June 9, 2008

Adaptive Optics Retinal ImagingApplications for Studying Retinal Degeneration

Author Affiliations

Copyright 2008 American Medical Association. All Rights Reserved. Applicable FARS/DFARS Restrictions Apply to Government Use.2008

Arch Ophthalmol. 2008;126(6):857-858. doi:10.1001/archopht.126.6.857

Invest Ophthalmol Vis Sci

High-Resolution Imaging With Adaptive Optics in Patients With Inherited Retinal Degeneration

Jacque L. Duncan; Yuhua Zhang; Jarel Gandhi; Chiaki Nakanishi; Mohammad Othman; Kari E. H. Branham; Anand Swaroop; Austin Roorda

  Purpose: To investigate macular photoreceptor structure in patients with inherited retinal degeneration using high-resolution images and to correlate the findings with clinical phenotypes and genetic mutations.Methods: Adaptive optics scanning laser ophthalmoscopy (AOSLO) images of photoreceptors were obtained in 16 eyes: 5 with retinitis pigmentosa (RP), 3 with cone-rod dystrophy (CRD), and 8 without retinal disease. A quadratic model was used to illustrate cone spacing as a function of retinal eccentricity. Cone spacing at 1° eccentricity was compared with standard measures of central visual function, including best-corrected visual acuity (BCVA), foveal threshold, and multifocal electroretinogram (mfERG) amplitude and timing. Intervisit variations were studied in 1 patient with RP and 1 patient with CRD. Screening of candidate disease genes identified mutations in 2 patients, one with RP (a rhodopsin mutation) and the other with CRD (a novel RPGR-ORF15 mutation).Results: Cone spacing values were significantly different from normal for patients with RP (P = .01) and CRD (P < .0001) and demonstrated a statistically significant correlation with foveal threshold (P = .0003), BCVA (P = .01), and mfERG amplitude (P = .008). Although many RP patients showed normal cone spacing within 1° of fixation, cones could not be unambiguously identified in several retinal regions. Cone spacing increased in all CRD patients, even those with early disease. Little variation was observed in cone spacing measured during 2 sessions fewer than 8 days apart.Conclusions: AOSLO images can be used to study macular cones with high resolution in patients with retinal degeneration. The authors present the first report of cone structure in vivo in patients with mutations in rhodopsin and RPGR-ORF15 and show that macular cones display distinct characteristics, depending on the underlying disease. AOSLO imaging, therefore, can provide new insight into possible mechanisms of cone vision loss in patients with retinal degeneration.

Invest Ophthalmol Vis Sci.. 2007;48(7):3283-3291.