[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.163.92.62. Please contact the publisher to request reinstatement.
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
[Skip to Content Landing]
Figure 1. Diagram showing the road map to personal genome medicine. Since the completion of the human genome sequence in 2003, the research focus in human genetics has moved to how human genome variations affect human health. Human genome variations are considered to be associated not only with hereditary diseases but also with sporadic diseases. In addition, human genome variations are also associated with differences in drug responses and adverse effects. Optimization of treatment and prevention based on personal genome information will soon be a realistic paradigm in clinical practice.

Figure 1. Diagram showing the road map to personal genome medicine. Since the completion of the human genome sequence in 2003, the research focus in human genetics has moved to how human genome variations affect human health. Human genome variations are considered to be associated not only with hereditary diseases but also with sporadic diseases. In addition, human genome variations are also associated with differences in drug responses and adverse effects. Optimization of treatment and prevention based on personal genome information will soon be a realistic paradigm in clinical practice.

Figure 2. Diagram showing the paradigm shift (ie, the explosive growth in genome science and medical genomics). Over the past decade, genome-wide association studies (GWASs) using common single-nucleotide polymorphisms (SNPs) have been conducted to identify genomic variations in sporadic neurological diseases. The theoretical framework of GWASs is the common disease–common variants hypothesis. Although GWASs have successfully revealed numerous susceptibility genes for common diseases such as diabetes mellitus, as well as neurodegenerative diseases, the odds ratios associated with these risk alleles are generally low and account for only a small proportion of estimated heritability. The availability of high-throughput genome sequencing technologies will enable us to identify all the genomic variants, and eventually those of disease-relevant alleles based on the common disease–multiple rare variants hypothesis.

Figure 2. Diagram showing the paradigm shift (ie, the explosive growth in genome science and medical genomics). Over the past decade, genome-wide association studies (GWASs) using common single-nucleotide polymorphisms (SNPs) have been conducted to identify genomic variations in sporadic neurological diseases. The theoretical framework of GWASs is the common disease–common variants hypothesis. Although GWASs have successfully revealed numerous susceptibility genes for common diseases such as diabetes mellitus, as well as neurodegenerative diseases, the odds ratios associated with these risk alleles are generally low and account for only a small proportion of estimated heritability. The availability of high-throughput genome sequencing technologies will enable us to identify all the genomic variants, and eventually those of disease-relevant alleles based on the common disease–multiple rare variants hypothesis.

Figure 3. Diagram showing the road map to the identification of disease-relevant variations. Shifting the paradigm from the common disease–common variants hypothesis to the common disease–multiple rare variants hypothesis will lead to the elucidation of the molecular bases of sporadic neurological diseases. Relatively rare sporadic neurological diseases will be good candidates for identifying disease-relevant alleles with large effect sizes because, depending on the effect sizes, the sample sizes can be small. GWAS indicates genome-wide association studies; SNPs, single-nucleotide polymorphisms.

Figure 3. Diagram showing the road map to the identification of disease-relevant variations. Shifting the paradigm from the common disease–common variants hypothesis to the common disease–multiple rare variants hypothesis will lead to the elucidation of the molecular bases of sporadic neurological diseases. Relatively rare sporadic neurological diseases will be good candidates for identifying disease-relevant alleles with large effect sizes because, depending on the effect sizes, the sample sizes can be small. GWAS indicates genome-wide association studies; SNPs, single-nucleotide polymorphisms.

1.
Trojanowski JQ, Vandeerstichele H, Korecka M,  et al; Alzheimer's Disease Neuroimaging Initiative.  Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects.  Alzheimers Dement. 2010;6(3):230-238PubMedArticle
2.
Gusella JF, Wexler NS, Conneally PM,  et al.  A polymorphic DNA marker genetically linked to Huntington's disease.  Nature. 1983;306(5940):234-238PubMedArticle
3.
The Huntington's Disease Collaborative Research Group.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes.  Cell. 1993;72(6):971-983PubMedArticle
4.
Koide R, Ikeuchi T, Onodera O,  et al.  Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA).  Nat Genet. 1994;6(1):9-13PubMedArticle
5.
Collins FS. Positional cloning: let's not call it reverse anymore.  Nat Genet. 1992;1(1):3-6PubMedArticle
6.
Collins FS. Positional cloning moves from perditional to traditional.  Nat Genet. 1995;9(4):347-350PubMedArticle
7.
Sato T, Miura M, Yamada M,  et al.  Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice.  Hum Mol Genet. 2009;18(4):723-736PubMedArticle
8.
Suzuki K, Zhou J, Sato T,  et al.  DRPLA transgenic mouse substrains carrying single copy of full-length mutant human DRPLA gene with variable sizes of expanded CAG repeats exhibit CAG repeat length- and age-dependent changes in behavioral abnormalities and gene expression profiles.  Neurobiol Dis. 2012;46(2):336-350PubMedArticle
9.
Katsuno M, Adachi H, Kume A,  et al.  Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy.  Neuron. 2002;35(5):843-854PubMedArticle
10.
Mangiarini L, Sathasivam K, Seller M,  et al.  Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice.  Cell. 1996;87(3):493-506PubMedArticle
11.
Katsuno M, Banno H, Suzuki K,  et al; Japan SBMA Interventional Trial for TAP-144-SR (JASMITT) study group.  Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial.  Lancet Neurol. 2010;9(9):875-884PubMedArticle
12.
Sveinbjörnsdottir S, Hicks AA, Jonsson T,  et al.  Familial aggregation of Parkinson's disease in Iceland.  N Engl J Med. 2000;343(24):1765-1770PubMedArticle
13.
Fang F, Kamel F, Lichtenstein P,  et al.  Familial aggregation of amyotrophic lateral sclerosis.  Ann Neurol. 2009;66(1):94-99PubMedArticle
14.
Sanger F, Donelson JE, Coulson AR, Kössel H, Fischer D. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA.  Proc Natl Acad Sci U S A. 1973;70(4):1209-1213PubMedArticle
15.
Sanger F, Air GM, Barrell BG,  et al.  Nucleotide sequence of bacteriophage phi X174 DNA.  Nature. 1977;265(5596):687-695PubMedArticle
16.
Metzker ML. Sequencing technologies—the next generation.  Nat Rev Genet. 2010;11(1):31-46PubMedArticle
17.
Tsuji S. Genetics of neurodegenerative diseases: insights from high-throughput resequencing.  Hum Mol Genet. 2010;19(R1):R65-R70PubMedArticle
18.
Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME. Microarray-based genomic selection for high-throughput resequencing.  Nat Methods. 2007;4(11):907-909PubMedArticle
19.
Fayssoux RS, Tally W, Sanfilippo JA,  et al.  Spinal injuries after falls from hunting tree stands.  Spine J. 2008;8(3):522-528PubMedArticle
20.
Hodges E, Xuan Z, Balija V,  et al.  Genome-wide in situ exon capture for selective resequencing.  Nat Genet. 2007;39(12):1522-1527PubMedArticle
21.
Volpi L, Roversi G, Colombo EA,  et al.  Targeted next-generation sequencing appoints c16orf57 as clericuzio-type poikiloderma with neutropenia gene.  Am J Hum Genet. 2010;86(1):72-76PubMedArticle
22.
Hedges DJ, Burges D, Powell E,  et al.  Exome sequencing of a multigenerational human pedigree.  PLoS One. 2009;4(12):e8232PubMedArticle
23.
Zaghloul NA, Katsanis N. Functional modules, mutational load and human genetic disease.  Trends Genet. 2010;26(4):168-176PubMedArticle
24.
Biesecker LG. Exome sequencing makes medical genomics a reality.  Nat Genet. 2010;42(1):13-14PubMedArticle
25.
Ng SB, Buckingham KJ, Lee C,  et al.  Exome sequencing identifies the cause of a mendelian disorder.  Nat Genet. 2010;42(1):30-35PubMedArticle
26.
Choi M, Scholl UI, Ji W,  et al.  Genetic diagnosis by whole exome capture and massively parallel DNA sequencing.  Proc Natl Acad Sci U S A. 2009;106(45):19096-19101PubMedArticle
27.
Ng SB, Turner EH, Robertson PD,  et al.  Targeted capture and massively parallel sequencing of 12 human exomes.  Nature. 2009;461(7261):272-276PubMedArticle
28.
Maher B. Exome sequencing takes centre stage in cancer profiling.  Nature. 2009;459(7244):146-147PubMedArticle
29.
Ng PC, Levy S, Huang J,  et al.  Genetic variation in an individual human exome.  PLoS Genet. 2008;4(8):e1000160PubMedArticle
30.
Ishiura H, Fukuda Y, Mitsui J,  et al.  Posterior column ataxia with retinitis pigmentosa in a Japanese family with a novel mutation in FLVCR1.  Neurogenetics. 2011;12(2):117-121PubMedArticle
31.
Ishiura H, Sako W, Yoshida M,  et al.  The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement.  Am J Hum Genet. 2012;91(2):320-329PubMedArticle
32.
Coppola G, Geschwind DH. Genomic medicine enters the neurology clinic.  Neurology. 2012;79(2):112-114PubMedArticle
33.
Sailer A, Scholz SW, Gibbs JR,  et al.  Exome sequencing in an SCA14 family demonstrates its utility in diagnosing heterogeneous diseases.  Neurology. 2012;79(2):127-131PubMedArticle
34.
Pierson TM, Adams DA, Markello T,  et al; NISC Comparative Sequencing Program.  Exome sequencing as a diagnostic tool in a case of undiagnosed juvenile-onset GM1-gangliosidosis.  Neurology. 2012;79(2):123-126PubMedArticle
35.
Landouré G, Sullivan JM, Johnson JO,  et al.  Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family.  Neurology. 2012;79(2):192-194PubMedArticle
36.
Schuster SC, Miller W, Ratan A,  et al.  Complete Khoisan and Bantu genomes from southern Africa.  Nature. 2010;463(7283):943-947PubMedArticle
37.
Bentley DR, Balasubramanian S, Swerdlow HP,  et al.  Accurate whole human genome sequencing using reversible terminator chemistry.  Nature. 2008;456(7218):53-59PubMedArticle
38.
Wang J, Wang W, Li R,  et al.  The diploid genome sequence of an Asian individual.  Nature. 2008;456(7218):60-65PubMedArticle
39.
Ahn SM, Kim TH, Lee S,  et al.  The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group.  Genome Res. 2009;19(9):1622-1629PubMedArticle
40.
Wheeler DA, Srinivasan M, Egholm M,  et al.  The complete genome of an individual by massively parallel DNA sequencing.  Nature. 2008;452(7189):872-876PubMedArticle
41.
Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores.  Genome Res. 2008;18(11):1851-1858PubMedArticle
42.
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program.  Bioinformatics. 2008;24(5):713-714PubMedArticle
43.
Wang J, Mu Q. Soap-HT-BLAST: high throughput BLAST based on Web services.  Bioinformatics. 2003;19(14):1863-1864PubMedArticle
44.
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.  Bioinformatics. 2010;26(5):589-595PubMedArticle
45.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.  Bioinformatics. 2009;25(14):1754-1760PubMedArticle
46.
DeJesus-Hernandez M, Mackenzie IR, Boeve BF,  et al.  Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.  Neuron. 2011;72(2):245-256PubMedArticle
47.
Eid J, Fehr A, Gray J,  et al.  Real-time DNA sequencing from single polymerase molecules.  Science. 2009;323(5910):133-138PubMedArticle
48.
Flusberg BA, Webster DR, Lee JH,  et al.  Direct detection of DNA methylation during single-molecule, real-time sequencing.  Nat Methods. 2010;7(6):461-465PubMedArticle
49.
Olasagasti F, Lieberman KR, Benner S,  et al.  Replication of individual DNA molecules under electronic control using a protein nanopore.  Nat Nanotechnol. 2010;5(11):798-806PubMedArticle
50.
Lathrop GM, Lalouel JM, Julier C, Ott J. Strategies for multilocus linkage analysis in humans.  Proc Natl Acad Sci U S A. 1984;81(11):3443-3446PubMedArticle
51.
Gudbjartsson DF, Thorvaldsson T, Kong A, Gunnarsson G, Ingolfsdottir A. Allegro version 2.  Nat Genet. 2005;37(10):1015-1016PubMedArticle
52.
Fukuda Y, Nakahara Y, Date H,  et al.  SNP HiTLink: a high-throughput linkage analysis system employing dense SNP data.  BMC Bioinformatics. 2009;10:121PubMedArticle
53.
Wu CH, Fallini C, Ticozzi N,  et al.  Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis.  Nature. 2012;488(7412):499-503PubMedArticle
54.
Doi H, Yoshida K, Yasuda T,  et al.  Exome sequencing reveals a homozygous SYT14 mutation in adult-onset, autosomal-recessive spinocerebellar ataxia with psychomotor retardation.  Am J Hum Genet. 2011;89(2):320-327PubMedArticle
55.
Ku CS, Naidoo N, Pawitan Y. Revisiting Mendelian disorders through exome sequencing.  Hum Genet. 2011;129(4):351-370PubMedArticle
56.
Suthers G, Laing N, Wilton S, Dorosz S, Waddy H. “Sporadic” motoneuron disease due to familial SOD1 mutation with low penetrance.  Lancet. 1994;344(8939-8940):1773PubMedArticle
57.
Murakami T, Warita H, Hayashi T,  et al.  A novel SOD1 gene mutation in familial ALS with low penetrance in females.  J Neurol Sci. 2001;189(1-2):45-47PubMedArticle
58.
Rezania K, Yan J, Dellefave L,  et al.  A rare Cu/Zn superoxide dismutase mutation causing familial amyotrophic lateral sclerosis with variable age of onset, incomplete penetrance and a sensory neuropathy.  Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4(3):162-166PubMedArticle
59.
Andersen PM, Restagno G, Stewart HG, Chiò A. Disease penetrance in amyotrophic lateral sclerosis associated with mutations in the SOD1 gene.  Ann Neurol. 2004;55(2):298-299, author reply 299PubMedArticle
60.
Nogales-Gadea G, Garcia-Arumi E, Andreu AL, Cervera C, Gamez J. A novel exon 5 mutation (N139H) in the SOD1 gene in a Spanish family associated with incomplete penetrance.  J Neurol Sci. 2004;219(1-2):1-6PubMedArticle
61.
Majounie E, Renton AE, Mok K,  et al; Chromosome 9-ALS/FTD Consortium; French research network on FTLD/FTLD/ALS; ITALSGEN Consortium.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study.  Lancet Neurol. 2012;11(4):323-330PubMedArticle
62.
Nozaki I, Hamaguchi T, Sanjo N,  et al.  Prospective 10-year surveillance of human prion diseases in Japan.  Brain. 2010;133(10):3043-3057PubMedArticle
63.
Rosewich H, Thiele H, Ohlenbusch A,  et al.  Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study.  Lancet Neurol. 2012;11(9):764-773PubMedArticle
64.
Veeramah KR, O’Brien JE, Meisler MH,  et al.  De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP.  Am J Hum Genet. 2012;90(3):502-510PubMedArticle
65.
Awadalla P, Gauthier J, Myers RA,  et al.  Direct measure of the de novo mutation rate in autism and schizophrenia cohorts.  Am J Hum Genet. 2010;87(3):316-324PubMedArticle
66.
Rivière JB, van Bon BW, Hoischen A,  et al.  De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.  Nat Genet. 2012;44(4):440-444, S1-S2PubMedArticle
67.
Sasaki H, Emi M, Iijima H,  et al.  Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy.  Mol Brain. 2011;4:24PubMedArticle
68.
Baranzini SE, Mudge J, van Velkinburgh JC,  et al.  Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis.  Nature. 2010;464(7293):1351-1356PubMedArticle
69.
Reich DE, Lander ES. On the allelic spectrum of human disease.  Trends Genet. 2001;17(9):502-510PubMedArticle
70.
Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation.  Science. 1997;278(5343):1580-1581PubMedArticle
71.
Pritchard JK. Are rare variants responsible for susceptibility to complex diseases?  Am J Hum Genet. 2001;69(1):124-137PubMedArticle
72.
Hindorff LA, Sethupathy P, Junkins HA,  et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.  Proc Natl Acad Sci U S A. 2009;106(23):9362-9367PubMedArticle
73.
Visscher PM. Sizing up human height variation.  Nat Genet. 2008;40(5):489-490PubMedArticle
74.
Manolio TA, Collins FS, Cox NJ,  et al.  Finding the missing heritability of complex diseases.  Nature. 2009;461(7265):747-753PubMedArticle
75.
Satake W, Nakabayashi Y, Mizuta I,  et al.  Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.  Nat Genet. 2009;41(12):1303-1307PubMedArticle
76.
Sidransky E, Nalls MA, Aasly JO,  et al.  Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease.  N Engl J Med. 2009;361(17):1651-1661PubMedArticle
77.
Mitsui J, Mizuta I, Toyoda A,  et al.  Mutations for Gaucher disease confer high susceptibility to Parkinson disease.  Arch Neurol. 2009;66(5):571-576PubMedArticle
78.
Shino MY, McGuire V, Van Den Eeden SK,  et al.  Familial aggregation of Parkinson's disease in a multiethnic community-based case-control study.  Mov Disord. 2010;25(15):2587-2594PubMedArticle
79.
Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers.  J Med Genet. 2004;41(12):937-940PubMedArticle
80.
Neudorfer O, Giladi N, Elstein D,  et al.  Occurrence of Parkinson's syndrome in type I Gaucher disease.  QJM. 1996;89(9):691-694PubMedArticle
81.
Kryukov GV, Pennacchio LA, Sunyaev SR. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies.  Am J Hum Genet. 2007;80(4):727-739PubMedArticle
82.
Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma.  Proc Natl Acad Sci U S A. 1971;68(4):820-823PubMedArticle
83.
Bihaqi SW, Schumacher A, Maloney B, Lahiri DK, Zawia NH. Do epigenetic pathways initiate late onset Alzheimer disease (LOAD): towards a new paradigm.  Curr Alzheimer Res. 2012;9(5):574-588PubMed
84.
Matsumoto L, Takuma H, Tamaoka A,  et al.  CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease.  PLoS One. 2010;5(11):e15522PubMedArticle
85.
Stöhr J, Watts JC, Mensinger ZL,  et al.  Purified and synthetic Alzheimer's amyloid beta (Aβ) prions.  Proc Natl Acad Sci U S A. 2012;109(27):11025-11030PubMedArticle
86.
de Calignon A, Polydoro M, Suárez-Calvet M,  et al.  Propagation of tau pathology in a model of early Alzheimer's disease.  Neuron. 2012;73(4):685-697PubMedArticle
87.
Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing.  Genome Res. 2009;19(10):1817-1824PubMedArticle
88.
Warren RL, Freeman JD, Zeng T,  et al.  Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes.  Genome Res. 2011;21(5):790-797PubMedArticle
89.
Logan AC, Gao H, Wang C,  et al.  High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment.  Proc Natl Acad Sci U S A. 2011;108(52):21194-21199PubMedArticle
90.
Holcomb CL, Höglund B, Anderson MW,  et al.  A multi-site study using high-resolution HLA genotyping by next generation sequencing.  Tissue Antigens. 2011;77(3):206-217PubMedArticle
91.
Erlich RL, Jia X, Anderson S,  et al.  Next-generation sequencing for HLA typing of class I loci.  BMC Genomics. 2011;12:42PubMedArticle
Neurological Review
June 2013

The Neurogenomics View of Neurological Diseases

Author Affiliations
 

SECTION EDITOR: DAVID E. PLEASURE, MD

Author Affiliations: Department of Neurology, Graduate School of Medicine, University of Tokyo, and Medical Genome Center, University of Tokyo Hospital, Japan.

JAMA Neurol. 2013;70(6):689-694. doi:10.1001/jamaneurol.2013.734
Abstract

The availability of high-throughput genome sequencing technologies is expected to revolutionize our understanding of not only hereditary neurological diseases but also sporadic neurological diseases. The molecular bases of sporadic diseases, particularly those of sporadic neurodegenerative diseases, largely remain unknown. As potential molecular bases, various mechanisms can be considered, which include those underlying apparently sporadic neurological diseases with low-penetrant mutations in the gene for hereditary diseases, sporadic diseases with de novo mutations, and sporadic diseases with variations in disease-susceptible genes. With unprecedentedly robust power, high-throughput genome sequencing technologies will enable us to explore all of these possibilities. These new technologies will soon be applied in clinical practice. It will be a new era of datacentric clinical practice.

The elucidation of the molecular bases of neurological diseases is fundamental to the development of disease-modifying and preventive therapies.1 Over the past 3 decades, we have witnessed remarkable progress in the identification of the genes that cause hereditary neurological diseases (Figure 1).24 This has been accomplished mainly on the basis of the research paradigm known as “positional cloning,”5,6 which uses linkage studies to pinpoint the position of genes on chromosomes followed by the identification of the causative gene. The identification of causative genes has further made it possible to develop disease models for hereditary neurological diseases710 and to develop therapeutic strategies.11

The majority of neurological diseases, however, are sporadic without any obvious familial occurrence. We are thus faced with the challenge of elucidating the molecular bases of sporadic diseases. Quiz Ref IDIntriguingly, the clinical presentations and neuropathological findings of hereditary forms of neurodegenerative diseases are often indistinguishable from those of sporadic diseases, raising the possibility that common pathophysiologic pathways underlie both hereditary and sporadic neurodegenerative diseases.

In contrast to the molecular bases of hereditary neurological diseases, the molecular bases of sporadic neurological diseases, particularly those of sporadic neurodegenerative diseases, largely remain unknown. Quiz Ref IDA potential clue to the molecular bases of sporadic neurological diseases may be the clinical observation that siblings and relatives of a patient with a neurological disease are at an increased risk of developing the same disease; this phenomenon has been observed with regard to Parkinson disease (PD)12 and amyotrophic lateral sclerosis.13 These clinical observations suggest the involvement of genetic factors in these diseases (Figure 1). Until recently, it has been difficult to elucidate the genetic factors underlying sporadic neurological diseases. Rapid advancements in genome science, particularly the availability of massively parallel sequencing technologies that use next-generation sequencers (NGSs), are revolutionizing the neurogenomics view of sporadic neurological diseases. The elucidation of the genomic variants underlying sporadic diseases is expected to provide some answers that will help us to develop disease-modifying and preventive therapies.

Another important field is pharmacogenomics, in which genomic variations underlie differences in drug responses and adverse drug effects (Figure 1). This field is currently being introduced into clinical practice.

Thus, it will be essential to better understand how human genome variations affect our health with regard to diseases with Mendelian or complex traits, as well as with regard to pharmacogenomics. Herein, the neurogenomics view of neurological diseases and the future directions of clinical practice are discussed.

HIGH-THROUGHPUT GENOME SEQUENCING TECHNOLOGIES

Emerging new technologies for nucleotide sequencing have brought about a remarkable revolution in analyses of the human genome sequence. Compared with a conventional technology (namely, the Sanger method),14,15 the throughput of massively parallel sequencing that uses NGSs16 is increasing dramatically, with the current throughput at 600 GB per run, which means that a sufficient amount of sequence data can be obtained for whole-genome sequencing of at least 4 individuals.17 In typical experiments, billions of short reads (100-150 base pairs [bp]) are obtained. These short reads are aligned to human genome reference sequences, and sequence variations are called through computational analyses.

Currently, 2 types of sequencing strategy (namely, whole-exome and whole-genome sequence analyses) are used. Because the cost of whole-genome sequencing is still considerably high, it is not easy to conduct whole-genome sequencing for a large number of individuals. In whole-exome sequence analysis, the enrichment of exonic sequences using oligonucleotide “baits,” which is followed by sequencing, has been preferentially used. With this strategy, all exonic sequences in the human genome can be efficiently enriched.1820 With this approach, more than 90% of target regions can be enriched, and these enriched genomic regions are then subjected to massively parallel sequencing using NGSs. This approach is currently being used a lot for the identification of disease-relevant variants2131 and even for diagnostic purposes.3235

Given the ever-increasing throughput of NGSs and the dramatically decreasing costs, it will soon be a realistic approach to conduct whole-genome sequencing for various research applications (Figure 2).3640 Studies have shown that there are more than 3 million variations in the human genome of each individual. In one study,40 among the 3.3 million single-nucleotide polymorphisms (SNPs), 8996 known nonsynonymous SNPs and 1573 novel nonsynonymous SNPs were identified. Interestingly, 32 alleles exactly matched mutations previously registered in the Human Gene Mutation Database. In addition, 345 insertions/deletions were observed to overlap in a coding sequence and may alter protein function.40 These findings indicate that, among the numerous candidate variations, it will be a challenge to determine which variations are relevant to diseases.

Given the enormous number of short read sequences (~100 bp), informatics analyses, including mapping to reference sequences and indentifying variations, require a huge computational power.4145 Furthermore, mutations can be variable, including single base substitutions, insertions/deletions, and structural variations. It is difficult to efficiently identify all the variations using currently available NGSs and software. For example, expansions of repeat motifs identified in frontotemporal dementia and amyotrophic lateral sclerosis46 are difficult to identify using NGSs.

As already stated, most of the currently available NGSs produce billions of short reads of 100 to 150 bp. This is the limitation in analyzing various structural variations, some of which may be relevant to neurological diseases. Very recently, single-molecule sequencing technology has become available from Pacific Biosciences; this type of technology enables the acquisition of nucleotide sequences as large as 10 kilobases.47,48 Another single-molecule sequencing technology using nanopores, which allows for the acquisition of much longer sequences,49 will soon become available.

EFFECT OF HIGH-THROUGHPUT GENOME SEQUENCING ON UNDERSTANDING THE MOLECULAR BASES OF HEREDITARY NEUROLOGICAL DISEASES

The strategies for identifying causative genes for hereditary diseases have been well established.5,6 The chromosomal localization of the disease-causing genes is pinpointed by linkage analysis using polymorphic DNA markers.5052 Although a number of genes have been identified by applying these technologies, more than 50% of the genes causing familial amyotrophic lateral sclerosis remain to be identified.53 In families with hereditary diseases, the availability of affected and unaffected individuals is often limited owing to small family sizes and the small number of family members with a confirmed clinical and/or a pathological diagnosis. These circumstances pose a challenge to positional cloning because the candidate regions cannot be narrowed down to small regions that are sufficient for identifying the causative genes by sequencing individual genes in the candidate regions. Despite these difficult circumstances, the availability of NGSs with unbelievably high throughput has made the identification of causative genes possible.31,54,55 Given the large capacity of NGSs, the most essential step (and the bottleneck) is now the collection of as many samples from patients and their families as possible based on well-characterized clinical information, including the correct diagnosis, regardless of family size or number.

EFFECT OF HIGH-THROUGHPUT GENOME SEQUENCING ON UNDERSTANDING THE MOLECULAR BASES OF SPORADIC NEUROLOGICAL DISEASES

The elucidation of the molecular bases of sporadic neurological diseases is now a big challenge. Quiz Ref IDWe need to take various mechanisms into account as the molecular bases of sporadic neurological diseases, which include (1) apparently sporadic diseases with low-penetrant mutations in the gene for hereditary diseases, (2) sporadic diseases with de novo mutations, (3) sporadic diseases with variations in disease-susceptible genes, and (4) sporadic diseases with other mechanisms. These different molecular bases are reviewed.

APPARENTLY SPORADIC NEUROLOGICAL DISEASES WITH LOW-PENETRANT MUTATIONS IN THE GENE FOR HEREDITARY DISEASES

There are numerous examples of low-penetrant mutations in apparently sporadic cases of neurological diseases. Sporadic cases of amyotrophic lateral sclerosis due to low-penetrant SOD1 mutations have been well characterized.5661 In prion diseases, patients with V180I or M232R mutations in the prion protein (PRNP) gene rarely have a family history of prion diseases, indicating that these patients are usually diagnosed as having sporadic Creutzfeldt-Jakob disease.62

SPORADIC NEUROLOGICAL DISEASES WITH DE NOVO MUTATIONS

Quiz Ref IDAlternating hemiplegia of childhood is a rare neurological disorder characterized by early-onset episodes of hemiplegia, dystonia, various paroxysmal symptoms, and developmental impairments. Almost all cases are sporadic, but the concordance of alternating hemiplegia of childhood in monozygotic twins and the dominant transmission in a family with a milder phenotype have been reported. With this background information, Rosenwich et al63 conducted whole-exome sequencing of 3 proband-parent trios to identify a disease-associated gene and then examined whether mutations in the gene were also present in the remaining patients and their healthy parents. Whole-exome sequencing indeed showed 3 heterozygous de novo missense mutations.63 Similar approaches have been used for a number of diseases, including severe epileptic encephalopathy,64 autism, and schizophrenia.65 The rationale for these approaches is based on the hypothesis that patients with severe phenotypes associated with reduced reproductive fitness may harbor de novo mutations.65,66

Twin studies in which differences in the phenotypes of monozygotic and dizygotic twins were compared have long been conducted to delineate the involvement of genetic factors. Therefore, the comparison of whole-genome sequences of discordant monozygotic twins is expected to accelerate the discovery of genomic variations responsible for the disease phenotypes.67,68

SPORADIC NEUROLOGICAL DISEASES WITH VARIATIONS IN DISEASE-SUSCEPTIBILITY GENES

Over the past decade, genome-wide association studies (GWASs) using common SNPs have been conducted to identify genomic variations associated with sporadic neurological diseases. The theoretical framework of GWASs is the “common disease–common variants” hypothesis, in which common diseases are attributable in part to allelic variants present in more than 5% of the population.6971 Although GWASs have successfully revealed numerous susceptibility genes for common diseases such as diabetes mellitus, as well as neurodegenerative diseases, the odds ratios associated with these risk alleles are generally low and account for only a small proportion of estimated heritability.7275

In GWASs, the general finding that the odds ratios associated with risk alleles identified for disease susceptibility are low indicates that GWASs based on the common disease–common variants hypothesis are not effective in identifying genetic risks with large effect sizes. The current experience with GWASs strongly suggests that rarer variants that are difficult to detect by GWASs may account for the “missing” heritability.17,74 Such rare variants may have large effect sizes as genetic risk factors for diseases. Thus, the paradigm should be shifted from the “common disease–common variants” hypothesis to the “common disease–multiple rare variants” hypothesis to identify disease-relevant alleles with large effect sizes (Figure 3).

Quiz Ref IDAn excellent example of rare variants with substantially large effect sizes is the recent discovery of the glucocerebrosidase (GBA) gene as a robust genetic risk factor for PD.76,77 A population-based study78 coupled with genealogy information demonstrated that the estimated risk ratio for PD for siblings of patients with PD was significantly high, indicating that genetic factors substantially contribute to the development of sporadic PD. Recent clinical observations79 have suggested the association of sporadic PD with heterozygous mutations in the GBA gene encoding the enzyme that is deficient in patients with Gaucher disease, an autosomal recessive lysosomal storage disease. Furthermore, the comorbidity of PD and Gaucher disease was previously described.80 We conducted an extensive resequencing analysis of GBA in patients with PD and controls, and we found that GBA variants that are pathogenic for Gaucher disease confer a robust susceptibility to sporadic PD and even account for the familial clustering of PD.77 The combined carrier frequency of the “pathogenic variants” was as high as 9.4% in patients with PD and significantly higher than that in controls (0.37%), with a markedly high odds ratio of 28.0 (95% CI, 7.3-238.3) for patients with PD compared with controls.

We can draw the following conclusions from the discovery of the major disease-susceptibility gene (GBA) with a large effect size: (1) a genetic factor with a large effect size has been discovered in sporadic PD; (2) in accordance with the large effect size, there is a tendency of familial clustering (multiplex families such as affected siblings); and (3) the disease-relevant allele could not be identified by GWASs using common SNPs and was identified only by nucleotide sequence analysis. These conclusions strongly encourage us to search for disease-susceptibility genes with large effect sizes based on the common disease–multiple rare variants hypothesis. Although the majority of rare missense variants have been suggested to be functionally deleterious in humans,81 it remains controversial whether a comparison of allele frequencies of rare variants (in particular, missense variants) is a sufficient method for identifying variants associated with diseases. Functional annotation of all the variants obtained by comprehensive genome sequencing will no doubt increase the robust power for detecting significant associations of variants with diseases.

SPORADIC NEUROLOGICAL DISEASES WITH OTHER MECHANISMS

Besides the mechanisms already mentioned, there may be others underlying sporadic neurological diseases. The involvement of somatic mutations occurring in certain cell lineages in sporadic neurological diseases is a potentially interesting mechanism. Such a mechanism in certain types of cancer is well established.82 The involvement of epigenetics in the development of sporadic neurodegenerative diseases is also a potentially attractive mechanism.83,84 Recently, there have been an increasing number of studies suggesting that “prion-like” processes (ie, the propagation of misfolded proteins leading to abnormal aggregation) may be involved in the pathogenesis of sporadic neurodegenerative diseases.85,86 In the field of autoimmune diseases such as multiple sclerosis, the involvement of genetic factors is well characterized. The application of massively parallel sequencing to extensively characterize T-cell receptor repertoires87,88 and immunoglobulin heavy chain genes,89 along with sequence-based typing of HLAs,90,91 will provide new insights into the molecular bases of autoimmune diseases.

As discussed in this review, the availability of robust technologies using NGSs will revolutionize our research paradigms for exploring the molecular bases of hereditary and sporadic neurological diseases. Furthermore, these technologies will soon be applied in clinical practice. It will be a new era of datacentric clinical practice. Are we prepared for this new era?

Back to top
Article Information

Correspondence: Shoji Tsuji, MD, PhD, Department of Neurology, University of Tokyo, Graduate School of Medicine, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan (tsuji@m.u-tokyo.ac.jp).

Accepted for Publication: September 4, 2012.

Published Online: April 9, 2013. doi:10.1001/jamaneurol.2013.734

Conflict of Interest Disclosures: None reported.

REFERENCES
1.
Trojanowski JQ, Vandeerstichele H, Korecka M,  et al; Alzheimer's Disease Neuroimaging Initiative.  Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects.  Alzheimers Dement. 2010;6(3):230-238PubMedArticle
2.
Gusella JF, Wexler NS, Conneally PM,  et al.  A polymorphic DNA marker genetically linked to Huntington's disease.  Nature. 1983;306(5940):234-238PubMedArticle
3.
The Huntington's Disease Collaborative Research Group.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes.  Cell. 1993;72(6):971-983PubMedArticle
4.
Koide R, Ikeuchi T, Onodera O,  et al.  Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA).  Nat Genet. 1994;6(1):9-13PubMedArticle
5.
Collins FS. Positional cloning: let's not call it reverse anymore.  Nat Genet. 1992;1(1):3-6PubMedArticle
6.
Collins FS. Positional cloning moves from perditional to traditional.  Nat Genet. 1995;9(4):347-350PubMedArticle
7.
Sato T, Miura M, Yamada M,  et al.  Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice.  Hum Mol Genet. 2009;18(4):723-736PubMedArticle
8.
Suzuki K, Zhou J, Sato T,  et al.  DRPLA transgenic mouse substrains carrying single copy of full-length mutant human DRPLA gene with variable sizes of expanded CAG repeats exhibit CAG repeat length- and age-dependent changes in behavioral abnormalities and gene expression profiles.  Neurobiol Dis. 2012;46(2):336-350PubMedArticle
9.
Katsuno M, Adachi H, Kume A,  et al.  Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy.  Neuron. 2002;35(5):843-854PubMedArticle
10.
Mangiarini L, Sathasivam K, Seller M,  et al.  Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice.  Cell. 1996;87(3):493-506PubMedArticle
11.
Katsuno M, Banno H, Suzuki K,  et al; Japan SBMA Interventional Trial for TAP-144-SR (JASMITT) study group.  Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial.  Lancet Neurol. 2010;9(9):875-884PubMedArticle
12.
Sveinbjörnsdottir S, Hicks AA, Jonsson T,  et al.  Familial aggregation of Parkinson's disease in Iceland.  N Engl J Med. 2000;343(24):1765-1770PubMedArticle
13.
Fang F, Kamel F, Lichtenstein P,  et al.  Familial aggregation of amyotrophic lateral sclerosis.  Ann Neurol. 2009;66(1):94-99PubMedArticle
14.
Sanger F, Donelson JE, Coulson AR, Kössel H, Fischer D. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA.  Proc Natl Acad Sci U S A. 1973;70(4):1209-1213PubMedArticle
15.
Sanger F, Air GM, Barrell BG,  et al.  Nucleotide sequence of bacteriophage phi X174 DNA.  Nature. 1977;265(5596):687-695PubMedArticle
16.
Metzker ML. Sequencing technologies—the next generation.  Nat Rev Genet. 2010;11(1):31-46PubMedArticle
17.
Tsuji S. Genetics of neurodegenerative diseases: insights from high-throughput resequencing.  Hum Mol Genet. 2010;19(R1):R65-R70PubMedArticle
18.
Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME. Microarray-based genomic selection for high-throughput resequencing.  Nat Methods. 2007;4(11):907-909PubMedArticle
19.
Fayssoux RS, Tally W, Sanfilippo JA,  et al.  Spinal injuries after falls from hunting tree stands.  Spine J. 2008;8(3):522-528PubMedArticle
20.
Hodges E, Xuan Z, Balija V,  et al.  Genome-wide in situ exon capture for selective resequencing.  Nat Genet. 2007;39(12):1522-1527PubMedArticle
21.
Volpi L, Roversi G, Colombo EA,  et al.  Targeted next-generation sequencing appoints c16orf57 as clericuzio-type poikiloderma with neutropenia gene.  Am J Hum Genet. 2010;86(1):72-76PubMedArticle
22.
Hedges DJ, Burges D, Powell E,  et al.  Exome sequencing of a multigenerational human pedigree.  PLoS One. 2009;4(12):e8232PubMedArticle
23.
Zaghloul NA, Katsanis N. Functional modules, mutational load and human genetic disease.  Trends Genet. 2010;26(4):168-176PubMedArticle
24.
Biesecker LG. Exome sequencing makes medical genomics a reality.  Nat Genet. 2010;42(1):13-14PubMedArticle
25.
Ng SB, Buckingham KJ, Lee C,  et al.  Exome sequencing identifies the cause of a mendelian disorder.  Nat Genet. 2010;42(1):30-35PubMedArticle
26.
Choi M, Scholl UI, Ji W,  et al.  Genetic diagnosis by whole exome capture and massively parallel DNA sequencing.  Proc Natl Acad Sci U S A. 2009;106(45):19096-19101PubMedArticle
27.
Ng SB, Turner EH, Robertson PD,  et al.  Targeted capture and massively parallel sequencing of 12 human exomes.  Nature. 2009;461(7261):272-276PubMedArticle
28.
Maher B. Exome sequencing takes centre stage in cancer profiling.  Nature. 2009;459(7244):146-147PubMedArticle
29.
Ng PC, Levy S, Huang J,  et al.  Genetic variation in an individual human exome.  PLoS Genet. 2008;4(8):e1000160PubMedArticle
30.
Ishiura H, Fukuda Y, Mitsui J,  et al.  Posterior column ataxia with retinitis pigmentosa in a Japanese family with a novel mutation in FLVCR1.  Neurogenetics. 2011;12(2):117-121PubMedArticle
31.
Ishiura H, Sako W, Yoshida M,  et al.  The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement.  Am J Hum Genet. 2012;91(2):320-329PubMedArticle
32.
Coppola G, Geschwind DH. Genomic medicine enters the neurology clinic.  Neurology. 2012;79(2):112-114PubMedArticle
33.
Sailer A, Scholz SW, Gibbs JR,  et al.  Exome sequencing in an SCA14 family demonstrates its utility in diagnosing heterogeneous diseases.  Neurology. 2012;79(2):127-131PubMedArticle
34.
Pierson TM, Adams DA, Markello T,  et al; NISC Comparative Sequencing Program.  Exome sequencing as a diagnostic tool in a case of undiagnosed juvenile-onset GM1-gangliosidosis.  Neurology. 2012;79(2):123-126PubMedArticle
35.
Landouré G, Sullivan JM, Johnson JO,  et al.  Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family.  Neurology. 2012;79(2):192-194PubMedArticle
36.
Schuster SC, Miller W, Ratan A,  et al.  Complete Khoisan and Bantu genomes from southern Africa.  Nature. 2010;463(7283):943-947PubMedArticle
37.
Bentley DR, Balasubramanian S, Swerdlow HP,  et al.  Accurate whole human genome sequencing using reversible terminator chemistry.  Nature. 2008;456(7218):53-59PubMedArticle
38.
Wang J, Wang W, Li R,  et al.  The diploid genome sequence of an Asian individual.  Nature. 2008;456(7218):60-65PubMedArticle
39.
Ahn SM, Kim TH, Lee S,  et al.  The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group.  Genome Res. 2009;19(9):1622-1629PubMedArticle
40.
Wheeler DA, Srinivasan M, Egholm M,  et al.  The complete genome of an individual by massively parallel DNA sequencing.  Nature. 2008;452(7189):872-876PubMedArticle
41.
Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores.  Genome Res. 2008;18(11):1851-1858PubMedArticle
42.
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program.  Bioinformatics. 2008;24(5):713-714PubMedArticle
43.
Wang J, Mu Q. Soap-HT-BLAST: high throughput BLAST based on Web services.  Bioinformatics. 2003;19(14):1863-1864PubMedArticle
44.
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.  Bioinformatics. 2010;26(5):589-595PubMedArticle
45.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.  Bioinformatics. 2009;25(14):1754-1760PubMedArticle
46.
DeJesus-Hernandez M, Mackenzie IR, Boeve BF,  et al.  Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.  Neuron. 2011;72(2):245-256PubMedArticle
47.
Eid J, Fehr A, Gray J,  et al.  Real-time DNA sequencing from single polymerase molecules.  Science. 2009;323(5910):133-138PubMedArticle
48.
Flusberg BA, Webster DR, Lee JH,  et al.  Direct detection of DNA methylation during single-molecule, real-time sequencing.  Nat Methods. 2010;7(6):461-465PubMedArticle
49.
Olasagasti F, Lieberman KR, Benner S,  et al.  Replication of individual DNA molecules under electronic control using a protein nanopore.  Nat Nanotechnol. 2010;5(11):798-806PubMedArticle
50.
Lathrop GM, Lalouel JM, Julier C, Ott J. Strategies for multilocus linkage analysis in humans.  Proc Natl Acad Sci U S A. 1984;81(11):3443-3446PubMedArticle
51.
Gudbjartsson DF, Thorvaldsson T, Kong A, Gunnarsson G, Ingolfsdottir A. Allegro version 2.  Nat Genet. 2005;37(10):1015-1016PubMedArticle
52.
Fukuda Y, Nakahara Y, Date H,  et al.  SNP HiTLink: a high-throughput linkage analysis system employing dense SNP data.  BMC Bioinformatics. 2009;10:121PubMedArticle
53.
Wu CH, Fallini C, Ticozzi N,  et al.  Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis.  Nature. 2012;488(7412):499-503PubMedArticle
54.
Doi H, Yoshida K, Yasuda T,  et al.  Exome sequencing reveals a homozygous SYT14 mutation in adult-onset, autosomal-recessive spinocerebellar ataxia with psychomotor retardation.  Am J Hum Genet. 2011;89(2):320-327PubMedArticle
55.
Ku CS, Naidoo N, Pawitan Y. Revisiting Mendelian disorders through exome sequencing.  Hum Genet. 2011;129(4):351-370PubMedArticle
56.
Suthers G, Laing N, Wilton S, Dorosz S, Waddy H. “Sporadic” motoneuron disease due to familial SOD1 mutation with low penetrance.  Lancet. 1994;344(8939-8940):1773PubMedArticle
57.
Murakami T, Warita H, Hayashi T,  et al.  A novel SOD1 gene mutation in familial ALS with low penetrance in females.  J Neurol Sci. 2001;189(1-2):45-47PubMedArticle
58.
Rezania K, Yan J, Dellefave L,  et al.  A rare Cu/Zn superoxide dismutase mutation causing familial amyotrophic lateral sclerosis with variable age of onset, incomplete penetrance and a sensory neuropathy.  Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4(3):162-166PubMedArticle
59.
Andersen PM, Restagno G, Stewart HG, Chiò A. Disease penetrance in amyotrophic lateral sclerosis associated with mutations in the SOD1 gene.  Ann Neurol. 2004;55(2):298-299, author reply 299PubMedArticle
60.
Nogales-Gadea G, Garcia-Arumi E, Andreu AL, Cervera C, Gamez J. A novel exon 5 mutation (N139H) in the SOD1 gene in a Spanish family associated with incomplete penetrance.  J Neurol Sci. 2004;219(1-2):1-6PubMedArticle
61.
Majounie E, Renton AE, Mok K,  et al; Chromosome 9-ALS/FTD Consortium; French research network on FTLD/FTLD/ALS; ITALSGEN Consortium.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study.  Lancet Neurol. 2012;11(4):323-330PubMedArticle
62.
Nozaki I, Hamaguchi T, Sanjo N,  et al.  Prospective 10-year surveillance of human prion diseases in Japan.  Brain. 2010;133(10):3043-3057PubMedArticle
63.
Rosewich H, Thiele H, Ohlenbusch A,  et al.  Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study.  Lancet Neurol. 2012;11(9):764-773PubMedArticle
64.
Veeramah KR, O’Brien JE, Meisler MH,  et al.  De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP.  Am J Hum Genet. 2012;90(3):502-510PubMedArticle
65.
Awadalla P, Gauthier J, Myers RA,  et al.  Direct measure of the de novo mutation rate in autism and schizophrenia cohorts.  Am J Hum Genet. 2010;87(3):316-324PubMedArticle
66.
Rivière JB, van Bon BW, Hoischen A,  et al.  De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.  Nat Genet. 2012;44(4):440-444, S1-S2PubMedArticle
67.
Sasaki H, Emi M, Iijima H,  et al.  Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy.  Mol Brain. 2011;4:24PubMedArticle
68.
Baranzini SE, Mudge J, van Velkinburgh JC,  et al.  Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis.  Nature. 2010;464(7293):1351-1356PubMedArticle
69.
Reich DE, Lander ES. On the allelic spectrum of human disease.  Trends Genet. 2001;17(9):502-510PubMedArticle
70.
Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation.  Science. 1997;278(5343):1580-1581PubMedArticle
71.
Pritchard JK. Are rare variants responsible for susceptibility to complex diseases?  Am J Hum Genet. 2001;69(1):124-137PubMedArticle
72.
Hindorff LA, Sethupathy P, Junkins HA,  et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.  Proc Natl Acad Sci U S A. 2009;106(23):9362-9367PubMedArticle
73.
Visscher PM. Sizing up human height variation.  Nat Genet. 2008;40(5):489-490PubMedArticle
74.
Manolio TA, Collins FS, Cox NJ,  et al.  Finding the missing heritability of complex diseases.  Nature. 2009;461(7265):747-753PubMedArticle
75.
Satake W, Nakabayashi Y, Mizuta I,  et al.  Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.  Nat Genet. 2009;41(12):1303-1307PubMedArticle
76.
Sidransky E, Nalls MA, Aasly JO,  et al.  Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease.  N Engl J Med. 2009;361(17):1651-1661PubMedArticle
77.
Mitsui J, Mizuta I, Toyoda A,  et al.  Mutations for Gaucher disease confer high susceptibility to Parkinson disease.  Arch Neurol. 2009;66(5):571-576PubMedArticle
78.
Shino MY, McGuire V, Van Den Eeden SK,  et al.  Familial aggregation of Parkinson's disease in a multiethnic community-based case-control study.  Mov Disord. 2010;25(15):2587-2594PubMedArticle
79.
Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers.  J Med Genet. 2004;41(12):937-940PubMedArticle
80.
Neudorfer O, Giladi N, Elstein D,  et al.  Occurrence of Parkinson's syndrome in type I Gaucher disease.  QJM. 1996;89(9):691-694PubMedArticle
81.
Kryukov GV, Pennacchio LA, Sunyaev SR. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies.  Am J Hum Genet. 2007;80(4):727-739PubMedArticle
82.
Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma.  Proc Natl Acad Sci U S A. 1971;68(4):820-823PubMedArticle
83.
Bihaqi SW, Schumacher A, Maloney B, Lahiri DK, Zawia NH. Do epigenetic pathways initiate late onset Alzheimer disease (LOAD): towards a new paradigm.  Curr Alzheimer Res. 2012;9(5):574-588PubMed
84.
Matsumoto L, Takuma H, Tamaoka A,  et al.  CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease.  PLoS One. 2010;5(11):e15522PubMedArticle
85.
Stöhr J, Watts JC, Mensinger ZL,  et al.  Purified and synthetic Alzheimer's amyloid beta (Aβ) prions.  Proc Natl Acad Sci U S A. 2012;109(27):11025-11030PubMedArticle
86.
de Calignon A, Polydoro M, Suárez-Calvet M,  et al.  Propagation of tau pathology in a model of early Alzheimer's disease.  Neuron. 2012;73(4):685-697PubMedArticle
87.
Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing.  Genome Res. 2009;19(10):1817-1824PubMedArticle
88.
Warren RL, Freeman JD, Zeng T,  et al.  Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes.  Genome Res. 2011;21(5):790-797PubMedArticle
89.
Logan AC, Gao H, Wang C,  et al.  High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment.  Proc Natl Acad Sci U S A. 2011;108(52):21194-21199PubMedArticle
90.
Holcomb CL, Höglund B, Anderson MW,  et al.  A multi-site study using high-resolution HLA genotyping by next generation sequencing.  Tissue Antigens. 2011;77(3):206-217PubMedArticle
91.
Erlich RL, Jia X, Anderson S,  et al.  Next-generation sequencing for HLA typing of class I loci.  BMC Genomics. 2011;12:42PubMedArticle
×