[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.205.176.107. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Table. 
Chromosomal Locations of Genes Associated With Glaucoma
Chromosomal Locations of Genes Associated With Glaucoma
1.
Friedman  DSWolfs  RCO'Colmain  BJ  et al.  Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004;122532- 538
PubMedArticle
2.
Weih  LMNanjan  MMcCarty  CATaylor  HR Prevalence and predictors of open-angle glaucoma: results from the visual impairment project. Ophthalmology 2001;1081966- 1972
PubMedArticle
3.
Inman  DMSappington  RMHorner  PJCalkins  DJ Quantitative correlation of optic nerve pathology with ocular pressure and corneal thickness in the DBA/2 mouse model of glaucoma. Invest Ophthalmol Vis Sci 2006;47986- 996
PubMedArticle
4.
Fisher  SAAbecasis  GRYashar  BM  et al.  Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet 2005;142257- 2264
PubMedArticle
5.
Stambolian  DIbay  GReider  L  et al.  Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families show evidence of linkage on chromosome 22q12. Am J Hum Genet 2004;75448- 459
PubMedArticle
6.
Wiggs  JLAllingham  RRHossain  A  et al.  Genome-wide scan for adult onset primary open angle glaucoma. Hum Mol Genet 2000;91109- 1117
PubMedArticle
7.
Stone  EMFingert  JHAlward  WL  et al.  Identification of a gene that causes primary open angle glaucoma. Science 1997;275668- 670
PubMedArticle
8.
Allikmets  RSingh  NSun  H  et al.  A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 1997;15236- 246
PubMedArticle
9.
Rezaie  TChild  AHitchings  R  et al.  Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002;2951077- 1079
PubMedArticle
10.
Wiggs  JLAllingham  RRVollrath  D  et al.  Prevalence of mutations in TIGR/Myocilin in patients with adult and juvenile primary open-angle glaucoma. Am J Hum Genet 1998;631549- 1552
PubMedArticle
11.
Fingert  JHHeon  ELiebmann  JM  et al.  Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet 1999;8899- 905
PubMedArticle
12.
De La Paz  MAGuy  VKAbou-Donia  S  et al.  Analysis of the Stargardt disease gene (ABCR) in age-related degeneration. Ophthalmology 1999;1061531- 1536
PubMedArticle
13.
Wiggs  JLAuguste  JAllingham  RR  et al.  Lack of association of mutations in optineurin with disease in patients with adult-onset primary open-angle glaucoma. Arch Ophthalmol 2003;1211181- 1183
PubMedArticle
14.
Haines  JLHauser  MASchmidt  S  et al.  Complement factor H variant increases the risk of age-related macular degeneration. Science 2005;308419- 421
PubMedArticle
15.
Edwards  AORitter  R  IIIAbel  KJManning  APanhuysen  CFarrer  LA Complement factor H polymorphism and age-related macular degeneration. Science 2005;308421- 424
PubMedArticle
16.
Klein  RJZeiss  CChew  EY  et al.  Complement factor H polymorphism in age-related macular degeneration. Science 2005;308385- 389
PubMedArticle
17.
Hageman  GSAnderson  DHJohnson  LV  et al.  A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 2005;1027227- 7232
PubMedArticle
18.
Zareparsi  SBranham  KELi  M  et al.  Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 2005;77149- 153
PubMedArticle
19.
Allen  TDAckerman  WG Hereditary glaucoma in a pedigree of three generations. Arch Ophthalmol 1942;27139- 157Article
20.
Johnson  ATDrack  AVKwitek  AECannon  RLStone  EMAlward  WL Clinical features and linkage analysis of a family with autosomal dominant juvenile glaucoma. Ophthalmology 1993;100524- 529
PubMedArticle
21.
Sheffield  VCStone  EMAlward  WLM  et al.  Genetic linkage of familial open-angle glaucoma to chromosome 1q21-q31. Nat Genet 1993;447- 50
PubMedArticle
22.
Richards  JELichter  PRBoehnke  M  et al.  Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome Iq. Am J Hum Genet 1994;5462- 70
PubMed
23.
Wiggs  JLDel Bono  EASchuman  JSHutchinson  BTWalton  DS Clinical features of five pedigrees genetically linked to the juvenile glaucoma locus on chromosome 1q21-q31. Ophthalmology 1995;1021782- 1789
PubMedArticle
24.
Gencik  A Epidemiology and genetics of primary congenital glaucoma in Slovakia: description of a form of primary congenital glaucoma in gypsies with autosomal dominant inheritance and complete penetrance. Dev Ophthalmol 1989;1676- 115
PubMed
25.
Fitch  NKaback  M The Axenfeld syndrome and the Rieger syndrome. J Med Genet 1978;1530- 34
PubMedArticle
26.
Murray  JCBennett  SRKwitek  AE  et al.  Linkage of Rieger syndrome to the region of the epidermal growth factor gene on chromosome 4. Nat Genet 1992;246- 49
PubMedArticle
27.
Mears  AJMirzayans  FGould  DB  et al.  Autosomal dominant iridogoniodysgensis anomaly maps to 6p25. Am J Hum Genet 1996;591321- 1327
PubMed
28.
Phillips  JCdel Bono  EAHaines  JL  et al.  A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet 1996;59613- 619
PubMed
29.
Lichter  PRRichards  JEDowns  CAStringham  HMBoehnke  MFarley  FA Cosegregation of open-angle glaucoma and the nail-patella syndrome. Am J Ophthalmol 1997;124506- 515
PubMed
30.
Othman  MISullivan  SASkuta  GL  et al.  Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet 1998;631411- 1418
PubMedArticle
31.
Mandelkorn  RMHoffman  MEOlander  KWZimmerman  TJHarsha  D Inheritance and the pigmentary dispersion syndrome. Ann Ophthalmol 1983;15577- 582
PubMed
32.
Paglinauan  CHaines  JLDelBono  EASchuman  JStawski  SKWiggs  JL Exclusion of chromosome 1q21-q31 from linkage to three pedigrees affected by the pigment dispersion syndrome. Am J Hum Genet 1995;561240- 1243
PubMed
33.
Andersen  JSPralea  AMDelBono  EA  et al.  A gene responsible for the pigment dispersion syndrome maps to chromosome 7q35-q36. Arch Ophthalmol 1997;115384- 388
PubMedArticle
34.
Bovell  AMDamji  KFDohadwala  AAHodge  WGAllingham  RR Familial occurrence of pigment dispersion syndrome. Can J Ophthalmol 2001;3611- 17
PubMed
35.
Stoilov  IAkarsu  ANSarfarazi  M Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 1997;6641- 647
PubMedArticle
36.
Bejjani  BALewis  RATomey  KF  et al.  Mutations in CYP1B1, the gene for P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am J Hum Genet 1998;62325- 333
PubMedArticle
37.
Stoilov  IAkarsu  ANAlozie  I  et al.  Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet 1998;62573- 584
PubMedArticle
38.
Sena  DFFinzi  SRodgers  KDel Bono  EHaines  JLWiggs  JL Founder mutations of CYP1B1 gene in patients with congenital glaucoma from the United States and Brazil. J Med Genet 2004;41e6
PubMedArticle
39.
Tsuchiya  YNakajima  MKyo  SKanaya  TInoue  MYokoi  T Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res 2004;643119- 3125
PubMedArticle
40.
Jansson  IStoilov  ISarfarazi  MSchenkman  JB Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism. Pharmacogenetics 2001;11793- 801
PubMedArticle
41.
Bejjani  BAStockton  DWLewis  RA  et al.  Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum Mol Genet 2000;9367- 374
PubMedArticle
42.
Libby  RTSmith  RSSavinova  OV  et al.  Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science 2003;2991578- 1581
PubMedArticle
43.
Bidinost  CHernandez  NEdward  DP  et al.  Of mice and men: tyrosinase modification of congenital glaucoma in mice but not in humans. Invest Ophthalmol Vis Sci 2006;471486- 1490
PubMedArticle
44.
Akarsu  ANTuracli  MEAktan  SG  et al.  A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet 1996;51199- 1203
PubMedArticle
45.
Cohn  ACKearns  LSSavarirayan  RRyan  JCraig  JEMackey  DA Chromosomal abnormalities and glaucoma: a case of congenital glaucoma with trisomy 8q22-qter/monosomy 9p23-pter. Ophthalmic Genet 2005;2645- 53
PubMedArticle
46.
Simha  NVerin  PGauthier  L Congenital glaucoma of dominant autosomal transmission apropos of a family [in French]. Bull Soc Ophtalmol Fr 1989;891149- 1151
PubMed
47.
Semina  EVReiter  RLeysens  NJ  et al.  Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996;14392- 399
PubMedArticle
48.
Nishimura  DYSearby  CCAlward  WL  et al.  A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am J Hum Genet 2001;68364- 372
PubMedArticle
49.
Mears  AJJordan  TMirzayans  F  et al.  Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am J Hum Genet 1998;631316- 1328
PubMedArticle
50.
Van Heyningen  VWilliamson  KA PAX6 in sensory development. Hum Mol Genet 2002;111161- 1167
PubMedArticle
51.
Hamlington  JDJones  CMcIntosh  I Twenty-two novel LMX1B mutations identified in nail patella syndrome (NPS) patients. Hum Mutat 2001;18458
PubMedArticle
52.
Yardley  JLeroy  BPHart-Holden  N  et al.  Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci 2004;453683- 3689
PubMedArticle
53.
Lines  MAKozlowski  KWalter  MA Molecular genetics of Axenfeld-Rieger malformations. Hum Mol Genet 2002;111177- 1184
PubMedArticle
54.
Gould  DBJohn  SWM Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum Mol Genet 2002;111185- 1193
PubMedArticle
55.
Trainor  PATam  PP Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 1995;1212569- 2582
PubMed
56.
Beebe  DCCoats  JM The lens organizes the anterior segment: specification of neural crest cell differentiation in the avian eye. Dev Biol 2000;220424- 431
PubMedArticle
57.
Fuhrmann  SLevine  EMReh  TA Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 2000;1274599- 4609
PubMed
58.
Vincent  ALBillingsley  GBuys  Y  et al.  Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet 2002;70448- 460
PubMedArticle
59.
Kulkarni  NHKaravanich  CAtchley  WAnholt  R Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genet Res 2000;7641- 50
PubMedArticle
60.
Lam  DSLeung  YFChua  JK  et al.  Truncations in the TIGR gene in individuals with and without primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2000;411386- 1391
PubMed
61.
Wiggs  JLVollrath  D Molecular and clinical evaluation of a patient hemizygous for TIGR/MYOC. Arch Ophthalmol 2001;1191674- 1678
PubMedArticle
62.
Kim  BSSavinova  OVReedy  MV  et al.  Targeted disruption of the myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Mol Cell Biol 2001;217707- 7713
PubMedArticle
63.
Ueda  JWentz-Hunter  KYue  BY Distribution of myocilin and extracellular matrix components in the juxtacanalicular tissue of human eyes. Invest Ophthalmol Vis Sci 2002;431068- 1076
PubMed
64.
Filla  MSLiu  XNguyen  TD  et al.  In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibronectin. Invest Ophthalmol Vis Sci 2002;43151- 161
PubMed
65.
Jacobson  NAndrews  MShepard  AR  et al.  Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet 2001;10117- 125
PubMedArticle
66.
Caballero  MRowlette  LLBorras  T Altered secretion of a TIGR/MYOC mutant lacking the olfactomedin domain. Biochim Biophys Acta 2000;1502447- 460
PubMedArticle
67.
Zillig  MWurm  AGrehn  FRussell  PTamm  ER Overexpression and properties of wild-type and Tyr437His mutated myocilin in the eyes of transgenic mice. Invest Ophthalmol Vis Sci 2005;46223- 234
PubMedArticle
68.
Zhou  ZVollrath  D A cellular assay distinguishes normal and mutant TIGR/myocilin protein. Hum Mol Genet 1999;82221- 2228
PubMedArticle
69.
Liu  YVollrath  D Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma. Hum Mol Genet 2004;131193- 1204
PubMedArticle
70.
Gobeil  SRodrigue  MAMoisan  S  et al.  Intracellular sequestration of hetero-oligomers formed by wild-type and glaucoma-causing myocilin mutants. Invest Ophthalmol Vis Sci 2004;453560- 3567
PubMedArticle
71.
Gobeil  SLetartre  LRaymond  V Functional analysis of the glaucoma-causing TIGR/myocilin protein: integrity of amino-terminal coiled-coil regions and olfactomedin homology domain is essential for extracellular adhesion and secretion. Exp Eye Res 2006;821017- 1029
PubMedArticle
72.
Vollrath  DLiu  Y Temperature sensitive secretion of mutant myocilins. Exp Eye Res 2006;821030- 1036
PubMedArticle
73.
Aroca-Aguilar  JDSanchez-Sanchez  FGhosh  SCoca-Prados  MEscribano  J Myocilin mutations causing glaucoma inhibit the intracellular endoprotelytic cleavage of myocilin between animo acids Arg 226 and Ile 227. J Biol Chem 2005;28021043- 21051
PubMedArticle
74.
Finzi  SPinto  CFWiggs  JL Molecular and clinical characterization of a patient with a chromosome 4p deletion, Wolf-Hirschhorn syndrome, and congenital glaucoma. Ophthalmic Genet 2001;2235- 41
PubMedArticle
75.
Ferguson  JG  JrHicks  EL Rieger's anomaly and glaucoma associated with partial trisomy 16q: case report. Arch Ophthalmol 1987;105323
PubMedArticle
76.
Kogame  KFukuhara  TMaeda  AKudo  Y A partial short arm deletion of chromosome 20:46, XY, del(20)(p11). Jinrui Idengaku Zasshi 1978;23153- 160
PubMedArticle
77.
Furuta  YHogan  BL BMP4 is essential for lens induction in the mouse embryo. Genes Dev 1998;123764- 3775
PubMedArticle
78.
Chang  BSmith  RSPeters  M  et al.  Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure. BMC Genet 2001;218
PubMedArticle
79.
Blixt  AMahlapuu  MAitola  MPelto-Huikko  MEnerback  SCarlsson  P A forkhead gene, FoxE3 is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev 2000;14245- 254
PubMed
80.
Saika  SLiu  CYAzhar  M  et al.  TGFbeta2 in corneal morphogenesis during mouse embryonic development. Dev Biol 2001;240419- 432
PubMedArticle
81.
John  SWSmith  RSSavinova  OV  et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 1998;39951- 962
PubMed
82.
Chang  BSmith  RSHawes  NL  et al.  Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 1999;21405- 409
PubMedArticle
83.
Anderson  MGSmith  RSHawes  NL  et al.  Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 2002;3081- 85
PubMedArticle
84.
Sundin  OHLeppert  GSSilva  ED  et al.  Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci U S A 2005;1029553- 9558
PubMedArticle
85.
Bruttini  MLongo  IFrezzotti  P  et al.  Mutations in the myocilin gene in families with primary open-angle glaucoma and juvenile open-angle glaucoma. Arch Ophthalmol 2003;1211034- 1038
PubMedArticle
86.
Wiggs  JLLynch  SYnagi  G  et al.  A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. Am J Hum Genet 2004;741314- 1320
PubMedArticle
87.
Pang  CPFan  BJCanlas  O  et al.  A genome-wide scan maps a novel juvenile-onset primary open angle glaucoma locus to chromosome 5q. Mol Vis 2006;1285- 92
PubMed
88.
Budde  WMJonas  JB Family history of glaucoma in the primary and secondary open-angle glaucomas. Graefes Arch Clin Exp Ophthalmol 1999;237554- 557
PubMedArticle
89.
Damji  KFBains  HSAmjadi  K  et al.  Familial occurrence of pseudoexfoliation in Canada. Can J Ophthalmol 1999;34257- 265
PubMed
90.
Allingham  RRLoftsdottir  MGottfredsdottir  MS  et al.  Pseudoexfoliation syndrome in Icelandic families. Br J Ophthalmol 2001;85702- 707
PubMedArticle
91.
Anderson  DRDrance  SMSchulzer  MCollaborative Normal-Tension Glaucoma Study Group, Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol 2003;136820- 829
PubMedArticle
92.
Aung  TOcaka  LEbenezer  ND  et al.  A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene. Hum Genet 2002;11052- 56
PubMedArticle
93.
Yan  XTezel  GWax  MBEdward  DP Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol 2000;118666- 673
PubMedArticle
94.
Yuan  LNeufeld  AH Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000;3242- 50
PubMedArticle
95.
Alward  WLKwon  YHKawase  K  et al.  Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. Am J Ophthalmol 2003;136904- 910
PubMedArticle
96.
Tang  SToda  YKashiwagi  K  et al.  The association between Japanese primary open-angle glaucoma and normal tension glaucoma patients and the optineurin gene. Hum Genet 2003;113276- 279
PubMedArticle
97.
Aung  TRezaie  TOkada  K  et al.  Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol Vis Sci 2005;462816- 2822
PubMedArticle
98.
Hauser  MAFigueiredo Sena  DFlor  JD  et al.  Distribution of optineurin sequence variations in an ethnically diverse population of low tension glaucoma patients from the United States. J Glaucoma 2006;15358- 363
PubMedArticle
99.
Ariani  FLongo  IFrezzotti  P  et al.  Optineurin gene is not involved in the common high-tension form of primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2006;2441077- 1082
PubMedArticle
100.
Golubnitschaja-Labudova  OLiu  RDecker  CZhu  PHaefliger  IOFlammer  J Altered gene expression in lymphocytes of patients with normal-tension glaucoma. Curr Eye Res 2000;21867- 876
PubMedArticle
101.
Alward  WLFingert  JHCoote  MA  et al.  Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med 1998;3381022- 1027
PubMedArticle
102.
Angius  ASpinelli  PGhilotti  G  et al.  Myocilin Gln368stop mutation and advanced age as risk factors for late-onset primary open-angle glaucoma. Arch Ophthalmol 2000;118674- 679
PubMedArticle
103.
Baird  PNRichardson  AJMackey  DACraig  JEFaucher  MRaymond  V A common disease haplotype for the Q368STOP mutation of the myocilin gene in Australian and Canadian glaucoma families. Am J Ophthalmol 2005;140760- 762
PubMedArticle
104.
Monemi  SSpaeth  GDaSilva  A  et al.  Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet 2005;14725- 733
PubMedArticle
105.
Hewitt  AWDimasi  DPMackey  DACraig  JE A glaucoma case-control study of the WDR36 gene D658G sequence variant. Am J Ophthalmol 2006;142324- 325
PubMedArticle
106.
Mao  MBiery  MCKobayashi  SV  et al.  T lymphocyte activation gene identification by coregulated expression on DNA microarrays. Genomics 2004;83989- 999
PubMedArticle
107.
Yang  JPatil  RVYu  HGordon  MWax  MB T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol 2001;131421- 426
PubMedArticle
108.
Hauser  MAAllingham  RRLinkroum  K  et al.  Distribution of WDR36 DNA sequence variants in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2006;472542- 2546
PubMedArticle
109.
Stoilova  DChild  ATrifan  OCrick  RCoakes  RSarfarazi  M Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics 1996;36142- 150
PubMedArticle
110.
Wirtz  MKSamples  JKramer  P  et al.  Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am J Hum Genet 1997;60296- 304
PubMed
111.
Trifan  OCTraboulsi  EStoilova  D  et al.  A third locus (GLC1D) for adult-onsest primary open-angle glaucoma maps to the 8q23 region. Am J Ophthalmol 1998;12617- 28
PubMedArticle
112.
Sarfarazi  MChild  AStoilova  D  et al.  Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet 1998;62641- 652
PubMedArticle
113.
Wirtz  MKSamples  JRust  K  et al.  GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch Ophthalmol 1999;117237- 241
PubMedArticle
114.
Allingham  RRWiggs  JLHauser  E  et al.  Early adult-onset POAG linked to 15q11-13 using ordered subsets analysis. Invest Ophthalmol Vis Sci 2005;462002- 2005
PubMedArticle
115.
Woodroffe  AKrafchak  CMFuse  N  et al.  Ordered subset analysis supports a glaucoma locus at GLC1I on chromosome 15 in families with earlier adult age at diagnosis. Exp Eye Res 2006;821068- 1074
PubMedArticle
116.
Nemesure  BJiao  XHe  Q  et al. Barbados Family Study Group, A genome-wide scan for primary open-angle glaucoma (POAG): the Barbados Family Study of Open-Angle Glaucoma. Hum Genet 2003;112600- 609
PubMed
117.
Rotimi  CNChen  GAdeyemo  AA  et al.  Genomewide scan and fine mapping of quantitative trait loci for intraocular pressure on 5q and 14q in West Africans. Invest Ophthalmol Vis Sci 2006;473262- 3267
PubMedArticle
118.
Leibovitch  IKurtz  SShemesh  G  et al.  Hyperhomocystinemia in pseudoexfoliation glaucoma. J Glaucoma 2003;1236- 39
PubMedArticle
119.
Bleich  SRoedl  JVon Ahsen  N  et al.  Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am J Ophthalmol 2004;138162- 164
PubMedArticle
120.
Altintas  OMaral  HYuksel  NKarabas  VLDillioglugil  MOCaglar  Y Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2005;243677- 683
PubMedArticle
121.
Newman  NJ Hereditary optic neuropathies: from the mitochondria to the optic nerve. Am J Ophthalmol 2005;140517- 523
PubMed
122.
Valentino  MLBarboni  PGhelli  A  et al.  The ND1 gene of complex I is a mutational hot spot for Leber's hereditary optic neuropathy. Ann Neurol 2004;56631- 641
PubMedArticle
123.
Olichon  AGuillou  EDelettre  C  et al.  Mitochondrial dynamics and disease, OPA1. Biochim Biophys Acta 2006;1763500- 509
PubMedArticle
124.
Pasquale  LRKang  JHManson  JEWillett  WCRosner  BAHankinson  SE Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology 2006;1131081- 1086
PubMedArticle
125.
Zhang  XClark  AFYorio  T Regulation of glucocorticoid responsiveness in glaucomatous trabecular meshwork cells by glucocorticoid receptor-beta. Invest Ophthalmol Vis Sci 2005;464607- 4616
PubMedArticle
Special Article
January 2007

Genetic Etiologies of Glaucoma

Author Affiliations

Author Affiliation: Department of Ophthalmology, Harvard Medical School, Boston, Mass.

Arch Ophthalmol. 2007;125(1):30-37. doi:10.1001/archopht.125.1.30
Abstract

  Glaucoma can be inherited as a mendelian autosomal-dominant or autosomal-recessive trait, or as a complex multifactorial trait. Genetic approaches have helped define the underlying molecular events responsible for some mendelian forms of the disease and have identified the chromosome locations of genes that are likely to contribute to common complex forms. Future directions include the discovery of new glaucoma genes, determining the clinical phenotypes associated with specific genes and mutations, investigating environmental factors that may contribute to the disease, investigating gene-environment interactions and gene-gene interactions, and developing a mutation database that can be used for diagnostic and prognostic testing.

Glaucoma is the third most prevalent cause of visual impairment and blindness among white Americans and is the leading cause of blindness among black Americans.1 All forms of glaucoma have in common optic nerve degeneration characterized by typical visual field defects and are usually associated with elevated intraocular pressure (IOP). In most instances, the elevation of IOP results from impaired drainage of aqueous humor (produced by the ciliary body) through the trabecular meshwork outflow pathways. Glaucoma causes irreversible blindness that can only be prevented by therapeutic intervention at early stages of the disease.

A family history of the disease has long been recognized as a major risk factor for glaucoma, suggesting that specific gene defects contribute to the pathogenesis of the disorder.2 Glaucoma may be inherited as mendelian-dominant or mendelian-recessive traits (usually early-onset forms of the disease), or may exhibit a heritable susceptibility consistent with complex trait inheritance (typically adult-onset forms of the disease).

GENETIC APPROACHES

The identification of the molecular events responsible for glaucoma has been difficult because of a general lack of knowledge about the cellular and biochemical events that are necessary for the normal regulation of IOP and retinal ganglion cell function. Access to diseased human tissue is also difficult and animal models have only recently been developed and characterized.3 The advantage of a genetic approach is that the responsible protein can be identified without access to diseased tissue. The identification of genes (and their protein products) that can cause or contribute to glaucoma will help define the underlying pathophysiology, as well as lead to the development of new DNA-based diagnostic tests and novel therapeutic approaches.

The availability of predictive tests would provide a mechanism for early detection and treatment. Those individuals at risk who are identified early in the course of the disease and who begin therapy prior to significant damage to the optic nerve will have the best chance of maintaining useful sight.

Genes associated with forms of glaucoma that exhibit autosomal-dominant, autosomal-recessive, and other mendelian inheritance patterns can be located in the human genome using large affected pedigrees (typically at least 11 members) and standard linkage analysis. Once the chromosomal location of the gene is determined, the genes found within the linkage region can be evaluated for association with the disease. The simplicity of this overall approach has lead to substantial success and most of the genes currently known to be associated with various forms of glaucoma were identified using these methods (Table).

Common forms of adult-onset glaucoma, including primary open-angle glaucoma (POAG), typically do not exhibit mendelian inheritance patterns. These common age-related ocular disorders do have a significant heritability; however, the genetic contributions to these disorders are complex, resulting from interactions of multiple genetic factors, and are susceptible to the influence of environmental exposures. Discovering genes that contribute to disorders with complex inheritance is more difficult. Among the factors that contribute to the challenge of discovering complex disease genes are the underlying molecular heterogeneity, imprecise definition of phenotypes, inadequately powered study designs, and the inability of standard sets of microsatellite markers to extract complete information about inheritance. Genome scans using families demonstrating clustering of complex diseases (largely sibpairs) typically lead to the identification of a number of large genetic intervals containing many possible candidate genes.46 Using families affected with rare mendelian forms of complex diseases is another path to the desired genes. This approach has been successful in the identification of some ocular disease genes79; however, most of the identified genes do not appear to have a major role in the complex phenotype.1013 Recent efforts using whole genome–association methods and very large numbers of single nucleotide polymorphisms have successfully identified genetic factors conferring susceptibility to complex diseases, such as age-related macular degeneration,1418 and it is expected that this will be a useful approach for adult-onset glaucoma.

GENES ASSOCIATED WITH FORMS OF GLAUCOMA WITH MENDELIAN INHERITANCE

Typically, early-onset forms of glaucoma are inherited as mendelian-dominant or mendelian-recessive traits, including early-onset open-angle glaucoma1923; congenital glaucoma24; development glaucomas, including Rieger syndrome,2528 glaucoma associated with nail-patella syndrome,29 and nanophthalmos30; and glaucoma associated with pigment dispersion syndrome.3134

Congenital Glaucoma

In patients with congenital glaucoma, the development of the anterior segment of the eye and aqueous humor outflow pathways is abnormal, causing high IOP. Congenital glaucoma can be inherited as an autosomal-recessive trait and is prevalent in countries where consanguinity is common.35,36 Using consanguineous pedigrees from Saudi Arabia and Turkey, defects in the CYP1B1 gene coding for a protein that is a member of the cytochrome P450 family were found in individuals affected with congenital glaucoma. Subsequently, mutations in this gene have also been found in patients with congenital glaucoma from many countries including Slovakia (gypsies) and Japan, and from countries with more heterogeneous populations, such as the United States and Brazil. A loss of protein function is probably the underlying genetic mechanism, as most of the mutations are deletions, insertions, or missense mutations occurring in highly conserved protein regions that are necessary for its function.37 Recurrent mutations have been found in patients from varied ethnic backgrounds. Recent work indicates the recurrent mutations are on ancient chromosomes that have a common haplotype.38 The cytochrome P450 that is the product of the CYP1B1 gene participates in the metabolism of many compounds, including 17β-estradiol. It has been hypothesized that alterations in the metabolism of estrogens may be the basis for the ocular abnormalities associated with defects in this gene.39,40

Most patients with congenital glaucoma caused by mutations in CYP1B1 have a severe case of the disease; however, there are some families with significant variation in phenotypic severity and even reduced penetrance, which is evident from the observation of apparently unaffected homozygote carriers.41 In mice, tyrosinase activity has been shown to modify the severity of the anterior segment defects caused by CYP1B1 deficiency42; however, this result has not been found in humans.43 Linkage studies have identified at least 1 other chromosomal region that is likely to harbor a gene for congenital glaucoma (1p36)44; numerous cytogenetic reports indicate other chromosome regions that may harbor congenital glaucoma genes.45 In addition, autosomal-dominant forms of congenital glaucoma have been identified.46

Developmental Syndromes (Axenfeld-Rieger, Nail-patella Syndrome, Aniridia, and Nanophthalmos)

In addition to congenital glaucoma, other forms of glaucoma are associated with abnormal development of the anterior segment of the eye. Axenfeld-Rieger syndrome, characterized by posterior embryotoxon, iris hypoplasia, and iridocorneal adhesions, can be caused by mutations in the PITX2 gene.47 Defects in the FOXC1 gene are found in patients with anterior segment dysgenesis.48,49 Patients with defects in both of these genes may also have associated systemic defects involving the teeth, facial bones, heart, and umbilicus. Abnormalities in the PAX6 gene cause aniridia, as well as a spectrum of iris abnormalities related to glaucoma.50 Nail-patella syndrome is a systemic developmental disease associated with glaucoma caused by defects in LMX1B.51 An autosomal-dominant form of nanophthalmos associated with vitroretinochoroidopathy has been shown to be caused by abnormalities in the VMD2 gene.52

The genes responsible for these disorders participate in the regulation of gene expression during development,5355 specifically in the development of the periocular mesenchyme, which includes neural crest– and cranial paraxial mesoderm–derived cells.5557 These developmental disorders are all inherited as autosomal-dominant traits, and in general, the DNA defects lead to loss of function of the protein and haploinsufficiency.4751

Intrafamilial variability in disease severity is commonly encountered in pedigrees carrying defects in these genes. The variable phenotypic expressivity may be caused by dosage effects or by the coexistence of other genes that can modify the expression of the trait.

Early-Onset POAG

Defects in the MYOC gene coding for the myocilin protein were first associated with early-onset POAG. Up to 20% of patients with early-onset POAG and 3%-5% of patients with adult-onset POAG have defects in this gene.10,11 Some mutations are specifically associated with early-onset disease, while others are more common in adult-onset patients. One study has suggested that heterozygous defects of the CYP1B1 gene can influence the severity of disease caused by mutations in MYOC.58 This result may indicate that these 2 proteins affect the same biochemical pathway.

In patients with both early- and late-onset disease, the majority of the causative mutations are found in the olfactomedin domain of the protein, which is encoded by sequences found in the third exon of the gene.11 Myocilin is one member of a family of olfactomedin domain–containing proteins that are, in general, glycoproteins that function in the extracellular environment.59

Although the clustering of glaucoma-associated mutations in the olfactomedin domain and the participation of olfactomedins in extra- cellular processes suggests that the myocilin protein functions in the extracellular matrix, the role of the normal protein in the outflow pathways is not well understood. Several studies suggest that myocilin is not needed for normal aqueous humor outflow.6062 The normal protein has been detected in the extracellular matrix,63,64 suggesting it is secreted from the cell; studies have indicated that the mutant forms of the protein are not secreted.6567

It is likely that mutant forms of the myocilin protein have an abnormal function that may result in retention of the abnormal form of the protein in the cell.68,69 Mutant myocilin proteins form heterodimers and heteromultimers with wild-type myocilin and these heteromultimeric complexes remain sequestered intracellularly.70

Disease-causing myocilin mutants appear to be misfolded and are highly aggregation prone, causing large-protein aggregates to accumulate in the endoplasmic reticulum. Secretion of mutant myocilin has been shown to be temperature sensitive, which supports the hypothesis that myocilin-induced glaucoma is a protein-conformational disease.71,72 Mutations associated with glaucoma also inhibit an intracellular endoproteolytic cleavage of myocilin that normally releases the olfactomedin domain.73 Mutant forms of the protein may be toxic to the trabecular cells or may prevent the processing and secretion of other proteins that are necessary for the normal function of the trabecular outflow pathways. Further studies will be required to determine the actual mechanism of myocilin-associated glaucoma.

NEW GENES ASSOCIATED WITH MENDELIAN FORMS OF GLAUCOMA SUPPORTED BY LINKAGE STUDIES

For a number of glaucoma-associated genes, the chromosomal location of the gene has been determined by linkage studies. The gene has yet to be identified.

Anterior Segment Dysgenesis Syndromes

Linkage studies and chromosome-deletion analyses suggest that genes responsible for anterior segment developmental abnormalities are located on chromosomes 13q14,28 4p,74 16q,75 and 20p.76 In mice, several genes have been suggested as responsible for ocular developmental defects leading to glaucoma, including Bmp4,77,78Foxe3,79 and Tgfb2.80

Pigment Dispersion Syndrome

Of the individuals with clinical evidence of pigment dispersion syndrome, approximately 50% will develop glaucoma. In humans the disease can be sporadic or inherited, with most pedigrees demonstrating autosomal-dominant inheritance patterns.3133 Specific genes responsible for the human condition have not yet been identified; however, linkage studies suggest that 1 gene is located on chromosome 7q36.33 The DBA2 mouse spontaneously develops a syndrome similar to human pigment dispersion syndrome and pigmentary glaucoma.81 Two genes in the mouse contribute to the disease: TYRP1 (Tyrosinase-related protein 1) and Gpnmb (Glycoprotein NMB).82 Both of these genes are involved in pigment production and/or stabilization of melanosomes. Neither of these genes contribute to the disease in humans.83

Nanophthalmos

Nanophthalmos can be inherited as an autosomal-recessive or autosomal-dominant trait, and affected patients are at risk for angle-closure glaucoma. One gene, MFRP (membrane-type Frizzled-related protein), located on chromosome 11q23, has been shown to be associated with autosomal-recessive nanopthlamos.84 Mutations in a second gene, VMD2 (vitelliform macular dystrophy 2, also known as bestrophin), located on chromosome 11q13 have been found in patients with an autosomal-dominant form of nanophthalmos, also associated with viteroretinochroidopathy.52 Finally, a third gene on chromosome 11 has been located but not yet discovered.30

Early-Onset POAG

Although mutations in myocilin are currently the most identifiable cause of early-onset POAG, most cases (80%) are not caused by myocilin mutations.10,11,85 Three new chromosome locations of genes responsible for POAG have been identified on chromosomes 9q22 (GLC1J) and 20p12 (GLC1K),86 and on chromosome 5q.87

GENES ASSOCIATED WITH FORMS OF GLAUCOMA WITH COMPLEX INHERITANCE

Adult-onset forms of glaucoma, including POAG, low-tension glaucoma, and glaucoma associated with pseudoexfoliation, are inherited as complex traits. A positive family history is a major risk factor for these conditions, which suggests that specific gene defects are likely to contribute.8892 However, a simple mode inheritance is not evident, and a single underlying susceptibility gene is not likely. It is more likely that multiple genes contribute to these phenotypes and that environmental conditions may also participate. Because a genetic model cannot be defined, methods to identify genes responsible for these conditions are more complex than those used for mendelian disorders. Genome scans and model-free analyses have been performed using families demonstrating clustering of complex diseases (largely sibpairs), as well as families affected with rare forms showing apparent mendelian inheritance.

Low-tension Glaucoma

In patients with low-tension glaucoma, degeneration of the optic nerve occurs even though the IOPs are not abnormally elevated. In patients with low-tension glaucoma, the clinical appearance of the optic nerve is similar to the appearance of the optic nerve in the Kjer form of autosomal-dominant optic atrophy. Loss of function mutations in the OPA1 gene are responsible for Kjer autosomal-dominant optic atrophy; polymorphisms in the OPA1 gene may be associated with low-tension glaucoma in some cases.92

Low-tension glaucoma has also been associated with mutations in a novel gene, OPTN.9 The protein optineurin is expressed in many ocular and nonocular tissues, including the trabecular meshwork, nonpigmented ciliary epithelium, retina, brain, heart, liver, skeletal muscle, kidney, and pancreas. Optineurin may participate in the tissue necrosis factor α signaling pathway, which has been proposed to be one pathway involved in retinal ganglion cell apoptosis in patients with low-tension glaucoma and in patients with POAG.93,94 It has been speculated that the optineurin protein may function to protect the optic nerve from tissue necrosis factor α–mediated apoptosis and that the loss of function of this protein may decrease the threshold for ganglion cell apoptosis in patients with glaucoma.

Missense mutation in optineurin is an infrequent cause of low-tension glaucoma, with a possible increase in prevalence in the Japanese population.95,96 The E50K mutation, although exceedingly rare, has been associated with a severe form of low-tension glaucoma, characterized by significant loss of optic nerve function at relatively early ages.97,98 Surprisingly, researchers have not found optineurin mutations at an increased frequency in patients with typical high-pressure glaucoma, arguing that this gene does not contribute to adult-onset POAG.13,99

Studies of lymphocytes in patients with low-tension glaucoma have demonstrated altered expression of the p53 gene, a known regulator of apoptosis.100 Abnormal regulation of apoptosis may be one mechanism of low-tension glaucoma. Although not true for optineurin, the possibility remains that genes that predispose patients to low-tension glaucoma may also contribute to nerve degeneration in patients with POAG associated with increased IOP.

Adult-Onset POAG

Primary open-angle glaucoma commonly occurs after age 50 years and is usually associated with elevated IOP. The relationship between pressure elevation and optic nerve disease is not linear, suggesting that variability in optic nerve susceptibility exists among glaucoma patients. Adult-onset glaucoma often occurs in multiple family members (familial aggregation) but does not usually follow a clear mendelian inheritance pattern, suggesting that inherited risk factors can result in a susceptibility to the disease but alone are not necessarily causative. Multiple risk factors and/or environmental factors may be responsible for this disease in older individuals.

Defects in MYOC coding for myocilin are found in 3% to 5% of patients with adult-onset POAG.10,11 Certain MYOC mutations are more commonly found in older-onset patients than in early-onset patients.101 In particular, the nonsense mutation Q368X, which results in a truncated polypeptide, is more frequently found in patients with adult-onset POAG than in patients with early-onset POAG.102 Studies have shown that the Q368X mutation demonstrates a founder effect in white patients, which is possibly one explanation for its higher prevalence.103 In an in vitro assay that correlates the solubility of mutant forms of myocilin with clinical severity, the Q368X mutation is less likely to form a precipitate, supporting the suggestion that the Q368X mutation causes a milder form of the disease.68

Recently, DNA sequence changes have been identified in the WDR36 gene, located within the chromosomal region defined as GLC1G.104 Although the function of the protein product is unknown and the role of the protein in glaucoma remains to be confirmed,105 prior studies suggest that it may participate in immune responses106; other studies have also suggested that glaucoma may be influenced by immune reactivity.107 Interestingly, recent evidence suggests that mutations in the WDR36 gene are not an independent cause of glaucoma but may modify the severity of the disease in an affected person.108

NEW GENES ASSOCIATED WITH COMPLEX FORMS OF GLAUCOMA SUPPORTED BY LINKAGE STUDIES
Adult-Onset POAG

Using mendelian (model-dependent) linkage approaches and small numbers of large pedigrees affected by POAG, 7 genetic loci have been described for POAG (GLC1A-G),21,104,109113 and glaucoma-predisposing genes have been identified in 3 of these loci: GLC1A, myocilin7; GLC1E, optineurin9; and GLC1G, WDR36.104 Each of these genes is only responsible for a small fraction of cases of POAG, reflecting the small percentage of POAG that is inherited as a mendelian trait rather than as a complex trait.

Genomic studies using model-free linkage analysis (complex disease gene approaches) have identified the chromosome locations of adult-onset POAG susceptibility genes. Using mainly white US sibling pairs affected by POAG, 7 genomic regions were identified,6 and recent follow-up information on this population demonstrates additional evidence for POAG-susceptibility loci on chromosomes 14q11 (locus pending) (J.L.W., unpublished data, 2006) and 15q (GLC1I).114,115 A study of sibling pairs from Barbados affected by POAG has identified 2 regions on chromosomes 2q and 10p as highly significant for POAG in this population,116 and a study of West Africans selected for elevated IOP have found loci on 5q and 14q.117 Because these studies were conducted using a large number of families affected by typical late-onset glaucoma, the genes located in these chromosome regions are likely to be significant risk factors for POAG. Single nucleotide polymorphism–based approaches are proving successful for complex diseases,1418 and the application of these technologies to adult-onset POAG is the focus of current studies.

Pseudoexfoliation

Although a linkage study has not yet been completed for pseudoexfoliation glaucoma, systemic abnormalities, including elevation of homocysteine, have been identified in affected patients.118120 Evaluating the genetic factors that contribute to these systemic problems may lead to new insights about this common form of glaucoma.

GENES ASSOCIATED WITH PRIMARY OPTIC NEUROPATHIES

Inherited disorders of the optic nerve include degenerative processes (primarily glaucoma, as described previously), as well as primary disorders causing optic nerve atrophy.121 Mitochondrial function is a critical element in optic nerve disease: Leber hereditary optic neuropathy is caused by missense mutations in mitochondrial DNA,122 while Kjer autosomal-dominant optic atrophy is caused by mutations in the OPA1 gene. The protein product of OPA1, a dynamin-related GTPase, also has a role in mitochondrial function.123OPA1 DNA sequence variants may be associated with low-tension glaucoma in some patients.92

FUTURE DIRECTIONS
Genotype-Phenotype Correlations and Clinical Outcomes Studies

The clinical features that define glaucoma phenotypes associated with specific mutations (genotypes) must be established before useful clinical information can be acquired from DNA-based diagnostic testing. For the genes that have been identified as responsible for glaucoma, or associated with glaucoma, clinical information about the onset of disease, course of disease, and response to therapy needs to be collected. As new genes responsible for different forms of inherited glaucoma are discovered, clinical disease features should be correlated with specific mutations. These genotype-phenotype studies will include the answers to the following questions: (1) What is the range of phenotypic variation of a given mutation, ie, can one predict the prognosis of the disease knowing the specific mutation responsible for the disease? (2) Are certain mutations associated with particular aspects of the disease phenotype? (3) Are certain mutations necessary but not sufficient to cause the disease? Such mutations would require other additional genetic defects or environmental factors to be fully manifest. The development of genotype-phenotype databases for glaucoma genes and mutations will be an important step toward clinically useful DNA-based diagnostic testing for glaucoma.

Identification of New Genes

Genetic factors are at least in part responsible for all forms of glaucoma, with the exception of glaucoma related to trauma and infection. Currently, the genetic origins of the majority of glaucoma cases are unknown, as the known genes account for only a small fraction of heritable cases. With the advent of single nucleotide polymorphism–based technologies, it is likely that a number of genes responsible for glaucoma will be identified in the next 5 years. Genes that contribute to glaucoma may influence elevation of IOP or susceptibility to optic nerve degeneration, or both. It is highly likely, as in any complex disease, that complex forms of glaucoma, such as adult-onset POAG, result not only from the independent actions of multiple genes but also from the interaction of multiple genes (epistasis).

Gene-Environment Interactions

For late-onset diseases it is likely that the genetically determined disease features are more sensitive to environmental influences because of disruption of normal physiologic homeostatic mechanisms. Currently, little is known about environmental factors that may influence the onset or progression of adult-onset POAG. Recent studies suggest that factors related to glaucoma metabolism and type II diabetes mellitus may increase the risk of glaucoma.124 Another interesting gene-environment interaction that predisposes patients to glaucoma is steroid responsiveness, both from endogeneous steroids (ie, stress) and pharmacologic steroids.125 Evaluation of environmental factors that may be associated with POAG is ongoing, and investigations into specific gene-environment interactions in patients with adult-onset POAG is also under way.

Developing a Diagnostic Panel for Patients at Risk for Glaucoma

One of the goals of disease gene discovery is the development of predictive diagnostic tests. For a disease such as glaucoma, where early treatment can be beneficial, diagnostic tests designed to identify individuals at risk for the disease can be particularly valuable. Current testing for glaucoma genes is limited to genes that are known to be associated with glaucoma and is primarily diagnostic, rather than prognostic. Except for specific mutations in the MYOC and OPTN genes, details regarding the predicted clinical course associated with a glaucoma gene mutation cannot be provided. Genotype-phenotype studies as outlined earlier will help define the prognostic aspects of currently known glaucoma gene mutations. Ultimately the goal is to discover a complete panel of genes that contribute to glaucoma and develop diagnostic and prognostic correlates for the mutations found in each gene. Such a panel would provide a mechanism to identify individuals at risk for the disease and initiate timely treatment before irreversible optic nerve degeneration and blindness occurs.

Back to top
Article Information

Correspondence: Janey L. Wiggs, MD, PhD, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, 243 Charles St, Boston, MA 02114 (janey_wiggs@meei.harvard.edu).

Submitted for Publication: August 4, 2006; final revision received September 24, 2006; accepted September 26, 2006.

Financial Disclosure: None reported.

References
1.
Friedman  DSWolfs  RCO'Colmain  BJ  et al.  Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004;122532- 538
PubMedArticle
2.
Weih  LMNanjan  MMcCarty  CATaylor  HR Prevalence and predictors of open-angle glaucoma: results from the visual impairment project. Ophthalmology 2001;1081966- 1972
PubMedArticle
3.
Inman  DMSappington  RMHorner  PJCalkins  DJ Quantitative correlation of optic nerve pathology with ocular pressure and corneal thickness in the DBA/2 mouse model of glaucoma. Invest Ophthalmol Vis Sci 2006;47986- 996
PubMedArticle
4.
Fisher  SAAbecasis  GRYashar  BM  et al.  Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet 2005;142257- 2264
PubMedArticle
5.
Stambolian  DIbay  GReider  L  et al.  Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families show evidence of linkage on chromosome 22q12. Am J Hum Genet 2004;75448- 459
PubMedArticle
6.
Wiggs  JLAllingham  RRHossain  A  et al.  Genome-wide scan for adult onset primary open angle glaucoma. Hum Mol Genet 2000;91109- 1117
PubMedArticle
7.
Stone  EMFingert  JHAlward  WL  et al.  Identification of a gene that causes primary open angle glaucoma. Science 1997;275668- 670
PubMedArticle
8.
Allikmets  RSingh  NSun  H  et al.  A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 1997;15236- 246
PubMedArticle
9.
Rezaie  TChild  AHitchings  R  et al.  Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002;2951077- 1079
PubMedArticle
10.
Wiggs  JLAllingham  RRVollrath  D  et al.  Prevalence of mutations in TIGR/Myocilin in patients with adult and juvenile primary open-angle glaucoma. Am J Hum Genet 1998;631549- 1552
PubMedArticle
11.
Fingert  JHHeon  ELiebmann  JM  et al.  Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet 1999;8899- 905
PubMedArticle
12.
De La Paz  MAGuy  VKAbou-Donia  S  et al.  Analysis of the Stargardt disease gene (ABCR) in age-related degeneration. Ophthalmology 1999;1061531- 1536
PubMedArticle
13.
Wiggs  JLAuguste  JAllingham  RR  et al.  Lack of association of mutations in optineurin with disease in patients with adult-onset primary open-angle glaucoma. Arch Ophthalmol 2003;1211181- 1183
PubMedArticle
14.
Haines  JLHauser  MASchmidt  S  et al.  Complement factor H variant increases the risk of age-related macular degeneration. Science 2005;308419- 421
PubMedArticle
15.
Edwards  AORitter  R  IIIAbel  KJManning  APanhuysen  CFarrer  LA Complement factor H polymorphism and age-related macular degeneration. Science 2005;308421- 424
PubMedArticle
16.
Klein  RJZeiss  CChew  EY  et al.  Complement factor H polymorphism in age-related macular degeneration. Science 2005;308385- 389
PubMedArticle
17.
Hageman  GSAnderson  DHJohnson  LV  et al.  A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 2005;1027227- 7232
PubMedArticle
18.
Zareparsi  SBranham  KELi  M  et al.  Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 2005;77149- 153
PubMedArticle
19.
Allen  TDAckerman  WG Hereditary glaucoma in a pedigree of three generations. Arch Ophthalmol 1942;27139- 157Article
20.
Johnson  ATDrack  AVKwitek  AECannon  RLStone  EMAlward  WL Clinical features and linkage analysis of a family with autosomal dominant juvenile glaucoma. Ophthalmology 1993;100524- 529
PubMedArticle
21.
Sheffield  VCStone  EMAlward  WLM  et al.  Genetic linkage of familial open-angle glaucoma to chromosome 1q21-q31. Nat Genet 1993;447- 50
PubMedArticle
22.
Richards  JELichter  PRBoehnke  M  et al.  Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome Iq. Am J Hum Genet 1994;5462- 70
PubMed
23.
Wiggs  JLDel Bono  EASchuman  JSHutchinson  BTWalton  DS Clinical features of five pedigrees genetically linked to the juvenile glaucoma locus on chromosome 1q21-q31. Ophthalmology 1995;1021782- 1789
PubMedArticle
24.
Gencik  A Epidemiology and genetics of primary congenital glaucoma in Slovakia: description of a form of primary congenital glaucoma in gypsies with autosomal dominant inheritance and complete penetrance. Dev Ophthalmol 1989;1676- 115
PubMed
25.
Fitch  NKaback  M The Axenfeld syndrome and the Rieger syndrome. J Med Genet 1978;1530- 34
PubMedArticle
26.
Murray  JCBennett  SRKwitek  AE  et al.  Linkage of Rieger syndrome to the region of the epidermal growth factor gene on chromosome 4. Nat Genet 1992;246- 49
PubMedArticle
27.
Mears  AJMirzayans  FGould  DB  et al.  Autosomal dominant iridogoniodysgensis anomaly maps to 6p25. Am J Hum Genet 1996;591321- 1327
PubMed
28.
Phillips  JCdel Bono  EAHaines  JL  et al.  A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet 1996;59613- 619
PubMed
29.
Lichter  PRRichards  JEDowns  CAStringham  HMBoehnke  MFarley  FA Cosegregation of open-angle glaucoma and the nail-patella syndrome. Am J Ophthalmol 1997;124506- 515
PubMed
30.
Othman  MISullivan  SASkuta  GL  et al.  Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet 1998;631411- 1418
PubMedArticle
31.
Mandelkorn  RMHoffman  MEOlander  KWZimmerman  TJHarsha  D Inheritance and the pigmentary dispersion syndrome. Ann Ophthalmol 1983;15577- 582
PubMed
32.
Paglinauan  CHaines  JLDelBono  EASchuman  JStawski  SKWiggs  JL Exclusion of chromosome 1q21-q31 from linkage to three pedigrees affected by the pigment dispersion syndrome. Am J Hum Genet 1995;561240- 1243
PubMed
33.
Andersen  JSPralea  AMDelBono  EA  et al.  A gene responsible for the pigment dispersion syndrome maps to chromosome 7q35-q36. Arch Ophthalmol 1997;115384- 388
PubMedArticle
34.
Bovell  AMDamji  KFDohadwala  AAHodge  WGAllingham  RR Familial occurrence of pigment dispersion syndrome. Can J Ophthalmol 2001;3611- 17
PubMed
35.
Stoilov  IAkarsu  ANSarfarazi  M Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 1997;6641- 647
PubMedArticle
36.
Bejjani  BALewis  RATomey  KF  et al.  Mutations in CYP1B1, the gene for P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am J Hum Genet 1998;62325- 333
PubMedArticle
37.
Stoilov  IAkarsu  ANAlozie  I  et al.  Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet 1998;62573- 584
PubMedArticle
38.
Sena  DFFinzi  SRodgers  KDel Bono  EHaines  JLWiggs  JL Founder mutations of CYP1B1 gene in patients with congenital glaucoma from the United States and Brazil. J Med Genet 2004;41e6
PubMedArticle
39.
Tsuchiya  YNakajima  MKyo  SKanaya  TInoue  MYokoi  T Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res 2004;643119- 3125
PubMedArticle
40.
Jansson  IStoilov  ISarfarazi  MSchenkman  JB Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism. Pharmacogenetics 2001;11793- 801
PubMedArticle
41.
Bejjani  BAStockton  DWLewis  RA  et al.  Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum Mol Genet 2000;9367- 374
PubMedArticle
42.
Libby  RTSmith  RSSavinova  OV  et al.  Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science 2003;2991578- 1581
PubMedArticle
43.
Bidinost  CHernandez  NEdward  DP  et al.  Of mice and men: tyrosinase modification of congenital glaucoma in mice but not in humans. Invest Ophthalmol Vis Sci 2006;471486- 1490
PubMedArticle
44.
Akarsu  ANTuracli  MEAktan  SG  et al.  A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet 1996;51199- 1203
PubMedArticle
45.
Cohn  ACKearns  LSSavarirayan  RRyan  JCraig  JEMackey  DA Chromosomal abnormalities and glaucoma: a case of congenital glaucoma with trisomy 8q22-qter/monosomy 9p23-pter. Ophthalmic Genet 2005;2645- 53
PubMedArticle
46.
Simha  NVerin  PGauthier  L Congenital glaucoma of dominant autosomal transmission apropos of a family [in French]. Bull Soc Ophtalmol Fr 1989;891149- 1151
PubMed
47.
Semina  EVReiter  RLeysens  NJ  et al.  Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996;14392- 399
PubMedArticle
48.
Nishimura  DYSearby  CCAlward  WL  et al.  A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am J Hum Genet 2001;68364- 372
PubMedArticle
49.
Mears  AJJordan  TMirzayans  F  et al.  Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am J Hum Genet 1998;631316- 1328
PubMedArticle
50.
Van Heyningen  VWilliamson  KA PAX6 in sensory development. Hum Mol Genet 2002;111161- 1167
PubMedArticle
51.
Hamlington  JDJones  CMcIntosh  I Twenty-two novel LMX1B mutations identified in nail patella syndrome (NPS) patients. Hum Mutat 2001;18458
PubMedArticle
52.
Yardley  JLeroy  BPHart-Holden  N  et al.  Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci 2004;453683- 3689
PubMedArticle
53.
Lines  MAKozlowski  KWalter  MA Molecular genetics of Axenfeld-Rieger malformations. Hum Mol Genet 2002;111177- 1184
PubMedArticle
54.
Gould  DBJohn  SWM Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum Mol Genet 2002;111185- 1193
PubMedArticle
55.
Trainor  PATam  PP Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 1995;1212569- 2582
PubMed
56.
Beebe  DCCoats  JM The lens organizes the anterior segment: specification of neural crest cell differentiation in the avian eye. Dev Biol 2000;220424- 431
PubMedArticle
57.
Fuhrmann  SLevine  EMReh  TA Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 2000;1274599- 4609
PubMed
58.
Vincent  ALBillingsley  GBuys  Y  et al.  Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet 2002;70448- 460
PubMedArticle
59.
Kulkarni  NHKaravanich  CAtchley  WAnholt  R Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genet Res 2000;7641- 50
PubMedArticle
60.
Lam  DSLeung  YFChua  JK  et al.  Truncations in the TIGR gene in individuals with and without primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2000;411386- 1391
PubMed
61.
Wiggs  JLVollrath  D Molecular and clinical evaluation of a patient hemizygous for TIGR/MYOC. Arch Ophthalmol 2001;1191674- 1678
PubMedArticle
62.
Kim  BSSavinova  OVReedy  MV  et al.  Targeted disruption of the myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Mol Cell Biol 2001;217707- 7713
PubMedArticle
63.
Ueda  JWentz-Hunter  KYue  BY Distribution of myocilin and extracellular matrix components in the juxtacanalicular tissue of human eyes. Invest Ophthalmol Vis Sci 2002;431068- 1076
PubMed
64.
Filla  MSLiu  XNguyen  TD  et al.  In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibronectin. Invest Ophthalmol Vis Sci 2002;43151- 161
PubMed
65.
Jacobson  NAndrews  MShepard  AR  et al.  Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet 2001;10117- 125
PubMedArticle
66.
Caballero  MRowlette  LLBorras  T Altered secretion of a TIGR/MYOC mutant lacking the olfactomedin domain. Biochim Biophys Acta 2000;1502447- 460
PubMedArticle
67.
Zillig  MWurm  AGrehn  FRussell  PTamm  ER Overexpression and properties of wild-type and Tyr437His mutated myocilin in the eyes of transgenic mice. Invest Ophthalmol Vis Sci 2005;46223- 234
PubMedArticle
68.
Zhou  ZVollrath  D A cellular assay distinguishes normal and mutant TIGR/myocilin protein. Hum Mol Genet 1999;82221- 2228
PubMedArticle
69.
Liu  YVollrath  D Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma. Hum Mol Genet 2004;131193- 1204
PubMedArticle
70.
Gobeil  SRodrigue  MAMoisan  S  et al.  Intracellular sequestration of hetero-oligomers formed by wild-type and glaucoma-causing myocilin mutants. Invest Ophthalmol Vis Sci 2004;453560- 3567
PubMedArticle
71.
Gobeil  SLetartre  LRaymond  V Functional analysis of the glaucoma-causing TIGR/myocilin protein: integrity of amino-terminal coiled-coil regions and olfactomedin homology domain is essential for extracellular adhesion and secretion. Exp Eye Res 2006;821017- 1029
PubMedArticle
72.
Vollrath  DLiu  Y Temperature sensitive secretion of mutant myocilins. Exp Eye Res 2006;821030- 1036
PubMedArticle
73.
Aroca-Aguilar  JDSanchez-Sanchez  FGhosh  SCoca-Prados  MEscribano  J Myocilin mutations causing glaucoma inhibit the intracellular endoprotelytic cleavage of myocilin between animo acids Arg 226 and Ile 227. J Biol Chem 2005;28021043- 21051
PubMedArticle
74.
Finzi  SPinto  CFWiggs  JL Molecular and clinical characterization of a patient with a chromosome 4p deletion, Wolf-Hirschhorn syndrome, and congenital glaucoma. Ophthalmic Genet 2001;2235- 41
PubMedArticle
75.
Ferguson  JG  JrHicks  EL Rieger's anomaly and glaucoma associated with partial trisomy 16q: case report. Arch Ophthalmol 1987;105323
PubMedArticle
76.
Kogame  KFukuhara  TMaeda  AKudo  Y A partial short arm deletion of chromosome 20:46, XY, del(20)(p11). Jinrui Idengaku Zasshi 1978;23153- 160
PubMedArticle
77.
Furuta  YHogan  BL BMP4 is essential for lens induction in the mouse embryo. Genes Dev 1998;123764- 3775
PubMedArticle
78.
Chang  BSmith  RSPeters  M  et al.  Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure. BMC Genet 2001;218
PubMedArticle
79.
Blixt  AMahlapuu  MAitola  MPelto-Huikko  MEnerback  SCarlsson  P A forkhead gene, FoxE3 is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev 2000;14245- 254
PubMed
80.
Saika  SLiu  CYAzhar  M  et al.  TGFbeta2 in corneal morphogenesis during mouse embryonic development. Dev Biol 2001;240419- 432
PubMedArticle
81.
John  SWSmith  RSSavinova  OV  et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 1998;39951- 962
PubMed
82.
Chang  BSmith  RSHawes  NL  et al.  Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 1999;21405- 409
PubMedArticle
83.
Anderson  MGSmith  RSHawes  NL  et al.  Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 2002;3081- 85
PubMedArticle
84.
Sundin  OHLeppert  GSSilva  ED  et al.  Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci U S A 2005;1029553- 9558
PubMedArticle
85.
Bruttini  MLongo  IFrezzotti  P  et al.  Mutations in the myocilin gene in families with primary open-angle glaucoma and juvenile open-angle glaucoma. Arch Ophthalmol 2003;1211034- 1038
PubMedArticle
86.
Wiggs  JLLynch  SYnagi  G  et al.  A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. Am J Hum Genet 2004;741314- 1320
PubMedArticle
87.
Pang  CPFan  BJCanlas  O  et al.  A genome-wide scan maps a novel juvenile-onset primary open angle glaucoma locus to chromosome 5q. Mol Vis 2006;1285- 92
PubMed
88.
Budde  WMJonas  JB Family history of glaucoma in the primary and secondary open-angle glaucomas. Graefes Arch Clin Exp Ophthalmol 1999;237554- 557
PubMedArticle
89.
Damji  KFBains  HSAmjadi  K  et al.  Familial occurrence of pseudoexfoliation in Canada. Can J Ophthalmol 1999;34257- 265
PubMed
90.
Allingham  RRLoftsdottir  MGottfredsdottir  MS  et al.  Pseudoexfoliation syndrome in Icelandic families. Br J Ophthalmol 2001;85702- 707
PubMedArticle
91.
Anderson  DRDrance  SMSchulzer  MCollaborative Normal-Tension Glaucoma Study Group, Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol 2003;136820- 829
PubMedArticle
92.
Aung  TOcaka  LEbenezer  ND  et al.  A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene. Hum Genet 2002;11052- 56
PubMedArticle
93.
Yan  XTezel  GWax  MBEdward  DP Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol 2000;118666- 673
PubMedArticle
94.
Yuan  LNeufeld  AH Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000;3242- 50
PubMedArticle
95.
Alward  WLKwon  YHKawase  K  et al.  Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. Am J Ophthalmol 2003;136904- 910
PubMedArticle
96.
Tang  SToda  YKashiwagi  K  et al.  The association between Japanese primary open-angle glaucoma and normal tension glaucoma patients and the optineurin gene. Hum Genet 2003;113276- 279
PubMedArticle
97.
Aung  TRezaie  TOkada  K  et al.  Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol Vis Sci 2005;462816- 2822
PubMedArticle
98.
Hauser  MAFigueiredo Sena  DFlor  JD  et al.  Distribution of optineurin sequence variations in an ethnically diverse population of low tension glaucoma patients from the United States. J Glaucoma 2006;15358- 363
PubMedArticle
99.
Ariani  FLongo  IFrezzotti  P  et al.  Optineurin gene is not involved in the common high-tension form of primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2006;2441077- 1082
PubMedArticle
100.
Golubnitschaja-Labudova  OLiu  RDecker  CZhu  PHaefliger  IOFlammer  J Altered gene expression in lymphocytes of patients with normal-tension glaucoma. Curr Eye Res 2000;21867- 876
PubMedArticle
101.
Alward  WLFingert  JHCoote  MA  et al.  Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med 1998;3381022- 1027
PubMedArticle
102.
Angius  ASpinelli  PGhilotti  G  et al.  Myocilin Gln368stop mutation and advanced age as risk factors for late-onset primary open-angle glaucoma. Arch Ophthalmol 2000;118674- 679
PubMedArticle
103.
Baird  PNRichardson  AJMackey  DACraig  JEFaucher  MRaymond  V A common disease haplotype for the Q368STOP mutation of the myocilin gene in Australian and Canadian glaucoma families. Am J Ophthalmol 2005;140760- 762
PubMedArticle
104.
Monemi  SSpaeth  GDaSilva  A  et al.  Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet 2005;14725- 733
PubMedArticle
105.
Hewitt  AWDimasi  DPMackey  DACraig  JE A glaucoma case-control study of the WDR36 gene D658G sequence variant. Am J Ophthalmol 2006;142324- 325
PubMedArticle
106.
Mao  MBiery  MCKobayashi  SV  et al.  T lymphocyte activation gene identification by coregulated expression on DNA microarrays. Genomics 2004;83989- 999
PubMedArticle
107.
Yang  JPatil  RVYu  HGordon  MWax  MB T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol 2001;131421- 426
PubMedArticle
108.
Hauser  MAAllingham  RRLinkroum  K  et al.  Distribution of WDR36 DNA sequence variants in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2006;472542- 2546
PubMedArticle
109.
Stoilova  DChild  ATrifan  OCrick  RCoakes  RSarfarazi  M Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics 1996;36142- 150
PubMedArticle
110.
Wirtz  MKSamples  JKramer  P  et al.  Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am J Hum Genet 1997;60296- 304
PubMed
111.
Trifan  OCTraboulsi  EStoilova  D  et al.  A third locus (GLC1D) for adult-onsest primary open-angle glaucoma maps to the 8q23 region. Am J Ophthalmol 1998;12617- 28
PubMedArticle
112.
Sarfarazi  MChild  AStoilova  D  et al.  Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet 1998;62641- 652
PubMedArticle
113.
Wirtz  MKSamples  JRust  K  et al.  GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch Ophthalmol 1999;117237- 241
PubMedArticle
114.
Allingham  RRWiggs  JLHauser  E  et al.  Early adult-onset POAG linked to 15q11-13 using ordered subsets analysis. Invest Ophthalmol Vis Sci 2005;462002- 2005
PubMedArticle
115.
Woodroffe  AKrafchak  CMFuse  N  et al.  Ordered subset analysis supports a glaucoma locus at GLC1I on chromosome 15 in families with earlier adult age at diagnosis. Exp Eye Res 2006;821068- 1074
PubMedArticle
116.
Nemesure  BJiao  XHe  Q  et al. Barbados Family Study Group, A genome-wide scan for primary open-angle glaucoma (POAG): the Barbados Family Study of Open-Angle Glaucoma. Hum Genet 2003;112600- 609
PubMed
117.
Rotimi  CNChen  GAdeyemo  AA  et al.  Genomewide scan and fine mapping of quantitative trait loci for intraocular pressure on 5q and 14q in West Africans. Invest Ophthalmol Vis Sci 2006;473262- 3267
PubMedArticle
118.
Leibovitch  IKurtz  SShemesh  G  et al.  Hyperhomocystinemia in pseudoexfoliation glaucoma. J Glaucoma 2003;1236- 39
PubMedArticle
119.
Bleich  SRoedl  JVon Ahsen  N  et al.  Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am J Ophthalmol 2004;138162- 164
PubMedArticle
120.
Altintas  OMaral  HYuksel  NKarabas  VLDillioglugil  MOCaglar  Y Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2005;243677- 683
PubMedArticle
121.
Newman  NJ Hereditary optic neuropathies: from the mitochondria to the optic nerve. Am J Ophthalmol 2005;140517- 523
PubMed
122.
Valentino  MLBarboni  PGhelli  A  et al.  The ND1 gene of complex I is a mutational hot spot for Leber's hereditary optic neuropathy. Ann Neurol 2004;56631- 641
PubMedArticle
123.
Olichon  AGuillou  EDelettre  C  et al.  Mitochondrial dynamics and disease, OPA1. Biochim Biophys Acta 2006;1763500- 509
PubMedArticle
124.
Pasquale  LRKang  JHManson  JEWillett  WCRosner  BAHankinson  SE Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology 2006;1131081- 1086
PubMedArticle
125.
Zhang  XClark  AFYorio  T Regulation of glucocorticoid responsiveness in glaucomatous trabecular meshwork cells by glucocorticoid receptor-beta. Invest Ophthalmol Vis Sci 2005;464607- 4616
PubMedArticle
×