[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.163.159.27. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Download PDF
Figure 1.
A neovascularized eye before photodynamic therapy. A, Early-phase fluorescein angiogram at 11 seconds after fluorescein dye injection. The ring hyperfluorescence indicates choroidal neovascularization in the photocoagulated portion (arrows). B, Late-phase fluorescein angiogram at 8 minutes after dye injection. Fluorescein leakage from the neovascularization is seen. C, Early-phase indocyanine green angiogram at 1 minute after dye injection. Ring hyperfluorescence (arrows) indicates neovascularization in the lesion.

A neovascularized eye before photodynamic therapy. A, Early-phase fluorescein angiogram at 11 seconds after fluorescein dye injection. The ring hyperfluorescence indicates choroidal neovascularization in the photocoagulated portion (arrows). B, Late-phase fluorescein angiogram at 8 minutes after dye injection. Fluorescein leakage from the neovascularization is seen. C, Early-phase indocyanine green angiogram at 1 minute after dye injection. Ring hyperfluorescence (arrows) indicates neovascularization in the lesion.

Figure 2.
The neovascularized eye shown in Figure 1 at 1 day after photodynamic therapy (PDT) with 8 mg/kg of ATX-S10(Na). Four lesions of choroidal neovascularization (CNV) were irradiated in different conditions: lesion 1, 89.5 J/cm2 at 70 minutes after dye injection; lesion 2, 21.1 J/cm2 at 40 minutes; lesion 3, 10.6 J/cm2 at 15 minutes; and lesion 4, 52.8 J/cm2 at 63 minutes. Lesions 1, 2, and 4 represent CNV closure without sensory retinal damage, and lesion 3 represents CNV closure with sensory retinal damage. A, Fundus photography shows a color change into mild gray in all lesions. B, Early-phase fluorescein angiogram taken at 13 seconds after dye injection. All lesions show hypofluorescence indicative of CNV and choriocapillary occlusion. Retinal arterioles and venules exhibit normal features in all lesions except lesion 3. C, Early-phase indocyanine green angiogram at 1 minute after dye injection. No ring hyperfluorescence indicative of CNV is seen, whereas hypofluorescence indicative of choriocapillary occlusion is seen in all lesions.

The neovascularized eye shown in Figure 1 at 1 day after photodynamic therapy (PDT) with 8 mg/kg of ATX-S10(Na). Four lesions of choroidal neovascularization (CNV) were irradiated in different conditions: lesion 1, 89.5 J/cm2 at 70 minutes after dye injection; lesion 2, 21.1 J/cm2 at 40 minutes; lesion 3, 10.6 J/cm2 at 15 minutes; and lesion 4, 52.8 J/cm2 at 63 minutes. Lesions 1, 2, and 4 represent CNV closure without sensory retinal damage, and lesion 3 represents CNV closure with sensory retinal damage. A, Fundus photography shows a color change into mild gray in all lesions. B, Early-phase fluorescein angiogram taken at 13 seconds after dye injection. All lesions show hypofluorescence indicative of CNV and choriocapillary occlusion. Retinal arterioles and venules exhibit normal features in all lesions except lesion 3. C, Early-phase indocyanine green angiogram at 1 minute after dye injection. No ring hyperfluorescence indicative of CNV is seen, whereas hypofluorescence indicative of choriocapillary occlusion is seen in all lesions.

Figure 3.
Neovascularized eyes at 1 day (A and B) and 2 weeks (C) after photodynamic therapy with 12-mg/kg injection of ATX-S10(Na). The central lesion was irradiated with 126.7 J/cm2 at 50 minutes after dye injection and represents choroidal neovascularization (CNV) closure with sensory retinal damage. A, Fundus photograph shows a color change into dense white (arrow) in the lesion. B, Middle-phase fluorescein angiogram at 67 seconds. Retinal arterioles (arrow) and venules (arrowhead) are occluded. C, Late-phase fluorescein angiogram at 8 minutes shows the regrowth of CNV (arrow).

Neovascularized eyes at 1 day (A and B) and 2 weeks (C) after photodynamic therapy with 12-mg/kg injection of ATX-S10(Na). The central lesion was irradiated with 126.7 J/cm2 at 50 minutes after dye injection and represents choroidal neovascularization (CNV) closure with sensory retinal damage. A, Fundus photograph shows a color change into dense white (arrow) in the lesion. B, Middle-phase fluorescein angiogram at 67 seconds. Retinal arterioles (arrow) and venules (arrowhead) are occluded. C, Late-phase fluorescein angiogram at 8 minutes shows the regrowth of CNV (arrow).

Figure 4.
Neovascularized eye shown in Figure 1 at 4 weeks after photodynamic therapy with 8-mg/kg injection of ATX-S10(Na). The fundus photograph shows that opacity has decreased in extent in 4 lesions and that detachment of the sensory retina has resolved. Pigment irregularity remains in the irradiated area.

Neovascularized eye shown in Figure 1 at 4 weeks after photodynamic therapy with 8-mg/kg injection of ATX-S10(Na). The fundus photograph shows that opacity has decreased in extent in 4 lesions and that detachment of the sensory retina has resolved. Pigment irregularity remains in the irradiated area.

Figure 5.
Light micrograph of a neovascularized eye at 1 week after photodynamic therapy with 54 J/cm2 at 60 minutes after 8-mg/kg injection of ATX-S10(Na). New vessels were occluded (arrowheads) and covered by retinal pigment epithelial cells (toluidine blue staining, original magnification ×330).

Light micrograph of a neovascularized eye at 1 week after photodynamic therapy with 54 J/cm2 at 60 minutes after 8-mg/kg injection of ATX-S10(Na). New vessels were occluded (arrowheads) and covered by retinal pigment epithelial cells (toluidine blue staining, original magnification ×330).

Figure 6.
Light micrograph of the neovascularized eye shown in Figure 3 at 2 weeks after photodynamic therapy with a radiance of 126.7 J/cm2 at 50 minutes after 12-mg/kg injection of ATX-S10(Na). New vessels have recurred in the subretina (arrowhead). Cells in the inner and outer nuclear layers are diminished (toluidine blue staining, original magnification ×100).

Light micrograph of the neovascularized eye shown in Figure 3 at 2 weeks after photodynamic therapy with a radiance of 126.7 J/cm2 at 50 minutes after 12-mg/kg injection of ATX-S10(Na). New vessels have recurred in the subretina (arrowhead). Cells in the inner and outer nuclear layers are diminished (toluidine blue staining, original magnification ×100).

Figure 7.
The relationship of selective occlusion of choroidal neovascularization (CNV) with irradiation dose and time interval after dye injection in doses of 4 (A), 8 (B), and 12 (C) mg/kg. The degrees of selectivity of photodynamic therapy were classified into the following 3 categories: CNV closure without occlusion of retinal arterioles and venules (solid circles); CNV closure with occlusion of retinal arterioles and venules (Xs); and no CNV closure (open circles). Arrows indicate lesions that showed regrowth of neovascularization at later than 2 weeks.

The relationship of selective occlusion of choroidal neovascularization (CNV) with irradiation dose and time interval after dye injection in doses of 4 (A), 8 (B), and 12 (C) mg/kg. The degrees of selectivity of photodynamic therapy were classified into the following 3 categories: CNV closure without occlusion of retinal arterioles and venules (solid circles); CNV closure with occlusion of retinal arterioles and venules (Xs); and no CNV closure (open circles). Arrows indicate lesions that showed regrowth of neovascularization at later than 2 weeks.

Figure 8.
The relationship of injuring effects of photodynamic therapy (PDT) on normal retinal and choroidal capillaries with irradiation dose and time interval after dye injection in doses of 4 (A), 8 (B), and 12 (C) mg/kg at 1 day after PDT. The degrees of vascular occlusion by PDT were classified into the following 3 categories: choriocapillaries closed but retinal capillaries open (solid circles); choriocapillaries and retinal capillaries closed (Xs); and choriocapillaries and retinal capillaries open (open circles).

The relationship of injuring effects of photodynamic therapy (PDT) on normal retinal and choroidal capillaries with irradiation dose and time interval after dye injection in doses of 4 (A), 8 (B), and 12 (C) mg/kg at 1 day after PDT. The degrees of vascular occlusion by PDT were classified into the following 3 categories: choriocapillaries closed but retinal capillaries open (solid circles); choriocapillaries and retinal capillaries closed (Xs); and choriocapillaries and retinal capillaries open (open circles).

Figure 9.
Nonneovascularized eyes at 1 week after photodynamic therapy with 8-mg/kg injection of ATX-S10(Na). Lesion 1 was irradiated by a dose of 40 J/cm2 at 45 minutes after dye injection; lesion 2, 30 J/cm2 at 50 minutes; lesion 3, 50 J/cm2 at 55 minutes. A, Middle-phase fluorescein angiogram at 23 seconds after dye injection. A hypofluorescent lesion at the center of the treated area, representing the occlusion of choriocapillaries, is small. Retinal vessels are well perfused. B, Early-phase indocyanine green angiogram at 2 minutes 28 seconds after dye injection. Choroidal large vessels are well perfused.

Nonneovascularized eyes at 1 week after photodynamic therapy with 8-mg/kg injection of ATX-S10(Na). Lesion 1 was irradiated by a dose of 40 J/cm2 at 45 minutes after dye injection; lesion 2, 30 J/cm2 at 50 minutes; lesion 3, 50 J/cm2 at 55 minutes. A, Middle-phase fluorescein angiogram at 23 seconds after dye injection. A hypofluorescent lesion at the center of the treated area, representing the occlusion of choriocapillaries, is small. Retinal vessels are well perfused. B, Early-phase indocyanine green angiogram at 2 minutes 28 seconds after dye injection. Choroidal large vessels are well perfused.

Figure 10.
Light micrograph of a nonneovascularized eye at 1 week after photodynamic therapy with a radiance of 54 J/cm2 at 60 minutes after 8-mg/kg injection of ATX-S10(Na). No apparent changes are seen in the inner layer of retina. The nuclei of the outer nuclear layer show weak staining with toluidine blue. The inner segment of photoreceptors is well preserved, whereas the outer segment has disappeared. Macrophages are seen on the apical side of double-layered retinal pigment epithelial cells. Choriocapillaries are patent, and the architecture of the choroid is normal (toluidine blue staining, original magnification ×250).

Light micrograph of a nonneovascularized eye at 1 week after photodynamic therapy with a radiance of 54 J/cm2 at 60 minutes after 8-mg/kg injection of ATX-S10(Na). No apparent changes are seen in the inner layer of retina. The nuclei of the outer nuclear layer show weak staining with toluidine blue. The inner segment of photoreceptors is well preserved, whereas the outer segment has disappeared. Macrophages are seen on the apical side of double-layered retinal pigment epithelial cells. Choriocapillaries are patent, and the architecture of the choroid is normal (toluidine blue staining, original magnification ×250).

Table 1. 
Numbers of CNV-Bearing and Healthy Eyes Used*
Numbers of CNV-Bearing and Healthy Eyes Used*
Table 2. 
Lesions With Effective CNV Closure in Neovascularized Eyes and Those With Normal Retinal Capillaries Not Occluded in Nonneovascularized Eyes at Various Intervals After PDT*
Lesions With Effective CNV Closure in Neovascularized Eyes and Those With Normal Retinal Capillaries Not Occluded in Nonneovascularized Eyes at Various Intervals After PDT*
1.
Macular Photocoagulation Study Group, Laser photocoagulation of subfoveal neovascular lesions of age-related macular degeneration: updated findings from two clinical trials. Arch Ophthalmol. 1993;1111200- 1209Article
2.
Lipson  RIBaldes  EJOlsen  AM The use of a derivative of hematoporphyrin in tumor detection. J Natl Cancer Inst. 1961;261- 8
3.
Berenbaum  MCHall  GWHoyes  AD Cerebral photosensitization by haematoporphyrin derivative: evidence for an endothelial site of action. Br J Cancer. 1986;5381- 89Article
4.
Nelson  JSLiaw  LHOrenstein  ARoberts  WGBerns  MW Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine. J Natl Cancer Inst. 1988;801599- 1605Article
5.
Huang  AJNWatson  BDHernandez  ZETseng  SCG Photothrombosis of corneal neovascularization by intravenous rose bengal and argon laser irradiation. Arch Ophthalmol. 1988;106680- 685Article
6.
Corrent  GRoussel  TJTseng  SCGWatson  BD Promotion of graft survival by photothrombotic occlusion of corneal neovascularization. Arch Ophthalmol. 1989;1071501- 1506Article
7.
Epstein  RJHendricks  RLHarris  DM Photodynamic therapy for corneal neovascularization. Cornea. 1991;10424- 432Article
8.
Pallikaris  IGTsilimbaris  MKIliaki  OENaoumidi  IIGeorgiades  APanagopoulos  IA Effectiveness of corneal neovascularization photothrombosis using phthalocyanine and a diode laser (675 nm). Lasers Surg Med. 1993;13197- 203Article
9.
Tsilimbaris  MKPallikaris  IGNaoumidi  IIVlahonikolis  IGTsakalof  AKLydataki  SE Phthalocyanine mediated photodynamic thrombosis of experimental corneal neovascularization: effect of phthalocyanine dose and irradiation onset time on vascular occlusion rate. Lasers Surg Med. 1994;1519- 31Article
10.
Obana  AGohto  YMatsumoto  MMiki  T Photodynamic therapy of corneal neovascularization using hematoporphyrin derivatives. J Jpn Soc Laser Med. 1996;1731- 43
11.
Schmidt-Erfurth  UHasan  TSchomacker  KFlotte  TJBirngruber  R In vivo uptake of liposomal benzoporphyrin derivative and photothrombosis in experimental corneal neovascularization. Lasers Surg Med. 1995;17178- 188Article
12.
Packer  AJTse  DTGu  X-QHayreh  SS Hematoporphyrin photoradiation therapy for iris neovascularization: a preliminary report. Arch Ophthalmol. 1984;1021193- 1197Article
13.
Miller  JWStinson  WGGregory  WAEl-Koumy  HAPuliafito  CA Phthalocyanine photodynamic therapy of experimental iris neovascularization. Ophthalmology. 1991;981711- 1719Article
14.
Kliman  GHPuliafito  CAStern  DBorirakchanyavat  SGregory  WA Phthalocyanine photodynamic therapy: new strategy for closure of choroidal neovascularization. Lasers Surg Med. 1994;152- 10Article
15.
Schmidt-Erfurth  UHasan  TGragoudas  EMichaud  NFlotte  TJBirngruber  R Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology. 1994;1011953- 1961Article
16.
Miller  JWWalsh  AWKramer  M  et al.  Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-derived benzoporphyrin. Arch Ophthalmol. 1995;113810- 818Article
17.
Kramer  MMiller  JWMichaud  N  et al.  Liposomal benzoporphyrin derivative verteporfin photodynamic therapy. Ophthalmology. 1996;103427- 438Article
18.
Husain  DMiller  JWMichaud  NConnolly  EFlotte  TJGragoudas  ES Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization. Arch Ophthalmol. 1996;114978- 985Article
19.
Peyman  GAMoshfeghi  DMMoshfeghi  A  et al.  Photodynamic therapy for choriocapillaris using tin ethyl etiopurpurin (SnET2). Ophthalmic Surg Lasers. 1997;28409- 417
20.
Miller  JWSchmidt-Erfurth  USickenberg  M  et al.  Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of a single treatment in a phase 1 and 2 study. Arch Ophthalmol. 1999;1171161- 1173Article
21.
Schmidt-Erfurth  UMiller  JWSickenberg  M  et al.  Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch Ophthalmol. 1999;1171177- 1187Article
22.
Thomas  ELRosen  RMurphy  R  et al.  Purlytin (SnET2)-photodynamic therapy produces closure of subfoveal choroidal neovascularization in humans [abstract]. Invest Ophthalmol Vis Sci. 1998;39(suppl)S242
23.
Nakajima  SSakata  ITakemura  T  et al.  Tumor-localizing and photosensitization of photochlorin ATX-S10. Spinelli  SFante  DMarchesini  Reds.Photodynamic Therapy and Biomedical Lasers. Amsterdam, the Netherlands Elsevier Science Publications1992;531- 534
24.
Gohto  YObana  AKaneda  K  et al.  Accumulation of a photosensitizer ATX-S10(Na) to experimental corneal neovascularization. Nippon Ganka Gakkai Zasshi. 1998;102724- 730
25.
Obana  AGohto  YKaneda  K  et al.  Selective occlusion of choroidal neovascularization by photodynamic therapy with a water-soluble photosensitizer, ATX-S10. Lasers Surg Med. 1999;24209- 222Article
26.
Gohto  YObana  AKaneda  KMiki  T Photodynamic effect of a new photosensitizer ATX-S10 on corneal neovascularization. Exp Eye Res. 1998;67313- 322Article
27.
Ryan  SJ Development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc. 1979;77707- 745
28.
Schmidt-Erfurth  UMichels  SHager  ABarbazetto  ILaqua  H ICG-angiographic analysis of the photodynamic mechanism in treatment of choroidal neovascularization [abstract]. Invest Ophthalmol Vis Sci. 1998;39(suppl)S242
29.
Sunderkoetter  CSteinbrink  KGoebeler  MBhardwaj  RSorg  C Macrophages and angiogenesis. J Leukoc Biol. 1994;55410- 422
30.
Ishibashi  THata  YYoshikawa  KNakagawa  KSueishi  KInomata  H Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 1997;235159- 167Article
31.
Adamis  APShima  DTYeo  K-T  et al.  Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment endothelial cells. Biochem Biophys Res Commun. 1993;193631- 638Article
32.
Miller  HMiller  BRyan  SJ The role of retinal pigment epithelium in the involution of subretinal neovascularization. Invest Ophthalmol Vis Sci. 1986;271644- 1652
Laboratory Sciences
May 2000

Selective Photodynamic Effects of the New Photosensitizer ATX-S10(Na) on Choroidal Neovascularization in Monkeys

Author Affiliations

From the Departments of Ophthalmology (Drs Obana, Gohto, Kanai, and Miki) and Anatomy (Dr Kaneda), Osaka City University Medical School, Osaka, and the Division of Surgical Operation, Asahikawa Medical College, Asahikawa (Dr Nakajima), Japan.

Arch Ophthalmol. 2000;118(5):650-658. doi:10.1001/archopht.118.5.650
Abstract

Objective  To determine the optimal treatment variables for photodynamic therapy (PDT) with new photosensitizer ATX-S10(Na) (13,17-bis[1-carboxypropionyl] carbamoylethyl-8-etheny-2-hydroxy-3-hydroxyiminoethylidene- 2,7,12,18-tetranethyl 6 porphyrin sodium) to induce selective occlusion of choroidal neovascularization (CNV) in nonhuman primate eyes.

Methods  Experimental CNV was induced in monkey eyes by laser photocoagulation, and PDT was performed in neovascularized and healthy eyes with different treatment variables. At 0 to 150 minutes after 4-, 8-, and 12-mg/kg of body weight intravenous injections of ATX-S10(Na), a diode laser was irradiated at the dose of 1 to 127 J/cm2 (wavelength, 670 nm). Vascular occlusion induced by PDT was evaluated using fluorescein angiography, indocyanine green angiography, and histological examination at 1 day to 4 weeks after irradiation.

Results  Selective occlusion of CNV without damage to healthy retinal and choroidal capillaries was achieved in the following conditions: 30 to 74 J/cm2 irradiation at 30 to 74 minutes after the 8-mg/kg injection, and 1 to 29 J/cm2 irradiation at 30 to 74 minutes or 30 to 74 J/cm2 irradiation at 75 to 150 minutes after the 12-mg/kg dye injection. Regrowth of CNV often occurred when the retina was heavily injured by excessive PDT.

Conclusion  By using optimal treatment variables, PDT using ATX-S10(Na) induces selective occlusion of CNV in nonhuman primate eyes, providing the possibility of therapeutic application to the clinical practice.

Clinical Relevance  Occlusion of CNV without direct damage to the sensory retina is useful to preserve visual acuity in patients with exudative age-related macular degeneration. A clinical trial of PDT using ATX-S10(Na) is desirable.

CHOROIDAL neovascularization (CNV) is the major cause of serious visual loss in patients with age-related macular degeneration (AMD). Although laser photocoagulation was used as the treatment modality for this disease, its thermal effect often caused considerable damage to the sensory retina, especially in the case of subfoveal lesion.1 Photodynamic therapy (PDT), which was introduced in cancer therapy in 1961,2 recently attracted much attention in ophthalmology because it is capable of occluding vessels by injuring vascular endothelial cells with a singlet oxygen emitted from laser-excited photosensitizers and because its injuring action is limited to the site of dye accumulation (unlike the thermal effect).3,4 The effectiveness of PDT on the neovasculature has been demonstrated in the cornea,511 iris,12,13 and choroid.1419

Various kinds of photosensitizers have been developed. Among them, benzoporphyrin derivative (BPD)20,21 and tin ethyl etiopurpurin22 are superior to other agents in excretion rate and photosensitizing potency and are now used in clinical trials for CNV in AMD. However, they need to be infused in the form of liposome or emulsion because of hydrophobicity. Nakajima et al23 recently developed amphiphilic photosensitizer ATX-S10(Na), which can be administered as a bolus intravenous injection and thereby reduce the risk of thrombosis. Furthermore, besides the advantages common to BPD and tin ethyl etiopurpurin, ie, a desirable long absorption wavelength and rapid elimination from the body, this agent has more than 10 times the median lethal dose of polyhematoporphyrin ether/ester in mice and rats (R. Machida, PhD, unpublished data, 1999). As for biodistribution, although hydrophobic photosensitizers bind with plasma low-density lipoprotein and are preferentially localized in the mitochondria,11 ATX-S10(Na) is conjugated with albumin and high-density lipoprotein in the plasma (M. Mori, PhD, unpublished data, 1999) and mainly accumulates in the lysosomes after incorporation into the cell (S. Nagata, MB, unpublished data, 1999). Such different properties of ATX-S10(Na) from conventional hydrophobic sensitizers led us to investigate the characteristics of its photodynamic effect.24 Consequently, PDT with ATX-S10(Na) has been shown to induce selective occlusion of CNV in rats25 and corneal neovascularization in rabbits26 after preferential deposit of dye in the neovascular tissue.

As the next step for clinical application, we used monkeys and determined the optimal treatment variables (dye doses, irradiation doses, and time intervals after dye injection) that induce selective occlusion of CNV without causing direct damage to the sensory retina.

MATERIALS AND METHODS
ANIMALS

Twenty-four eyes from 12 cynomolgus monkeys (weight, 2.0-2.5 kg) were used. Animals were treated in accordance with the Association for Research in Vision and Ophthalmology resolution on the use of animals in research. All experimental procedures were performed while the animals were under anesthesia with intramuscular injection of ketamine hydrochloride, 50 to 60 mg/kg of body weight, and diazepam, 5 to 10 mg. Proparacaine hydrochloride was used for topical anesthesia. Pupils were dilated with 2.5% phenylephrine hydrochloride and 0.8% tropicamide.

REAGENTS

The photosensitizer ATX-S10(Na) (13,17-bis[1-carboxypropionyl] carbamoylethyl-8-etheny-2-hydroxy-3-hydroxyiminoethylidene- 2,7,12,18-tetranethyl 6 porphyrin sodium) (Lederle Japan, Tokyo, and Toyo Hakka Kogyo, Okayama, Japan) was diluted with distilled water at a concentration of 10 mg/mL immediately before use. It had 2 major absorption peaks at 407 and 670 nm in the plasma.

INDUCTION OF EXPERIMENTAL CNV

Experimental CNV was induced in the posterior pole of the fundus in 22 eyes of 11 monkeys by photocoagulation with a krypton laser (wavelength, 647 nm) (Novus Omni Laser; Coherent, Santa Clara, Calif) according to the method described by Ryan.27 The spot size was 75 µm in diameter, and duration of irradiation was 0.1 second. The power was 600 to 700 mW at the corneal surface. By using a fundus contact lens (IF-210R; Menicon, Nagoya, Japan), 3 to 15 burns were made in each eye, sparing the foveal center. At 10 to 24 days after photocoagulation, CNV induction was confirmed by results of fundus photography and fluorescein and indocyanine green (ICG) angiography using a fundus camera and a digital videoangiography system (Topcon TRC-501A plus Image Net H1024 System; Topcon, Tokyo). For fluorescein and ICG angiography, 1 mL of 5% fluorescein sodium solution and 0.5 mL of 5-mg/mL ICG, respectively, were injected intravenously.

PHOTODYNAMIC THERAPY

One day after angiography, while the animals were under anesthesia, PDT was performed in 158 CNV lesions (Table 1). The ATX-S10(Na) was injected intravenously in the doses of 4, 8, and 12 mg/kg of body weight, which had been demonstrated to be appropriate in a monkey model in our preliminary experiments.

At various time intervals from 0 to 150 minutes after dye injection, eyes were irradiated for 4 minutes with a 670-nm diode laser (Hamamatsu Photonics Inc, Hamamatsu, Japan) that was connected to a 30SL-M slitlamp (Carl Zeiss, Jena, Germany) with an optical fiber (diameter, 400 µm). The dim light of the slitlamp was only used at the focus irradiation and was turned off during PDT. The spot size was adjusted to cover the whole area of CNV using the aperture of a laser system (Coherent 930 Argon-Dye Laser System; Coherent). Laser irradiation was performed using a fundus contact lens (IF-210R; Menicon). The irradiance on the retinal surface was calculated from the value of a power meter (Coherent Fieldmaster; Coherent), actual spot size on the surface of retina, and transmission rate of laser irradiation in the monkey eyes, all of which had been determined in our preliminary study. The irradiance ranged from 6 to 528 mW/cm2, and radiant exposures ranged from 1.4 to 126.7 J/cm2. The actual spot size on the surface of retina ranged from 340 to 6800 µm in diameter.

As control experiments, 2 CNV lesions from 2 monkeys were subjected to dye injection without irradiation, and 3 lesions from 2 monkeys were irradiated by a laser of 528 mW/cm2 for 4 minutes (126.7 J/cm2) without dye injection.

EVALUATION OF PDT-INDUCED CNV OCCLUSION

One day after PDT, vascular occlusion was identified using fundus photography, fluorescein angiography, and ICG angiography. Observations were repeated weekly until the end of follow-up (Table 1). For histological analysis at 1, 2, and 4 weeks after PDT, 2 eyes from 1 monkey, 6 eyes from 3 monkeys, and 12 eyes from 6 monkeys, respectively, were enucleated while the animals were under anesthesia. They were immersion fixed in Karnovsky solution at 4°C overnight, and the neovascular portion of the retina was dissected and fixed in the same fixative at 4°C overnight, postfixed in 2% osmium tetroxide for 2 hours, dehydrated in ethanol series, and embedded in epoxy resin. Semi-thin sections were stained with toluidine blue and observed by light microscopy.

EVALUATION OF PDT-INDUCED DAMAGE TO HEALTHY RETINAL AND CHOROIDAL CAPILLARIES

Using the same treatment variables as for CNV, PDT was applied to the normal regions of the fundus from 2 untreated eyes and 8 CNV-bearing eyes. The PDT-induced retinal and choroidal capillary occlusion was evaluated using results of fundus photography, fluorescein and ICG angiography, and histological analysis.

RESULTS

Photocoagulation-induced CNV was identified by ophthalmoscopy as yellowish gray subretinal lesions with serous detachment of sensory retina (data not shown), by fluorescein angiography as early- to middle-phase ring hyperfluorescence (Figure 1, A) and late-phase fluorescein leakage (Figure 1, B), and by ICG angiography as ring hyperfluorescence during the initial 5 minutes (Figure 1, C). Dye leakage in late-phase ICG angiography was negligible.

Immediately after PDT, irradiated lesions showed no ophthalmoscopic changes (data not shown). However, at day 1, they exhibited various degrees of opacity, ie, none, mild opacity in the deep retina (Figure 2, A), and dense opacity in the whole thickness of the retina (Figure 3, A), depending on the dye and irradiation doses and period after dye injection. Occlusion of CNV was represented by hypofluorescence with no ring hyperfluorescence in early (Figure 2, B) and middle-phase (Figure 3, B) fluorescein angiography and early-phase ICG angiography (Figure 2, C), and showed little dye leakage in late-phase fluorescein angiography (data not shown). Occlusion of choriocapillaries occurred concurrently, as shown by filling defects in early-phase fluorescein angiography (Figure 2, B) and hypofluorescence in late-phase ICG anigiography (data not shown). Destruction of blood-retinal barrier in the retinal pigment epithelium (RPE) was assumed from the fluorescein leakage in the boundary of irradiated areas (Figure 2, B, and Figure 3, B). Retinal arterioles and venules were also injured to various degrees, from no damage (Figure 2, B) to vascular occlusion (Figure 3, B). Histological analysis demonstrated that CNV was occluded by thrombi (data not shown). In control eyes subjected to laser irradiation or dye administration alone, there were no appreciable ophthalmoscopic and angiographic changes.

In the follow-up periods, the retinal opacity decreased, and the detachment of the sensory retina recovered ophthalmoscopically in most of the CNV-occluded lesions at later than 1 week, although pigment irregularity remained to some extent (Figure 4). Histologically, patent CNV lesions were no longer found (Figure 5). In some lesions, recurrent CNV was detected by fluorescein angiography, especially at the edge of the original CNV lesions (Figure 3, C). They were larger in size than the original CNV lesions and surrounded by many macrophages and double-layered RPE cells (Figure 6). When PDT was insufficient, CNV remained patent throughout the experimental periods. Occluded retinal arterioles and venules after intensive PDT usually underwent recanalization (data not shown).

The relationship of the occlusive effect of PDT with irradiation doses and time intervals after dye injection was investigated in the 4-, 8-, and 12-mg/kg ATX-S10(Na) injections. The occlusive effect of PDT on CNV was evaluated with the assessment of patency of retinal arterioles and venules at 1 day after PDT and classified into the following 3 categories: (1) CNV closure without damage to retinal arterioles and venules (Figure 7, A-C); (2) CNV closure with damage to retinal arterioles and venules; and (3) patent CNV. Regrowth of CNV often occurred after the heavy damage to the retina by intensive PDT.

Because in this model photocoagulation injured retinal and choroidal capillaries before PDT, it was difficult to discriminate PDT-induced damage from photocoagulation-associated ones. Therefore, to examine the PDT-induced damages to the retinal and choroidal capillaries, we applied PDT to healthy retinal and choroidal tissue. Occlusion of capillaries was identified as hypofluorescence by early-phase fluorescein angiography and late-phase ICG angiography. Histological analysis demonstrated that capillaries were occluded with thrombus, and RPE cells showed swelling and disarray of photoreceptor outer segments. Retinal arterioles and venules and large choroidal vessels were not occluded (data not shown). The relationship of occlusive effect of PDT on the healthy retinal and choroidal capillaries with irradiation dose and time intervals after dye injection was investigated in 4-, 8-, and 12-mg/kg ATX-S10(Na) injections. The extent of capillary occlusion was classified into the following 3 categories: (1) choroidal and retinal capillaries closed (Figure 8, A-C); (2) choroidal capillaries alone closed; and (3) choroidal and retinal capillaries open. A follow-up study demonstrated that occluded choriocapillaries were recanalized and that the blood-brain barrier was reestablished at 1 week as shown by cessation of fluorescein leakage in the late-phase fluorescein angiography (Figure 9, A and B). In the category 2 lesions, the inner layer of the retina showed normal features, although the photoreceptor outer segments had disappeared (Figure 10). In the category 1 lesions, considerable damage remained in the inner layer of the retina.

Table 2 summarizes our results, showing the percentages of the lesions exhibiting CNV closure with no damage to sensory retina (excluding the lesions with CNV regrowth) in neovascularized eyes and those showing patency in retinal and choroidal capillaries or in retinal capillaries alone (choroidal capillaries can be recovered from occlusion as described above) in nonneovascularized eyes. Optimal treatment conditions for providing CNV closure and little or no damage to normal retinal and choroidal capillaries in high percentages were 30 to 74 J/cm2 irradiation at 30 to 74 minutes after the 8-mg/kg dye injection and 1 to 29 J/cm2 at 30 to 74 minutes or 30 to 74 J/cm2 at 75 to 150 minutes after the 12-mg/kg dye injection (although the amount of normal tissue used for PDT with 1 to 29 J/cm2 in the 12-mg/kg dye injection was small, retinal capillaries that were always patent, independent of time intervals). In the 4-mg/kg dye injection, a high percentage of CNV closure was obtained by 30 to 74 J/cm2 irradiation at 30 to 74 minutes, but, as shown in Figure 7, A, the range of effective CNV closure was much narrower compared with the above-mentioned optimal conditions.

COMMENT

This study has shown that PDT with ATX-S10(Na) successfully induces a long-term (up to 4 weeks), selective CNV occlusion in primate eyes, sparing damage to sensory retina. This closure is considered to result from a photodynamic effect but not from a thermal effect, because the irradiance used here, 528 mW/cm2 at maximum, does not induce thermal coagulation; laser irradiation alone did not induce the closure; and no CNV damage occurred immediately after irradiation as mentioned by others.16

Optimal treatment conditions for selective PDT were determined by CNV closure (excluding the case of CNV regrowth) in neovascularized eyes and patency of retinal and choroidal capillaries or retinal capillaries alone in nonneovascularized eyes, because occluded choroidal capillaries, unlike retinal ones, can be recanalized later. As indicated in Table 2, selective occlusion of CNV was achieved by 30 to 74 J/cm2 irradiation at 30 to 74 minutes after the 8-mg/kg dye injection and by 1 to 29 J/cm2 at 30 to 74 minutes or 30 to 74 J/cm2 at 75 to 150 minutes after the 12-mg/kg dye injection. In the 4-mg/kg ATX-S10(Na) injection, the range of conditions for selective occlusion was much narrower in laser irradiance and time elapsing after dye injection compared with the 8- and 12-mg/kg dye injections, whereas the dye dose of 12 mg/kg produced the widest range. Although Kramer et al17 suggested, based on their experiment using liposomal BPD, that reduction of dye dose could increase the selectivity of PDT, our results indicate that the smaller the dye dose, the narrower the range of optimal treatment conditions becomes.

A previous study using a rat model25 demonstrated that CNV was selectively occluded by laser irradiation performed at 2 to 4 hours after ATX-S10(Na) injection. Selectivity at this period was considered to result from heavy accumulation of ATX-S10(Na) in the neovascular tissue and diminishment of dye in healthy tissue, including the sensory retina as shown by fluorescence microscopy. Although kinetics and localization of ATX-S10(Na) accumulation in monkey CNV have not been fully elucidated, our recent work on ATX-S10(Na) fundus angiography supports the idea that dye is preferentially accumulated in the neovascular tissue at the optimal periods for PDT.

Healthy choriocapillaries were often occluded by PDT in optimal conditions for selective occlusion of CNV, and RPE cells were also damaged. Similar damage to choriocapillaries and RPE cells was observed in PDT using BDT, even in optimal conditions for selective occlusion of CNV,1517 so our results seem to be comparable to those of BPD-PDT. Choriocapillaries recovered from injuries at 1 week, although retinal damage, such as double-layered RPE cells and loss of photoreceptor outer segment, persisted. Although retinal damage was much milder than that caused by laser photocoagulation, the functional alterations associated with these events are not known and need to be investigated.

Regrowth of CNV is the major problem in the clinical trial of PDT using BPD for AMD.20,21 It was distinguished from recanalization of original CNV by larger size and a different ring-shaped pattern of vessels in early-phase fluorescein angiography. Although the mechanism of regrowth is not known, it is assumed that feeder vessels of CNV surviving after PDT may be responsible.28 Our observation that large choroidal vessels usually remained open is consistent with this view. The possibility of regrowth from residual neovascularization after insufficient PDT is excluded, because regrowth more frequently occurred after excessive irradiation than in optimal treatment conditions. Furthermore, regrowth was usually observed when retinal arterioles and venules were damaged. From these observations, the following 3 causes for regrowth are postulated: (1) inflammation evoked by excessive PDT, (2) ischemia of the sensory retina after vascular occlusion, and (3) destruction of RPE cells covering CNV. The PDT-induced damage of retinal vessels, RPE cells, and choriocapillaries induces infiltration of macrophages, which may produce vascular endothelial growth factor29 and contribute to induction of CNV.30 It has been reported that RPE cells promote endothelial proliferation via production and release of vascular endothelial growth factor under hypoxic conditions after occlusion of retinal vessels.31 On the other hand, RPE cells may be responsible for preventing the proliferation of endothelial cells of underlying CNV, probably by secreting inhibitory factors such as transforming growth factor β and promoting the maturation of neovascularization.32 Although the mechanism of CNV development may differ between AMD and this experimental model, our findings strongly suggest that excessive PDT could promote the regrowth of CNV. Therefore, the focal irradiation of CNV in optimal treatment conditions, which does not induce unnecessary injury to RPE cells surrounding CNV, is important in clinical treatment.

CONCLUSIONS

Photodynamic therapy using ATX-S10(Na) with a diode laser effectively and selectively occludes CNV in nonhuman primate eyes under optimal treatment conditions and may be a promising modality for the treatment of patients with AMD. Focal irradiation is important for preventing the regrowth of CNV.

Back to top
Article Information

Accepted for publication November 10, 1999.

This study was supported by health science research grant H10-018 from the Japanese Ministry of Health and Welfare (Tokyo).

We thank Isao Sakata, PhD (Photochemical Inc, Okayama, Japan), and Ryosuke Machida, PhD (Lederle Japan, Tokyo), for providing ATX-S10(Na), and Tohru Hirano, PhD (Hamamatsu Medical College, Hamamatsu, Japan), for providing a diode laser.

Reprints: Akira Obana, MD, Department of Ophthalmology, Osaka City University Medical School, Asahimachi 1-4-3, Abeno-ku, Osaka 545-8585, Japan (e-mail: akira-kun@med.osaka-cu.ac.jp).

References
1.
Macular Photocoagulation Study Group, Laser photocoagulation of subfoveal neovascular lesions of age-related macular degeneration: updated findings from two clinical trials. Arch Ophthalmol. 1993;1111200- 1209Article
2.
Lipson  RIBaldes  EJOlsen  AM The use of a derivative of hematoporphyrin in tumor detection. J Natl Cancer Inst. 1961;261- 8
3.
Berenbaum  MCHall  GWHoyes  AD Cerebral photosensitization by haematoporphyrin derivative: evidence for an endothelial site of action. Br J Cancer. 1986;5381- 89Article
4.
Nelson  JSLiaw  LHOrenstein  ARoberts  WGBerns  MW Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine. J Natl Cancer Inst. 1988;801599- 1605Article
5.
Huang  AJNWatson  BDHernandez  ZETseng  SCG Photothrombosis of corneal neovascularization by intravenous rose bengal and argon laser irradiation. Arch Ophthalmol. 1988;106680- 685Article
6.
Corrent  GRoussel  TJTseng  SCGWatson  BD Promotion of graft survival by photothrombotic occlusion of corneal neovascularization. Arch Ophthalmol. 1989;1071501- 1506Article
7.
Epstein  RJHendricks  RLHarris  DM Photodynamic therapy for corneal neovascularization. Cornea. 1991;10424- 432Article
8.
Pallikaris  IGTsilimbaris  MKIliaki  OENaoumidi  IIGeorgiades  APanagopoulos  IA Effectiveness of corneal neovascularization photothrombosis using phthalocyanine and a diode laser (675 nm). Lasers Surg Med. 1993;13197- 203Article
9.
Tsilimbaris  MKPallikaris  IGNaoumidi  IIVlahonikolis  IGTsakalof  AKLydataki  SE Phthalocyanine mediated photodynamic thrombosis of experimental corneal neovascularization: effect of phthalocyanine dose and irradiation onset time on vascular occlusion rate. Lasers Surg Med. 1994;1519- 31Article
10.
Obana  AGohto  YMatsumoto  MMiki  T Photodynamic therapy of corneal neovascularization using hematoporphyrin derivatives. J Jpn Soc Laser Med. 1996;1731- 43
11.
Schmidt-Erfurth  UHasan  TSchomacker  KFlotte  TJBirngruber  R In vivo uptake of liposomal benzoporphyrin derivative and photothrombosis in experimental corneal neovascularization. Lasers Surg Med. 1995;17178- 188Article
12.
Packer  AJTse  DTGu  X-QHayreh  SS Hematoporphyrin photoradiation therapy for iris neovascularization: a preliminary report. Arch Ophthalmol. 1984;1021193- 1197Article
13.
Miller  JWStinson  WGGregory  WAEl-Koumy  HAPuliafito  CA Phthalocyanine photodynamic therapy of experimental iris neovascularization. Ophthalmology. 1991;981711- 1719Article
14.
Kliman  GHPuliafito  CAStern  DBorirakchanyavat  SGregory  WA Phthalocyanine photodynamic therapy: new strategy for closure of choroidal neovascularization. Lasers Surg Med. 1994;152- 10Article
15.
Schmidt-Erfurth  UHasan  TGragoudas  EMichaud  NFlotte  TJBirngruber  R Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology. 1994;1011953- 1961Article
16.
Miller  JWWalsh  AWKramer  M  et al.  Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-derived benzoporphyrin. Arch Ophthalmol. 1995;113810- 818Article
17.
Kramer  MMiller  JWMichaud  N  et al.  Liposomal benzoporphyrin derivative verteporfin photodynamic therapy. Ophthalmology. 1996;103427- 438Article
18.
Husain  DMiller  JWMichaud  NConnolly  EFlotte  TJGragoudas  ES Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization. Arch Ophthalmol. 1996;114978- 985Article
19.
Peyman  GAMoshfeghi  DMMoshfeghi  A  et al.  Photodynamic therapy for choriocapillaris using tin ethyl etiopurpurin (SnET2). Ophthalmic Surg Lasers. 1997;28409- 417
20.
Miller  JWSchmidt-Erfurth  USickenberg  M  et al.  Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of a single treatment in a phase 1 and 2 study. Arch Ophthalmol. 1999;1171161- 1173Article
21.
Schmidt-Erfurth  UMiller  JWSickenberg  M  et al.  Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch Ophthalmol. 1999;1171177- 1187Article
22.
Thomas  ELRosen  RMurphy  R  et al.  Purlytin (SnET2)-photodynamic therapy produces closure of subfoveal choroidal neovascularization in humans [abstract]. Invest Ophthalmol Vis Sci. 1998;39(suppl)S242
23.
Nakajima  SSakata  ITakemura  T  et al.  Tumor-localizing and photosensitization of photochlorin ATX-S10. Spinelli  SFante  DMarchesini  Reds.Photodynamic Therapy and Biomedical Lasers. Amsterdam, the Netherlands Elsevier Science Publications1992;531- 534
24.
Gohto  YObana  AKaneda  K  et al.  Accumulation of a photosensitizer ATX-S10(Na) to experimental corneal neovascularization. Nippon Ganka Gakkai Zasshi. 1998;102724- 730
25.
Obana  AGohto  YKaneda  K  et al.  Selective occlusion of choroidal neovascularization by photodynamic therapy with a water-soluble photosensitizer, ATX-S10. Lasers Surg Med. 1999;24209- 222Article
26.
Gohto  YObana  AKaneda  KMiki  T Photodynamic effect of a new photosensitizer ATX-S10 on corneal neovascularization. Exp Eye Res. 1998;67313- 322Article
27.
Ryan  SJ Development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc. 1979;77707- 745
28.
Schmidt-Erfurth  UMichels  SHager  ABarbazetto  ILaqua  H ICG-angiographic analysis of the photodynamic mechanism in treatment of choroidal neovascularization [abstract]. Invest Ophthalmol Vis Sci. 1998;39(suppl)S242
29.
Sunderkoetter  CSteinbrink  KGoebeler  MBhardwaj  RSorg  C Macrophages and angiogenesis. J Leukoc Biol. 1994;55410- 422
30.
Ishibashi  THata  YYoshikawa  KNakagawa  KSueishi  KInomata  H Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 1997;235159- 167Article
31.
Adamis  APShima  DTYeo  K-T  et al.  Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment endothelial cells. Biochem Biophys Res Commun. 1993;193631- 638Article
32.
Miller  HMiller  BRyan  SJ The role of retinal pigment epithelium in the involution of subretinal neovascularization. Invest Ophthalmol Vis Sci. 1986;271644- 1652
×