low cholesterol level to non-AD mechanisms for cognitive decline. In addition, although AD is associated with higher cholesterol level than that in a normal comparison group, high cholesterol level could be a noncausal31 concomitant of genotypes that predispose to AD, such as that associated with the ϵ-4 isoform of apolipoprotein E.21

Counters to Favorable Statin Effects, and Adverse Statin Effects

Deleterious effects on cognition have also been proposed, and some of the evidence for benefit can be countered. Cholesterol serves vital functions in the brain. The CNS accounts for only 2% of the body mass, but nearly a fourth of nonesterified cholesterol.32 Glial-derived cholesterol has recently been shown to be vital for formation of synapses, the connections that allow nerve cells to communicate and contribute to memory and cognition.11 In addition, cholesterol is a major component of myelin, the material that provides the insulation for the axons that permit nerve cell communication to occur, and that ensures proper fidelity and timing of signal transmission.3336 Cholesterol is the precursor to all steroid hormones, which serve both peripheral and central communication functions (there are steroid hormone receptors in the brain, including particularly in areas important for memory function, such as the hippocampus37,38—as well as areas important for behavior, such as the amygdala). Cholesterol is an important component of all membranes and has roles in transmembrane exchange, enzyme function, and regulation of receptor expression, including neurotransmitter receptors.12

Cholesterol is involved directly in mitochondrial function and cellular respiration and energetics,3942 and indirectly through its effect on coenzyme Q10 (CoQ10). Low cholesterol level is associated with low CoQ10 level, and statins produce a dose-dependent reduction in CoQ10 concentrations.4345 Coenzyme Q10 is needed for mitochondrial function, cellular respiration, and energy production.4649 The brain consumes a large fraction of the oxygen and energy used by the body, and inadequate energy supply to meet demand may lead to cell death.49 Low CoQ10 levels have been linked to encephalomyopathies.47,48,50

As a perhaps minor mechanism, cholesterol protects against adverse effects of certain toxins including pesticides5153 and organic solvents,54 which have been linked to Parkinson disease,5560 with its dementing element. Various mechanisms could contribute to this protection. First, cholesterol protects against membrane fluidization by pesticides60 and sustains barrier function.54 Second, cholesterol transports key enzymes that metabolize pesticides, such as paraoxonase6164; low paraoxonase activity, in addition to low-metabolizing paraoxonase genotypes,65 has been clearly linked to illness with neurocognitive symptoms in both sheep dippers and ill Gulf War veterans, many of whom were exposed to carbamate and organophosphate agents.6670

Some observational studies suggest adverse cognitive effects of low cholesterol level, which has been linked to increased evoked potential latencies13 and to subsequent cognitive decline.14 Other studies suggest that cholesterol level correlates positively with mental processing speed or general mental efficiency, and in older individuals, relatively higher cholesterol level has been associated with relative preservation of cognitive function and behavior,1518 as well as decreased mortality.71

Some studies have suggested statin-related cognitive adverse effects. Several small-sample (<25 per group), short-duration (4-6 weeks) studies have not shown cognitive effects,1921 although one did report lovastatin-associated cognitive deterioration measured by demanding tests of attention in normocholesterolemic men.72 However, a randomized trial of longer duration (6 months) and larger size (n = 192) found that lovastatin (20 mg) vs placebo reduced performance on tests of attention (P = .03) and psychomotor speed (P = .03).73 Individuals in the treatment group experiencing the most consistent performance decrements (the large-decrement quartile of the treatment group vs the other 3 quartiles) had lower pretreatment cholesterol levels (252 vs 267 mg/dL [6.5 vs 6.9 mmol/L]; P = .05) and lower posttreatment cholesterol levels (191 vs 216 mg/dL [4.9 vs 5.6 mmol/L]; P = .002).

Several studies, observational and experimental, have linked statin use in people and animals to lower diastolic, or diastolic and systolic, blood pressure.7479 For those with hypertension, this mechanism could assist in cognitive protection (via reduced stroke risk from improved blood pressure control). However, according to observational studies, lower diastolic (and perhaps systolic) blood pressure, to the contrary, disposes to accelerated cognitive decline, depression, and worsened mortality in older elderly.8089 Conceivably, then, the older elderly, as well as persons with low blood pressure, marked nocturnal dipping of blood pressure, or autonomic dysfunction with episodes of relative hypotension, could be subject to enhanced risk of ischemic damage to perfusion-dependent cerebral tissue.9092 This mechanism would, if verified, provide one mechanism of cognitive loss (or cognitive preservation) independent of whether a drug crosses the blood-brain barrier.

Some subjects report memory problems attributed to statins,93,94 and our UCSD Statin Study Group has received scores of reports of memory disturbance attributed to statins. These reinforce the need for a formal trial to evaluate the impact of statins on cognition, to evaluate whether cognitive benefit, cognitive decline, or both may occur with these drugs.

The present study seeks to replicate and extend previous findings, with commonly used statins (simvastatin and pravastatin) chosen to represent the extremes of the lipophilicity spectrum. Simvastatin is the most lipophilic and pravastatin the most hydrophilic among marketed statins, with pravastatin exerting its effect through active selective uptake into the liver.95103 This will permit assessment of whether relative blood-brain barrier penetration has an influence on cognitive benefits or detriments, if any, associated with statin use.

CHOLESTEROL, STATINS, AND AGGRESSION OR VIOLENCE

The literature pertaining to the link between low or lowered cholesterol level and violence and serotonin has been reviewed elsewhere.104 Low cholesterol level has been associated with excess violent death or death from suicide in prospective community cohort studies (after adjustment for potential confounders), including the largest studies.105109 The excess in suicide appears to be disproportionate, in risk ratio, to any increase in depression (which has been, at best, variably supported), and may result from an increase in follow-through on suicide behaviors for the same level of depression. Low serotonin level is the hypothesized mediator between low cholesterol level and violence,104 and the low-serotonin state has been conceptualized by some as reflecting a reduction in harm avoidance. This relationship has been cited in a number of studies110,111 and may relate to discrepancies in serotonin links to depression vs suicide.112 If this is accurate—if 2 groups have equal depression and contemplation of suicide, but one group has reduced inhibition of harmful impulses—this group may manifest more harmful behaviors irrespective of whether there is an increase in depression.

In the largest prospective cohort study performed that has explored these issues, low cholesterol level was not associated with subjective depressive symptoms on follow-up but was strongly linked to death from suicide.108 A lesser but significant link to hospitalization for major depression was seen, and could be speculated to result in part or in whole from suicidal behaviors leading to such hospitalization.

There is one apparently contradictory study, linking high cholesterol level to suicide in a Finnish population113; however, Finland has the highest national alcoholism rate, and unpublished analyses conducted by one of us (B.A.G.) in concert with Helsinki Heart Study researchers (Leena Tenkanen, PhD, and colleagues) and Sarnoff Mednick, DrMed, PhD, from the University of Southern California, Los Angeles, showed that in Finnish subjects, there was a potent positive link between alcohol consumption and cholesterol level (since alcohol increases levels of high-density lipoprotein and very-low-density lipoprotein cholesterol), so that any grouping in alcohol measurement or any measurement error in alcohol consumption will be expected to produce the spurious appearance of a link between higher cholesterol level and violence. (Tanskanen et al did not state how their alcohol data were coded and did not cite this possibility as a source of their finding. Reanalysis adjusting for the same variables as in the study by Partonen et al108—although again the coding of these variables was not disclosed—still led to a positive link, although it lost statistical significance.113,114) In our analysis, among nondrinkers, the expected direction of link between cholesterol level and suicide was upheld, with a 2-fold excess of suicide in those with cholesterol levels below the population median, although there were comparatively few nondrinkers and the effect did not reach significance.

A prospective cohort study (cholesterol measurement preceded data on violent outcomes) using the large Varmland, Sweden, database merged with national Swedish computerized databases on arrests, mortality, education, and alcohol, as well as demographic factors, also showed an increase in arrests for violent crimes against others, adjusted for potential confounders.115 Among observational (cross-sectional and case-control) studies in psychiatric and criminal populations, most have shown a statistically significant link between low cholesterol level and increased risk of suicide behaviors or aggressive behaviors,116128 and none showed a link in the other direction. (A link to suicide ideation was not seen in a study that found a link to suicide behaviors, potentially consistent with one theory of low serotonin state, conceptualizing it as primarily a reduction in harm avoidance.110)

Suggesting possible causality in such relationships, 2 studies have shown that reducing cholesterol level experimentally in nonhuman primates is associated with increased aggression against conspecifics (ie, others of their species), relative to aggression rates in those not assigned to cholesterol reduction.129131 This complements observational information linking cholesterol and aggression in primates.132 In addition, 4 of 8 (nonindependent) meta-analyses of prestatin RCTs of lipid-lowering drugs found a significant association between cholesterol reduction and violent death,133138 perhaps selectively in men and in primary prevention.104 The meta-analyses favoring the association included the studies with the most appropriate inclusion and exclusion criteria—including all and only unifactorial RCTs. There is some suggestion that the effect may be preferentially evident in those with risk factors for aggression, such as psychiatric history, alcohol use, and noncompliance,139 as should be expected. The same change in relative risk, applied to those at higher baseline risk, produces a greater change in absolute risk—whether for violent outcomes or heart disease, where the same finding is well recognized.140

Despite these findings, statin RCTs and meta-analyses have not shown a relationship, or even a substantial trend, toward increased violence or violent death. While this might be interpreted to extinguish the question (since statins are potent cholesterol-lowering agents), the issue remains unresolved, in part because of failure to select for those at risk or to include morbidity or sensitive measures of behavior.

CHOLESTEROL AND SEROTONIN

Several studies in humans and primates suggest a specific connection between low or lowered levels of fats or cholesterol and low or lowered serotonin activity.130,141145 Two observational analyses in humans found a positive relationship between cholesterol level and, in this case, peripheral serotonin levels, of "borderline significance" in one study (P = .059)144 and significant in a better-designed analysis (P<.05).104,145 Most persuasively, because of the experimental nature of the studies, monkeys assigned to diets leading to lower cholesterol levels have been shown to exhibit significantly lower brain serotonin activity.130,142 Golomb and colleagues146 published a possible mechanism by which lower cholesterol level may be associated with reduced serotonin production.

Meanwhile, a large body of literature supports a causal link between low or lowered central serotonin activity and aggressive or impulsive behavior in humans and animals.147150 Animals (including primates) with low or lowered serotonin levels are more aggressive, whether serotonin is reduced by depleting the precursor tryptophan,151153 competitively inhibiting tryptophan hydroxylase (the rate-limiting enzyme in serotonin production),154,155 creating lesions in serotonin-producing areas,156,157 poisoning serotonergic neurons,155,158,159 or genetically engineering animals devoid of serotonin 1b receptors.160 Raising low serotonin levels, or restoring lowered serotonin levels, returns aggressive animals to a more sanguine disposition.161163 In humans, low brain serotonin level (by cerebrospinal fluid 5-hydroxyindoleacetic acid or hormonal measures) is linked to increased aggression, suicide, homicide, and arson.149,164167 Serotonergic drugs have reduced aggressive behaviors in violent institutionalized humans.168173

Residual uncertainty attaches to whether or to what degree cholesterol relates to serotonin in humans and whether cholesterol reduction leads to changes in serotonin activity. Information pertaining to this is clearly important and will be addressed in this study.

CARDIOVASCULAR REACTIVITY

Low baseline heart rate and extremes of cardiovascular reactivity may be predictors of aggression. Cardiovascular reactivity has been linked to risk of aggressive behaviors174; aggressive youths and adults have low resting heart rates175,176 and may have low heart rate response to aggressively challenging situations,176,177 although other groups of aggressive individuals have been shown to have high heart rate response to challenge.176 (Some literature suggests that there are 2 types of aggression, differing in motivation and biological underpinnings; one relates to underarousal and low cardiovascular reactivity, while the other relates to overarousal and is expected to be linked to high cardiovascular reactivity.178) In addition to heart rate differences, low ephinephrine and high norepinephrine levels during stressor anticipation and high norepinephrine-epinephrine responsiveness may serve as markers for aggression-prone individuals.179,180 Thus, low epinephrine levels and high norepinephrine-epinephrine ratio are associated with a subset of criminal offenders more likely to have committed violent personal attacks.179181 Anticipation of stress led to particular increases in norepinephrine-epinephrine ratio in such subgroups.181 Thus, differences in baseline catecholamine levels and cardiovascular reactivity could indicate different susceptibility to aggression. Moreover, some evidence suggests that lipids may affect the catecholamine system: dietary fat composition alters uptake of catecholamines by cerebral cortex,182 and cholesterol induces changes in adrenergic sensitivity.183 Dietary cholesterol and fatty acids influence catecholamine-induced adenylate cyclase activity.184,185 Furthermore, there is evidence of an effect of lipids on cardiovascular reactivity in some subjects.186 Thus, there is reason to assess whether cardiovascular reactivity will be altered by assignment to statin treatment, as well as to evaluate whether cardiovascular reactivity status relates to susceptibility to adverse behavioral effects of statins.

ADVERSE EFFECTS IN THE DETERMINATION OF WHO IS TREATED

Examination of adverse effects of cholesterol reduction, such as the possible effect on violence, is an integral part of identifying who merits cholesterol-lowering treatment. The ultimate unit of interest in examining outcomes of clinical studies must be the patient as a whole, not a disease—even one as pervasive as cardiovascular disease. Ideally, overall morbidity and mortality should be evaluated, yet no RCT has looked at overall morbidity, only at cardiac morbidity. Studies have examined overall mortality. Patients at high risk of death from heart disease have been shown to have reduced overall mortality with cholesterol reduction, as has been demonstrated in the Scandinavian Simvastatin Survival Study,187 in meta-analysis of statin studies in secondary prevention,2 and in meta-analysis of nonstatin studies involving high-risk patients.188 In contrast, patients at low risk of death from heart disease have been found to be significantly harmed, in overall mortality, in meta-analysis (a significant 22% increased odds of deaths was found188). These studies did not include recent statin trials. Statins, because of multiple other effects possibly independent of lipid reduction that may be beneficial to cardiovascular disease,189206 are likely to have a different risk-benefit profile.2 Nevertheless, the statin trials in the lowest cardiovascular risk populations still have failed to suggest mortality benefit, with trends, if any, toward harm.207,208

Because current guidelines advocate screening and treatment not only in those at high cardiovascular risk, this absence of benefit—or suggestion of harm—in low-risk patients cannot be dismissed as clinically irrelevant. Efforts to characterize and understand (or exclude) potential negative and positive effects of cholesterol reduction are important. Understanding these effects may permit identification of individuals susceptible to selected adverse outcomes. Understanding such effects may facilitate more informed risk-benefit decisions. Therefore, continued investigation of the possible effect of cholesterol reduction on adverse and favorable cognitive and behavioral outcomes is vitally important.

OTHER END POINTS

Unresolved issues remain pertaining to statin effects on other noncardiac end points, including sleep96,209211; muscle212222; glucose and insulin; and blood pressure. Statins lower CoQ10 levels,223225 which may adversely affect blood glucose226,227 and blood pressure,228 and animal studies suggest blood pressure–increasing effects of statins in hypertensive rats.229,230 However, some studies suggest a link of statins to lower rates of diabetes mellitus231 and to reduced blood pressure.7577 Anxiety and stress produce catecholamine release, which raises cholesterol levels through hemoconcentration,232,233 and high cholesterol level indeed attends anxiety disorders.234239 High comorbidity between depression and anxiety can confound associations between cholesterol and depression, and this merits study. These factors suggest that measures of blood pressure, blood glucose, and anxiety merit additional study in randomized trials.

COMMENT

Although cholesterol is well represented in the brain and other tissues, a dearth of research has formally examined CNS and other noncardiac effects of statins, using high-quality study methods. The findings summarized here show the strong need for RCT data to better define the impact of statins on a range of noncardiac end points, emphasizing but not confined to CNS outcomes. These should examine the impact of statins, by lipophilicity, on cognition, irritability or behavior, and serotonin, as well as secondary outcomes of cardiovascular reactivity, blood pressure, and mood. Regarding cognition, statins reduce the risk of stroke1,2 and may or may not reduce the incidence of AD,240242 but cholesterol is integral to myelin sheaths and essential to synapse formation, and some evidence suggests deleterious effects on cognition.70 There remain concerns that warrant investigation of whether statins may, perhaps in a susceptible subset, have effects on irritability or aggression, because many reports not focusing on statins favor effects of low or lowered cholesterol level on increased irritability, suicide, or aggression. Although existing RCTs of statins have not supported an effect of statins on violence (confined to evaluation of violent death), the nature of the outcomes examined and subjects selected limit the authority with which an effect can be excluded. Some reports suggest a link between lowered cholesterol level and low serotonin concentrations, providing a possible mediating factor for irritability or aggression and suicide attempts. A possible mechanism for such an effect on serotonin has been proposed. A sizable RCT examining the effect of statins on cognition, behavior, and serotonin is needed to provide higher-quality evidence to support or discredit causal effects on these outcomes.

Statins have become the most widely prescribed drugs, and their use continues to increase. In this context, it is increasingly urgent that work be undertaken to better understand the full range of effects of these drugs, noncardiac as well as cardiac, adverse as well as favorable, as a function of patient characteristics. Only through such study can we determine who, during treatment, should be monitored with particular care. Only through such study can benefits and tradeoffs of treatment be more fully defined. Only by defining those tradeoffs can patients' health state preferences be effectively considered in treatment decisions.

In light of mounting inconsistencies in the literature pertaining to the direction and importance of central and peripheral effects of these drugs, there is new urgency attending the need to obtain high-quality RCT evidence examining the link of cholesterol level to cognition, aggressive or irritable behavior, and other noncardiac effects. The UCSD Statin Study, a National Institutes of Health–funded RCT, will take critical steps toward addressing these issues.

Back to top
Article Information

Corresponding author and reprints: Beatrice Alexandra Golomb, MD, PhD, Department of Medicine 0995, UCSD School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093.

Accepted for publication February 21, 2003.

This study was supported by grant 5 RO1 HL 63055 from the National Institutes of Health, Bethesda, Md.

We thank the UCSD Clinical Research Center for supporting many laboratory elements of the study for which the rationale is herein described (grant 1409). We acknowledge the Department of Veterans Affairs, through which we purchased the statin drugs used. We gratefully acknowledge the contributions of the Statin Study staff, particularly Julie Denenberg, MA, who contributed to thinking about the issues under study. We thank Janis Ritchie, RN, and Cari Stemig, as well as Pat Koschara and Brittany Bellows for administrative support.

References
1.
Bucher  HCGriffith  LEGuyatt  GH Effect of HMGcoA reductase inhibitors on stroke: a meta-analysis of randomized, controlled trials. Ann Intern Med. 1998;12889- 95
PubMedArticle
2.
Hebert  PGaziano  MChan  KHennekens  C Cholesterol lowering with statin drugs, risk of stroke, and total mortality. JAMA. 1997;278313- 321
PubMedArticle
3.
Davidson  MH Safety profiles for the HMG-CoA reductase inhibitors: treatment and trust. Drugs. 2001;61197- 206
PubMedArticle
4.
Simons  J The $10 billion pill: hold the fries, please: Lipitor, the cholesterol-lowering drug, has become the best selling pharmaceutical in history: here's how Pfizer did it. Fortune. 2003;147 ((1)) 58
5.
Clark  T Pfizer braces for rivals to main drugs: Viagra, Lipitor. National Post. 15 August2003;IN8
6.
Appleby  J Drug spending surged 17% last year: figure has nearly doubled in 4 years. USA Today. 2002;A1
7.
Not Available, Pfizer reports 38% increase in net income in fourth quarter. San Diego Union Tribune 24 January2002;C3
8.
Brown  D Heart drug far surpasses expectations. Washington Post. 2001;A1
9.
Kendall  MJNuttall  SL The heart protection study: statins for all those at risk? J Clin Pharm Ther. 2002;271- 4
PubMedArticle
10.
Haney  DQ Cholesterol drug is very secret weapon. San Diego Union Tribune. 1999;E2
11.
Dales  MJM Statination. Intern Med News. 1 February2000;55
12.
SoRelle  R Baycol withdrawn from market. Circulation. 2001;104E9015- E9016
PubMedArticle
13.
Pasternak  RCSmith  SC  JrBairey-Merz  CNGrundy  SMCleeman  JILenfant  CAmerican College of Cardiology; American Heart Association; National Heart Lung and Blood Institute, ACC/AHA/NHLBI clinical advisory on the use and safety of statins. J Am Coll Cardiol. 2002;40567- 572
PubMedArticle
14.
Phillips  PSHaas  RHBannykh  S  et al.  Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med. 2002;137581- 585
PubMedArticle
15.
Gaist  DJeppesen  MAndersen  LAGarcia Rodriguez  JHallas  JSindrup  SH Statins and risk of polyneuropathy: a case-control study. Neurology. 2002;581333- 1337
PubMedArticle
16.
Donaghy  M Assessing the risk of drug-induced neurological disorders. Neurology. 2002;581321- 1322
PubMedArticle
17.
Heeschen  CHamm  CWLaufs  USnapinn  SBohm  MWhite  HD Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation. 2002;1051446- 1452
PubMedArticle
18.
Scott  HDLaake  K Statins for the reduction of risk of Alzheimer's disease. Cochrane Database Syst Rev. 2001;3CD003160.
PubMed
19.
Lesser  GKandiah  KLibow  LS  et al.  Elevated serum total and LDL cholesterol in very old patients with Alzheimer's disease. Dement Geriatr Cogn Disord. 2001;12138- 145
PubMedArticle
20.
Lehtonen  ALuutonen  S High-density lipoprotein cholesterol levels of very old people in the diagnosis of dementia. Age Ageing. 1986;15267- 270
PubMedArticle
21.
Wehr  HParnowski  TPuzynski  S  et al.  Apolipoprotein E genotype and lipid and lipoprotein levels in dementia. Dement Geriatr Cogn Disord. 2000;1170- 73
PubMedArticle
22.
Lefer  AMScalia  RLefer  DJ Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res. 2001;49281- 287
PubMedArticle
23.
Lefer  DJ Statins as potent antiinflammatory drugs. Circulation. 2002;1062041- 2042
PubMedArticle
24.
Dobrucki  LWKalinowski  LDobrucki  ITMalinski  T Statin-stimulated nitric oxide release from endothelium. Med Sci Monit. 2001;7622- 627
PubMed
25.
Amin-Hanjani  SStagliano  NEYamada  MHuang  PLLiao  JKMoskowitz  MA Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke. 2001;32980- 986
PubMedArticle
26.
Sessa  WC Can modulation of endothelial nitric oxide synthase explain the vasculoprotective actions of statins? Trends Mol Med. 2001;7189- 191
PubMedArticle
27.
Wolozin  BKellman  WRuosseau  PCelesia  GGSiegel  G Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol. 2000;571439- 1443
PubMedArticle
28.
Hebert  PRGaziano  JMHennekens  CH An overview of trials of cholesterol lowering and risk of stroke. Arch Intern Med. 1995;15550- 55
PubMedArticle
29.
McDowell  I Alzheimer's disease: insights from epidemiology. Aging (Milano). 2001;13143- 162
PubMed
30.
Snowdon  DAKemper  SJMortimer  JAGreiner  LHWekstein  DRMarkesbery  WR Linguistic ability in early life and cognitive function and Alzheimer's disease in late life: findings from the Nun Study. JAMA. 1996;275528- 532
PubMedArticle
31.
Prince  MLovestone  SCervilla  J  et al.  The association between APOE and dementia does not seem to be mediated by vascular factors. Neurology. 2000;54397- 402
PubMedArticle
32.
Dietschy  JMTurley  SD Cholesterol metabolism in the brain. Curr Opin Lipidol. 2001;12105- 112
PubMedArticle
33.
Khan  AA Cholesterol metabolism in the myelin of rat brain. Experientia. 1968;24814- 815
PubMedArticle
34.
Spohn  MDavison  AN Cholesterol metabolism in myelin and other subcellular fractions of rat brain. J Lipid Res. 1972;13563- 570
PubMed
35.
Koenig  SH Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med. 1991;20285- 291
PubMedArticle
36.
Jurevics  HMorell  P Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem. 1995;64895- 901
PubMedArticle
37.
Cintra  ALindberg  JChadi  G  et al.  Basic fibroblast growth factor and steroid receptors in the aging hippocampus of the brown Norway rat: immunocytochemical analysis in combination with stereology. Neurochem Int. 1994;2539- 45
PubMedArticle
38.
McEwen  BSCameron  HChao  HM  et al.  Resolving a mystery: progress in understanding the function of adrenal steroid receptors in hippocampus. Prog Brain Res. 1994;100149- 155
PubMed
39.
Cremel  GFilliol  DJancsik  VRendon  A Cholesterol distribution in rat liver and brain mitochondria as determined by stopped-flow kinetics with filipin. Arch Biochem Biophys. 1990;278142- 147
PubMedArticle
40.
Stevenson  PMScott  CDGalas  ET Interactions between ATP and cholesterol side-chain cleavage in mitochondria isolated from superovulated rat ovaries. Int J Biochem. 1985;171357- 1362
PubMedArticle
41.
Vol'skii  GG Binding of glucocorticoid hormones and cholesterol to rat brain and liver mitochondria [in Russian]. Biokhimiia. 1982;47647- 652
PubMed
42.
Speranza  MLGaiti  ADe Medio  GEMontanini  IPorcellati  G The inhibition of mitochondrial respiration by β-benzal butyric acid and the possible relationship to cholesterol biosynthesis. Biochem Pharmacol. 1970;192737- 2743
PubMedArticle
43.
Pedersen  HSMortensen  SARohde  M  et al.  High serum coenzyme Q10, positively correlated with age, selenium and cholesterol, in Inuit of Greenland: a pilot study. Biofactors. 1999;9319- 323
PubMedArticle
44.
Willis  RAFolkers  KTucker  JLYe  CQXia  LJTamagawa  H Lovastatin decreases coenzyme Q levels in rats. Proc Natl Acad Sci U S A. 1990;878928- 8930
PubMedArticle
45.
De Pinieux  GChariot  PAmmi-Said  M  et al.  Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol. 1996;42333- 337
PubMedArticle
46.
Barbiroli  BFrassineti  CMartinelli  P  et al.  Coenzyme Q10 improves mitochondrial respiration in patients with mitochondrial cytopathies: an in vivo study on brain and skeletal muscle by phosphorous magnetic resonance spectroscopy. Cell Mol Biol (Noisy-le-grand). 1997;43741- 749
PubMed
47.
Chen  RSHuang  CCChu  NS Coenzyme Q10 treatment in mitochondrial encephalomyopathies: short-term double-blind, crossover study. Eur Neurol. 1997;37212- 218
PubMedArticle
48.
Sobreira  CHirano  MShanske  S  et al.  Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology. 1997;481238- 1243
PubMedArticle
49.
Fosslien  E Mitochondrial medicine—molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci. 2001;3125- 67
PubMed
50.
Boitier  EDegoul  FDesguerre  I  et al.  A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency. J Neurol Sci. 1998;15641- 46
PubMedArticle
51.
Blasiak  JWalter  Z Protective action of cholesterol against changes in membrane fluidity induced by malathion. Acta Biochim Pol. 1992;3949- 52
PubMed
52.
Blasiak  J Protective action of cholesterol against changes in membrane fluidity induced by methylparathion. Acta Biochim Pol. 1993;4035- 38
PubMed
53.
Tsujita  MIchikawa  Y Substrate-binding region of cytochrome P-450SCC (P-450 XIA1): identification and primary structure of the cholesterol binding region in cytochrome P-450SCC. Biochim Biophys Acta. 1993;1161124- 130
PubMedArticle
54.
Proksch  EFeingold  KRElias  PM Epidermal HMG CoA reductase activity in essential fatty acid deficiency: barrier requirements rather than eicosanoid generation regulate cholesterol synthesis. J Invest Dermatol. 1992;99216- 220
PubMedArticle
55.
Helmuth  L Neuroscience: pesticide causes Parkinson's in rats. Science. 2000;2901068
PubMedArticle
56.
Ritz  BYu  F Parkinson's disease mortality and pesticide exposure in California 1984-1994. Int J Epidemiol. 2000;29323- 329
PubMedArticle
57.
Hubble  JPCao  THassanein  RENeuberger  JSKoller  WC Risk factors for Parkinson's disease. Neurology. 1993;431693- 1697
PubMedArticle
58.
Semchuk  KMLove  EJLee  RG Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology. 1992;421328- 1335
PubMedArticle
59.
Betarbet  RSherer  TBMacKenzie  GGarcia-Osuna  MPanov  AVGreenamyre  JT Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000;31301- 1306
PubMedArticle
60.
Blasiak  JWalter  Z Protective action of cholesterol against changes in membrane fluidity induced by malathion. Acta Biochim Pol. 1992;3949- 52
PubMed
61.
Li  W-FCosta  LFurlong  C Serum paraoxonase status: a major factor in determining resistance to organophosphates. J Toxicol Environ Health. 1993;40337- 346
PubMedArticle
62.
Costa  LGMcDonald  BEMurphy  SD  et al.  Serum paraoxonase and its influence on paraoxon and chlorpyrifos-oxon toxicity in rats. Toxicol Appl Pharmacol. 1990;10366- 76
PubMedArticle
63.
Costa  LGRichter  RJMurphy  SDOmenn  GSMotulsky  AG Species differences in serum paraoxonase activity correlate with sensitivity to paraoxon toxicity. Costa  LGalli  CMurphy  SToxicology of Pesticides Experimental, Clinical, and Regulatory Aspects. Berlin, Germany Springer-Verlag1987;263- 266NATO ASI series, vol H13.
64.
Mutch  EBlain  PGWilliams  FM Interindividual variations in enzymes controlling organophosphate toxicity in man. Hum Exp Toxicol. 1992;11109- 116
PubMedArticle
65.
Mackness  BMackness  MIArrol  STurkie  WDurrington  PN Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon. Br J Pharmacol. 1997;122265- 268
PubMedArticle
66.
Fricker  RDReardon  ESpektor  DM  et al.  A Review of the Scientific Literature as It Pertains to Gulf War Illnesses, Volume 12: Pesticide Use During the Gulf War: A Survey of Gulf War Veterans.  Santa Monica, Calif RAND2000;MR-1018/12-OSD.
67.
Cherry  NMackness  MDurrington  P  et al.  Paraoxonase (PON1) polymorphisms in farmers attributing ill health to sheep dip. Lancet. 2002;359763- 764
PubMedArticle
68.
Haley  RWBillecke  Sla Du  BN Association of low PON1 type Q (type A) arylesterase activity with neurological symptom complexes in Gulf War veterans. Toxicol Appl Pharmacol. 1999;157227- 233
PubMedArticle
69.
Mackness  BDurrington  PNMackness  MI Low paraoxonase in Persian Gulf War veterans self-reporting Gulf War syndrome. Biochem Biophys Res Commun. 2000;276729- 733
PubMedArticle
70.
Furlong  CE PON1 status and neurologic symptom complexes in Gulf War veterans. Genome Res. 2000;10153- 155
PubMedArticle
71.
Weverling-Rignsburger  ABlauw  GLagaay  AKnook  DMeinders  AWestendorp  R Total cholesterol and risk of mortality in the oldest old. Lancet. 1997;3501119- 1123
PubMedArticle
72.
Roth  TRichardson  GRSullivan  JPLee  RMMerlotti  LRoehrs  T Comparative effects of pravastatin and lovastatin on nighttime sleep and daytime performance. Clin Cardiol. 1992;15426- 432
PubMedArticle
73.
Muldoon  MFBarger  SDRyan  CM  et al.  Effects of lovastatin on cognitive function and psychological well-being. Am J Med. 2000;108538- 546
PubMedArticle
74.
Velussi  MCernigoi  AMTortul  CMerni  M Atorvastatin for the management of type 2 diabetic patients with dyslipidaemia: a mid-term (9 months) treatment experience. Diabetes Nutr Metab. 1999;12407- 412
PubMed
75.
Borghi  CPrandin  MGCosta  FVBacchelli  SDegli Esposti  DAmbrosioni  E Use of statins and blood pressure control in treated hypertensive patients with hypercholesterolemia. J Cardiovasc Pharmacol. 2000;35549- 555
PubMedArticle
76.
Glorioso  NTroffa  CFiligheddu  F  et al.  Effect of the HMG-CoA reductase inhibitors on blood pressure in patients with essential hypertension and primary hypercholesterolemia. Hypertension. 1999;341281- 1286
PubMedArticle
77.
Marumo  HSatoh  KYamamoto  AKaneta  SIchihara  K Simvastatin and atorvastatin enhance hypotensive effect of diltiazem in rats. Yakugaku Zasshi. 2001;121761- 764
PubMedArticle
78.
Sposito  ACMansur  APCoelho  ORNicolau  JCRamires  JA Additional reduction in blood pressure after cholesterol-lowering treatment by statins (lova-statin or pravastatin) in hypercholesterolemic patients using angiotensin-converting enzyme inhibitors (enalapril or lisinopril). Am J Cardiol. 1999;831497- 1499A8
PubMedArticle
79.
Furberg  CD Natural statins and stroke risk. Circulation. 1999;99185- 188
PubMedArticle
80.
Boshuizen  HCIzaks  GJvan Buuren  SLigthart  GJ Blood pressure and mortality in elderly people aged 85 and older: community based study. BMJ. 1998;3161780- 1784
PubMedArticle
81.
Guo  ZViitanen  MFratiglioni  LWinblad  B Low blood pressure and dementia in elderly people: the Kungsholmen project. BMJ. 1996;312805- 808
PubMedArticle
82.
Kannel  WBD'Agostino  RBSilbershatz  H Blood pressure and cardiovascular morbidity and mortality rates in the elderly. Am Heart J. 1997;134758- 763
PubMedArticle
83.
Langer  RDGaniats  TGBarrett-Connor  E Paradoxical survival of elderly men with high blood pressure. BMJ. 1989;2981356- 1357
PubMedArticle
84.
Langer  RDGaniats  TGBarrett-Connor  E Factors associated with paradoxical survival at higher blood pressures in the very old. Am J Epidemiol. 1991;13429- 38[published correction appears in Am J Epidemiol 1993;138:774].
PubMed
85.
Langer  RDCriqui  MHBarrett-Connor  ELKlauber  MRGaniats  TG Blood pressure change and survival after age 75. Hypertension. 1993;22551- 559
PubMedArticle
86.
Lee  MLRosner  BAWeiss  ST Relationship of blood pressure to cardiovascular death: the effects of pulse pressure in the elderly. Ann Epidemiol. 1999;9101- 107
PubMedArticle
87.
M'Buyamba-Kabangu  JRLongo-Mbenza  BTambwe  MJDikassa  LNMbala-Mukendi  M J-shaped relationship between mortality and admission blood pressure in black patients with acute stroke. J Hypertens. 1995;131863- 1868
PubMed
88.
Paterniti  SVerdier-Taillefer  MHGeneste  CBisserbe  JCAlperovitch  A Low blood pressure and risk of depression in the elderly: a prospective community-based study. Br J Psychiatry. 2000;176464- 467
PubMedArticle
89.
Vatten  LJHolmen  JKruger  OForsen  LTverdal  A Low blood pressure and mortality in the elderly: a 6-year follow-up of 18,022 Norwegian men and women age 65 years and older. Epidemiology. 1995;670- 73
PubMedArticle
90.
Kario  KMotai  KMitsuhashi  T  et al.  Autonomic nervous system dysfunction in elderly hypertensive patients with abnormal diurnal blood pressure variation: relation to silent cerebrovascular disease. Hypertension. 1997;301504- 1510
PubMedArticle
91.
Watanabe  NImai  YNagai  K  et al.  Nocturnal blood pressure and silent cerebrovascular lesions in elderly Japanese. Stroke. 1996;271319- 1327
PubMedArticle
92.
Nedostup  AVFedorova  VIDmitriev  KV Labile hypertension in elderly: clinical features, autonomic regulation of circulation, approaches to treatment [in Russian]. Klin Med (Mosk). 2000;7827- 32
PubMed
93.
King  DSJones  EWWofford  MR  et al.  Cognitive impairment associated with atorvastatin [abstract]. Pharmacotherapy. 2001;21 (371) Abstract 36.
94.
Graedon  JGraedon  T The people's pharmacy: can low cholesterol cause confusion? Available at: http://healthcentral.com/peoplespharmacy/pharmfulltext.cfm?ID=36572&storytype=PPherbdrug. Accessed June 19, 2000.
95.
Hamelin  BATurgeon  J Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998;1926- 37
PubMedArticle
96.
Kostis  JBRosen  RCWilson  AC Central nervous system effects of HMG CoA reductase inhibitors: lovastatin and pravastatin on sleep and cognitive performance in patients with hypercholesterolemia. J Clin Pharmacol. 1994;34989- 996
PubMedArticle
97.
Yamazaki  MTokui  TIshigami  MSugiyama  Y Tissue-selective uptake of pravastatin in rats: contribution of a specific carrier-mediated uptake system. Biopharm Drug Dispos. 1996;17775- 789
PubMedArticle
98.
Yamazaki  MKobayashi  KSugiyama  Y Primary active transport of pravastatin across the liver canalicular membrane in normal and mutant Eisai hyperbilirubinaemic rats. Biopharm Drug Dispos. Biopharm Drug Dispos. 1996;17645- 659[published correction appears in 1997;18:i].
PubMedArticle
99.
Yamazaki  MAkiyama  SNishigaki  RSugiyama  Y Uptake is the rate-limiting step in the overall hepatic elimination of pravastatin at steady-state in rats. Pharm Res. 1996;131559- 1564
PubMedArticle
100.
Nakai  DNakagomi  RFuruta  Y  et al.  Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther. 2001;297861- 867
PubMed
101.
Kurakata  SKada  MShimada  YKomai  TNomoto  K Effects of different inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, pravastatin sodium and simvastatin, on sterol synthesis and immunological functions in human lymphocytes in vitro. Immunopharmacology. 1996;3451- 61
PubMedArticle
102.
Sirtori  CR Tissue selectivity of hydroxymethylglutaryl coenzyme A (HMG CoA) reductase inhibitors. Pharmacol Ther. 1993;60431- 459
PubMedArticle
103.
Pan  HY Clinical pharmacology of pravastatin, a selective inhibitor of HMG-CoA reductase. Eur J Clin Pharmacol. 1991;40(suppl 1)S15- S18
PubMedArticle
104.
Golomb  BA Cholesterol and violence: is there a connection? Ann Intern Med. 1998;128478- 487
PubMedArticle
105.
Jacobs  DBlackburn  HHiggins  M  et al.  Report of the Conference on Low Blood Cholesterol: mortality associations. Circulation. 1992;861046- 1060
PubMedArticle
106.
Neaton  JBlackburn  HJacobs  D  et al.  Serum cholesterol level and mortality findings for men screened in the Multiple Risk Factor Intervention Trial. Arch Intern Med. 1992;1521490- 1500
PubMedArticle
107.
Lindberg  GRastam  LGullberg  BEklund  G Low serum cholesterol concentration and short term mortality from injuries in men and women. BMJ. 1992;305277- 279
PubMedArticle
108.
Partonen  THaukka  JVirtamo  JTaylor  PRLonnqvist  J Association of low serum total cholesterol with major depression and suicide. Br J Psychiatry. 1999;175259- 262
PubMedArticle
109.
Zureik  MCourbon  DDucimetiere  P Serum cholesterol concentration and death from suicide in men: Paris prospective study I. BMJ. 1996;313649- 650
PubMedArticle
110.
Hansenne  MAnsseau  M Harm avoidance and serotonin. Biol Psychol. 1999;5177- 81
PubMedArticle
111.
Hansenne  MPitchot  WMoreno  AG  et al.  Harm avoidance dimension of the tridimensional personality questionnaire and serotonin-1A activity in depressed patients. Biol Psychiatry. 1997;42959- 961
PubMedArticle
112.
Nelson  ECCloninger  CRPrzybeck  TRCsernansky  JG Platelet serotonergic markers and tridimensional personality questionnaire measures in a clinical sample. Biol Psychiatry. 1996;40271- 278
PubMedArticle
113.
Tanskanen  AVartiainen  ETuomilehto  JViinamaki  HLehtonen  JPuska  P High serum cholesterol and risk of suicide. Am J Psychiatry. 2000;157648- 650
PubMedArticle
114.
Tanskanen  ATuomilehto  JViinamaeki  H Cholesterol, depression and suicide. Br J Psychiatry. 2000;176398- 399
PubMedArticle
115.
Golomb  BAStattin  HMednick  SA Low cholesterol and violent crime. J Psychiatr Res. 2000;34301- 309
PubMedArticle
116.
Hillbrand  MFoster  HHirt  M Variables associated with violence in a forensic population. J Interpers Violence. 1988;3371- 380Article
117.
Gallerani  MManfredini  RCaracciolo  SScapoli  CMolinari  SFersini  C Serum cholesterol concentrations in parasuicide. BMJ. 1995;3101632- 1636
PubMedArticle
118.
Golier  JAMarzuk  PMLeon  ACWeiner  CTardiff  K Low serum cholesterol level and attempted suicide. Am J Psychiatry. 1995;152419- 423
PubMed
119.
Sullivan  PJoyce  PBulik  CMulder  ROakley-Browne  M Total cholesterol and suicidality in depression. Biol Psychiatry. 1994;36472- 477
PubMedArticle
120.
Modai  IValevski  ADror  SWeizman  A Serum cholesterol levels and suicidal tendencies in psychiatric inpatients. J Clin Psychiatry. 1994;55252- 254
PubMed
121.
Takei  NKunugi  HNanko  SAoki  HIyo  RKazamatsuri  H Low serum cholesterol and suicide attempts. Br J Psychiatry. 1994;164702- 703
PubMed
122.
Hillbrand  MFoster  H Serum cholesterol levels and severity of aggression [abstract]. Psychol Rep. 1993;72270
PubMedArticle
123.
Hillbrand  MSpitz  RFoster  H Serum cholesterol and aggression in hospitalized male forensic patients. J Behav Med. 1995;1833- 43
PubMedArticle
124.
Virkkunen  M Serum cholesterol in antisocial personality. Neuropsychobiology. 1979;527- 30
PubMedArticle
125.
Virkkunen  M Serum cholesterol levels in homicidal offenders: a low cholesterol level is connected with a habitually violent tendency under the influence of alcohol. Neuropsychobiology. 1983;1065- 69
PubMedArticle
126.
Virkkunen  MPenttinen  H Serum cholesterol in aggressive conduct disorder: a preliminary study. Biol Psychiatry. 1984;19435- 439
PubMed
127.
Spitz  RHillbrand  MFoster  HJ Serum cholesterol levels and frequency of aggression. Psychol Rep. 1994;74622
PubMedArticle
128.
Mufti  RBalon  RArfken  C Low cholesterol and violence. Psychiatr Serv. 1998;49221- 224
PubMed
129.
Kaplan  JRManuck  SBShively  C The effects of fat and cholesterol on social behavior in monkeys. Psychosom Med. 1991;53634- 642Article
130.
Kaplan  JRShively  CFontenot  D  et al.  Demonstration of an association among dietary cholesterol, central serotonergic activity, and social behavior in monkeys. Psychosom Med. 1994;56479- 484
PubMedArticle
131.
Kaplan  JRFontenot  MBManuck  SBMuldoon  MF An inverse association between dietary lipids and agonistic and affiliative behavior in Macaca fascicularis. Am J Primatol. 1996;38333- 347Article
132.
Bramblett  CCoelho  AMott  G Behavior and serum cholesterol in a social group of cercopithecus aethiops. Primates. 1981;2296- 102Article
133.
Davey Smith  GPekkanen  J Should there be a moratorium on the use of cholesterol lowering drugs? BMJ. 1992;304431- 434
PubMedArticle
134.
Muldoon  MManuck  SMatthews  K Lowering cholesterol concentrations and mortality: a review of primary prevention trials. BMJ. 1990;301309- 314
PubMedArticle
135.
Muldoon  MRossouw  JManuck  SGluech  CKaplan  JKaufmann  P Low or lowered cholesterol and risk of death from suicide and trauma. Metabolism. 1993;4245- 56
PubMedArticle
136.
Law  MThompson  SWald  N Assessing possible hazards of reducing serum cholesterol. BMJ. 1994;308373- 379
PubMedArticle
137.
Cummings  PPsaty  B The association between cholesterol and death from injury. Ann Intern Med. 1994;120848- 855
PubMedArticle
138.
Ravnskov  U Cholesterol lowering trials in coronary heart disease: frequency of citation and outcome. BMJ. 1992;30515- 19
PubMedArticle
139.
Wysowski  DGross  T Deaths due to accidents and violence in two recent trials of cholesterol-lowering drugs. Arch Intern Med. 1990;1502169- 2172
PubMedArticle
140.
Stein  JHMcBride  PE Benefits of cholesterol screening and therapy for primary prevention of cardiovascular disease: a new paradigm. J Am Board Fam Pract. 1998;1172- 77
PubMedArticle
141.
Anderson  IParry-Billings  MNewsholme  E Dieting reduces plasma tryptophan and alters brain 5-HT function in women. Psychol Med. 1990;20785- 791
PubMedArticle
142.
Muldoon  MKaplan  JManuck  SMann  J Effects of a low-fat diet on brain serotonergic responsivity in cynomolgus monkeys. Biol Psychiatry. 1992;31739- 742
PubMedArticle
143.
Ringo  DLindley  SFaull  KFaustman  W Cholesterol and serotonin: seeking a possible link between blood cholesterol and CSF 5-HIAA. Biol Psychiatry. 1994;35957- 959
PubMedArticle
144.
Delva  NMatthews  DCowen  P Brain serotonin (5-HT) neuroendocrine function in patients taking cholesterol-lowering drugs. Biol Psychiatry. 1996;39100- 106
PubMedArticle
145.
Steegmans  PFekkes  DHoes  ABak  Avan der Does  EGrobbee  D Low serum cholesterol concentration and serotonin metabolism in men [letter]. BMJ. 1996;312221
PubMedArticle
146.
Golomb  BATenkanen  LAlikoski  T  et al.  Insulin sensitivity markers: predictors of accidents and suicides in Helsinki Heart Study screenees. J Clin Epidemiol. 2002;551- 7
PubMedArticle
147.
Coccaro  EF Central serotonin and impulsive aggression. Br J Psychiatry Suppl. December1989;852- 62
PubMed
148.
Brown  GGoodwin  FBallenger  JGoyer  PMajor  L Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res. 1979;1131- 139
PubMedArticle
149.
Brown  GLinnoila  M CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. J Clin Psychiatry. 1990;5131- 41
PubMed
150.
Asberg  M Neurotransmitters and suicidal behavior: the evidence from cerebrospinal fluid studies. Ann N Y Acad Sci. 1997;836158- 181
PubMedArticle
151.
Gibbons  JBarr  GBridger  WLiebowitz  S Manipulations of dietary tryptophan: effects on mouse killing and brain serotonin in the rat. Brain Res. 1979;169139- 153
PubMedArticle
152.
Kantak  KMHegstrand  LREichlman  B Dietary tryptophan modulation and aggressive behavior in mice. Pharmacol Biochem Behav. 1980;12675- 679
PubMedArticle
153.
Kantak  KMHegstrand  LREichelman  B Dietary tryptophan reversal of septal lesion and 5,7-DHT lesion elicited shock-induced fighting. Psychopharmacology. 1981;74157- 160
PubMedArticle
154.
Sheard  MDavis  M p-Chloroamphetamine: short and long term effects upon shock-elicited aggression. Eur J Pharmacol. 1976;40295- 302
PubMedArticle
155.
Gibbons  JBarr  GBridger  W Effects of parachlorophenylalanine and 5-hydroxytryptophan on mouse killing behavior in killer rats. Pharmacol Biochem Behav. 1978;991- 98
PubMedArticle
156.
Grant  LCoscina  DGrossman  SFreedman  D Muricide after serotonin-depleting lesions of midbrain raphe nuclei. Pharmacol Biochem Behav. 1973;177- 80
PubMedArticle
157.
Yamamoto  TUeki  S Characteristics in aggressive behavior induced by midbrain raphe lesions in rats. Physiol Behav. 1977;19105- 110
PubMedArticle
158.
Paxinos  GBurt  JAtrens  DJackson  D 5-Hydroxytryptamine depletion with para-chlorophenylalanine: effects on eating, drinking, irritability, muricide, and copulation. Pharmacol Biochem Behav. 1977;6439- 447
PubMedArticle
159.
Paxinos  GAtrens  D 5,7 Dihydroxytryptamine lesions: effects on body weight, irritability and muricide. Aggress Behav. 1977;3107- 118Article
160.
Saudou  RAmara  DDierich  A  et al.  Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science. 1994;2651875- 1878
PubMedArticle
161.
Miczek  KWeerts  EHaney  MTidey  J Neurobiological mechanisms controlling aggression: preclinical developments for pharmacotherapeutic interventions. Neurosci Biobehav Rev. 1994;1897- 110
PubMedArticle
162.
Blanchard  DRodgers  RHendrie  CHori  K "Taming" of wild rats (Rattus rattus) by 5HT1A agonists buspirone and gepirone. Pharmacol Biochem Behav. 1988;31269- 278
PubMedArticle
163.
Berzsenyi  PGalateo  EValzelli  L Fluoxetine activity of muricidal aggression induced in rats by p-chlorophenylalanine. Aggress Behav. 1983;9333- 338Article
164.
Åsberg  M Monoamine neurotransmitters in human aggressiveness and violence: a selective review. Criminal Behav Mental Health. 1994;4303- 327
165.
Mann  JJArango  VMarzuk  PMTheccanat  SReis  DJ Evidence for the 5-HT hypothesis of suicide: a review of post-mortem studies. Br J Psychiatry Suppl. 1989;87- 14
PubMed
166.
Lidberg  LÅsberg  MSundquist-Stensman  U 5-Hydroxyindoleacetic acid in attempted suicides who kill their children [letter]. Lancet. 1984;2928
PubMedArticle
167.
Lidberg  LTuck  JÅsberg  MScalia-Tomba  GBertilsson  L Homicide, suicide and CSF 5HIAA. Acta Psychiatr Scand. 1985;71230- 236
PubMedArticle
168.
Gedye  A Buspirone alone or with serotonergic diet reduced aggression in a developmentally disabled adult. Biol Psychiatry. 1991;3088- 91
PubMedArticle
169.
Ratey  JSovner  RParks  ARogentine  K Buspirone treatment of aggression and anxiety in mentally retarded patients: a multiple-baseline, placebo lead-in study. J Clin Psychiatry. 1991;52159- 162
PubMed
170.
Morand  CYoung  SNErvin  FR Clinical response of aggressive schizophrenics to oral tryptophan. Biol Psychiatry. 1983;18575- 578
PubMed
171.
Bioulac  BBenezech  MRenaud  BRoche  DNoel  B Biogenic amines in 47,XYY syndrome. Neuropsychopharmacology. 1978;4366- 370
172.
Bioulac  BBenezech  MRenaud  BNoel  BRoche  D Serotonergic dysfunction in the 47,XYY syndrome. Biol Psychiatry. 1980;15917- 923
PubMed
173.
Sheard  MMarini  JBridges  C The effect of lithium on impulsive aggression behavior in man. Am J Psychiatry. 1976;1331409- 1413
PubMed
174.
Raine  A Autonomic nervous system activity and violence. Stoff  DCairns  RAggression and Violence: Genetic, Neurobiological, and Biosocial Perspectives. Mahwah, NJ Lawrence Erlbaum Associates Inc1996;145- 168
175.
Raine  A Autonomic nervous system factors underlying disinhibited, antisocial, and violent behavior: biosocial perspectives and treatment implications. Ann N Y Acad Sci. 1996;79446- 59
PubMedArticle
176.
Pitts  T Reduced heart rate levels in aggressive children. Adrian Raine  AEBrennan  PFarrington  DPBiosocial Bases of Violence. New York, NY Plenum Press1997;317- 320
177.
Gottman  JJacobson  NRushe  RShortt  J The relationship between heart rate reactivity, emotionally aggressive behavior, and general violence in batterers. J Fam Psychol. 1995;9227- 248Article
178.
Scarpa  ARaine  A Psychophysiology of anger and violent behavior. Psychiatr Clin North Am. 1997;20375- 394
PubMedArticle
179.
Woodman  DHinton  JO'Neill  M Relationship between violence and catecholamines [abstract]. Percept Mot Skills. 1977;45702
PubMedArticle
180.
Woodman  DHinton  JO'Neill  M Plasma catecholamines, stress and aggression in maximum security patients. Biol Psychol. 1978;6147- 154
PubMedArticle
181.
Woodman  DHinton  J Catecholamine balance during stress anticipation: an abnormality in maximum security hospital patients. J Psychosom Res. 1978;22477- 483
PubMedArticle
182.
Brenneman  DRutledge  C Alteration of catecholamine uptake in cerebral cortex from rats fed a saturated fat diet. Brain Res. 1979;179295- 304
PubMedArticle
183.
Broderick  RBialecki  RTulenko  T Cholesterol-induced changes in rabbit arterial smooth muscle sensitivity to adrenergic stimulation. Am J Physiol. 1989;257H170- H178
PubMed
184.
McMurchie  EPatten  GCharnock  JMcLennan  P The interaction of dietary fatty acids and cholesterol on catecholamine-stimulated adenylate cyclase activity in the rat heart. Biochem Biophys Acta. 1987;898137- 153
PubMedArticle
185.
McMurchie  EPatten  G Dietary cholesterol influences cardiac beta-adrenergic receptor adenylate cyclase activity in the marmoset monkey by changes in membrane cholesterol status. Biochem Biophys Acta. 1988;942324- 332
PubMedArticle
186.
Vogele  C Serum lipid concentrations, hostility and cardiovascular reactions to mental stress. Int J Psychophysiol. 1998;28167- 179
PubMedArticle
187.
Scandinavian Simvastatin Survival Study Group, Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;3441383- 1389
PubMed
188.
Davey Smith  GSong  FSheldon  T Cholesterol lowering and mortality: the importance of considering initial level of risk. BMJ. 1993;3061367- 1373
PubMedArticle
189.
Corsini  AMazzotti  MRaiteri  M  et al.  Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitors of HMG-CoA reductase. Atherosclerosis. 1993;101117- 125
PubMedArticle
190.
Corsini  AArnaboldi  LQuarato  P  et al.  Pharmacological control of biosynthesis pathway of mevalonate: effect on the proliferation of arterial smooth muscle cells [in French]. C R Seances Soc Biol Fil. 1997;191169- 194
PubMed
191.
Corsini  AArnaboldi  LRaiteri  M  et al.  Effect of the new HMG-CoA reductase inhibitor cerivastatin (BAY W 6228) on migration, proliferation and cholesterol synthesis in arterial myocytes. Pharmacol Res. 1996;3355- 61
PubMedArticle
192.
Corsini  ABernini  FQuarato  P  et al.  Non-lipid-related effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Cardiology. 1996;87458- 468
PubMedArticle
193.
Corsini  AMaggi  FMCatapano  AL Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharmacol Res. 1995;319- 27
PubMedArticle
194.
Corsini  APazzucconi  FPfister  PPaoletti  RSirtori  CR Inhibitor of proliferation of arterial smooth-muscle cells by fluvastatin [letter]. Lancet. 1996;3481584
PubMedArticle
195.
Chilton  RJ Lipid and nonlipid benefits of statins. J Am Osteopath Assoc. 2003;103(7, suppl 3)S12- S17
PubMed
196.
Hernandez-Presa  MBustos  COertega  M  et al.  Atorvastatin abolishes macrophage infiltration and reduces neointimal formation and MCP-1 expression in a rabbit model of atherosclerosis: role of nuclear factor kB. Circulation. 1997;96(suppl)I- 291
197.
Laufs  ULa Fata  VPlutzky  JLiao  JK Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;971129- 1135Article
198.
Lennernas  HFager  G Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors: similarities and differences. Clin Pharmacokinet. 1997;32403- 425
PubMedArticle
199.
Leonhardt  WKurktschiev  TMeissner  D  et al.  Effects of fluvastatin therapy on lipids, antioxidants, oxidation of low density lipoproteins and trace metals. Eur J Clin Pharmacol. 1997;5365- 69
PubMedArticle
200.
Raiteri  MArnaboldi  LQuarato  PPaoletti  RFumagalli  RCorsini  A The pharmacology of the statins: the evidence of a direct antiatherosclerotic action [in Italian]. Ann Ital Med Int. 1995;10(suppl)35S- 42S
PubMed
201.
Massy  ZKeane  WKasiske  B Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet. 1996;347102- 103
PubMedArticle
202.
Mitani  HBandoh  TIshikawa  JKimura  MTotsuka  THayashi  S Inhibitory effects of fluvastatin, a new HMG-CoA reductase inhibitor, on the increase in vascular ACE activity in cholesterol-fed rabbits. Br J Pharmacol. 1996;1191269- 1275
PubMedArticle
203.
Mitropoulos  KAArmitage  JMCollins  R  et al. Oxford Cholesterol Study Group, Randomized placebo-controlled study of the effects of simvastatin on haemostatic variables, lipoproteins and free fatty acids. Eur Heart J. 1997;18235- 241
PubMedArticle
204.
Reissen  RFenchel  M HMG-CoA reductase inhibitors alter the expression of extracellular matrix in human vascular smooth muscle cells [abstract]. Circulation. 1997;96(suppl)I- 487
205.
Tsuda  YSatoh  KKitadai  MTakahashi  TIzumi  YHosomi  N Effects of pravastatin sodium and simvastatin on plasma fibrinogen level and blood rheology in type II hyperlipoproteinemia. Atherosclerosis. 1996;122225- 233
PubMedArticle
206.
Williams  KSukhova  GAnthony  MLibby  P The cholesterol-lowering independent effects of pravastatin on the artery wall of monkeys [abstract]. Circulation. 1997;96(suppl)I- 607Article
207.
Downs  JRClearfield  MWeis  S  et al.  Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS: Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;2791615- 1622
PubMedArticle
208.
Bradford  RShear  CChremos  A  et al.  Expanded Clinical Evaluation of Lova-statin (EXCEL) Study results, I: efficacy in modifying plasma lipoproteins and adverse event profile in 8245 patients with moderate hypercholesterolemia. Arch Intern Med. 1991;15143- 49
PubMedArticle
209.
Eckernas  SARoos  BEKvidal  P  et al.  The effects of simvastatin and pravastatin on objective and subjective measures of nocturnal sleep: a comparison of two structurally different HMG CoA reductase inhibitors in patients with primary moderate hypercholesterolaemia. Br J Clin Pharmacol. 1993;35284- 289
PubMed
210.
Kamei  YShirakawa  SIshizuka  Y  et al.  Effect of pravastatin on human sleep. Jpn J Psychiatry Neurol. 1993;47643- 646
PubMed
211.
Buajordet  IMadsen  SOlsen  H Statins—the pattern of adverse effects with emphasis on mental reactions: data from a national and an international database [in Norwegian]. Tidsskr Nor Laegeforen. 1997;1173210- 3213
PubMed
212.
England  JDViles  AWalsh  JCStewart  PM Muscle side effects associated with simvastatin therapy. Med J Aust. 1990;153562- 563
PubMed
213.
Reust  CSCurry  SCGuidry  JR Lovastatin use and muscle damage in healthy volunteers undergoing eccentric muscle exercise. West J Med. 1991;154198- 200
PubMed
214.
Flint  OPMasters  BAGregg  REDurham  SK HMG CoA reductase inhibitor-induced myotoxicity: pravastatin and lovastatin inhibit the geranylgeranylation of low-molecular-weight proteins in neonatal rat muscle cell culture. Toxicol Appl Pharmacol. 1997;14599- 110
PubMedArticle
215.
Pierno  SDe Luca  ATricarico  D  et al.  Potential risk of myopathy by HMG-CoA reductase inhibitors: a comparison of pravastatin and simvastatin effects on membrane electrical properties of rat skeletal muscle fibers. J Pharmacol Exp Ther. 1995;2751490- 1496
PubMed
216.
Sinzinger  HSchmid  PO'Grady  J Two different types of exercise-induced muscle pain without myopathy and CK-elevation during HMG-co-enzyme-A-reductase inhibitor treatment. Atherosclerosis. 1999;143459- 460
PubMedArticle
217.
Sinzinger  H Does vitamin E beneficially affect muscle pains during HMG-Co-A-reductase inhibitors without CK-elevation [letter]? Atherosclerosis. 2000;149225
PubMedArticle
218.
England  JDWalsh  JCStewart  PBoyd  IRohan  AHalmagyi  GM Mitochondrial myopathy developing on treatment with the HMG CoA reductase inhibitors—simvastatin and pravastatin. Aust N Z J Med. 1995;25374- 375
PubMedArticle
219.
Waclawik  AJLindal  SEngel  AG Experimental lovastatin myopathy. J Neuropathol Exp Neurol. 1993;52542- 549
PubMedArticle
220.
Scalvini  TMarocolo  DCerudelli  BSleiman  IBalestrieri  GPGiustina  G Pravastatin-associated myopathy: report of a case. Recenti Prog Med. 1995;86198- 200
PubMed
221.
Wicher-Muniak  EZmudka  KDabros  WDudek  DStachura  J Simvastatin-induced myopathy in a patient treated for hypercholesterolemia: morphological aspects. Pol J Pathol. 1997;4869- 74
PubMed
222.
Schalke  BBSchmidt  BToyka  KHartung  HP Pravastatin-associated inflammatory myopathy. N Engl J Med. 1992;327649- 650
PubMed
223.
Kaikkonen  JNyyssonen  KTuomainen  TPRistonmaa  USalonen  JT Determinants of plasma coenzyme Q10 in humans. FEBS Lett. 1999;443163- 166
PubMedArticle
224.
Miyake  YShouzu  ANishikawa  M  et al.  Effect of treatment with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on serum coenzyme Q10 in diabetic patients. Arzneimittelforschung. 1999;49324- 329
PubMed
225.
Mortensen  SALeth  AAgner  ERohde  M Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol Aspects Med. 1997;18(suppl)S137- S144
PubMedArticle
226.
McCarty  MF Toward a wholly nutritional therapy for type 2 diabetes. Med Hypotheses. 2000;54483- 487
PubMedArticle
227.
Kelly  GS Insulin resistance: lifestyle and nutritional interventions. Altern Med Rev. 2000;5109- 132
PubMed
228.
Danysz  AOledzka  KBukowska-Kiliszek  M Influence of coenzyme Q-10 on the hypotensive effects of enalapril and nitrendipine in spontaneously hypertensive rats. Pol J Pharmacol. 1994;46457- 461
PubMedArticle
229.
Li  NSawamura  MNara  Y  et al.  HMG-CoA reductase inhibitor affects blood pressure and vascular reactivity. Clin Exp Pharmacol Physiol Suppl. 1995;22(suppl 1)S316- S317
PubMedArticle
230.
Li  NSawamura  MNara  YIkeda  KYamori  Y Pravastatin affects blood pressure and vascular reactivity. Heart Vessels. 1996;1164- 68
PubMedArticle
231.
Freeman  DJNorrie  JSattar  N  et al.  Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation. 2001;103357- 362
PubMedArticle
232.
Patterson  SGottdiener  JHecht  GVargot  SKrantz  D Effects of acute mental stress on serum lipids: mediating effects of plasma volume. Psychosom Med. 1993;55525- 532
PubMedArticle
233.
Muldoon  MHerbert  TPatterson  SKameneva  MRaible  RManuck  S Effects of acute psychological stress on serum lipid levels, hemoconcentration, and blood viscosity. Arch Intern Med. 1995;155615- 620
PubMedArticle
234.
Reifman  AWindle  M High cholesterol levels in patients with panic disorder: comment [letter]. Am J Psychiatry. 1993;150527
PubMed
235.
Peter  HTabrizian  SHand  I Serum cholesterol in patients with obsessive compulsive disorder during treatment with behavior therapy and SSRI or placebo. Int J Psychiatry Med. 2000;3027- 39
PubMedArticle
236.
Kuczmierczyk  ARBarbee  JGBologna  NATownsend  MH Serum cholesterol levels in patients with generalized anxiety disorder (GAD) and with GAD and comorbid major depression. Can J Psychiatry. 1996;41465- 468
PubMed
237.
Bajwa  WKAsnis  GMSanderson  WCIrfan  Avan Praag  HM High cholesterol levels in patients with panic disorder. Am J Psychiatry. 1992;149376- 378
PubMed
238.
Hayward  CTaylor  CRoth  WKing  RAgras  W Plasma lipid levels in patients with panic disorder or agoraphobia. Am J Psychiatry. 1989;146917- 919
PubMed
239.
Kagan  BLLeskin  GHaas  BWilkins  JFoy  D Elevated lipid levels in Vietnam veterans with chronic posttraumatic stress disorder. Biol Psychiatry. 1999;45374- 377
PubMedArticle
240.
Golomb  BAJaworski  B Statins and dementia. Arch Neurol. 2001;581169- 1170
PubMedArticle
241.
Jick  HZornberg  GLJick  SSSeshadri  SDrachman  DA Statins and the risk of dementia. Lancet. 2000;3561627- 1631[published correction appears in Lancet. 2001;357:562].
PubMedArticle
242.
Wolozin  BKellman  WRuosseau  PCelesia  GGSiegel  G Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol. 2000;571439- 1443
PubMedArticle
×