[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.211.168.204. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Download PDF
Figure 1.
Representative slitlamp photographs of human eyes with posterior capsular opacification (PCO). A, Diffuse overall illumination and high magnification showing a large PCO blocking the visual axis. B, Optical sectioning and background illumination showing that the PCO is located on the central posterior lens capsule. C, Diffuse overall illumination and low magnification showing that the central visual axis is obscured.

Representative slitlamp photographs of human eyes with posterior capsular opacification (PCO). A, Diffuse overall illumination and high magnification showing a large PCO blocking the visual axis. B, Optical sectioning and background illumination showing that the PCO is located on the central posterior lens capsule. C, Diffuse overall illumination and low magnification showing that the central visual axis is obscured.

Figure 2.
Schematic representation of current strategies toward finding a safe, effective, and less expensive way to eradicate posterior capsular opacification (PCO). IOL indicates intraocular lens.

Schematic representation of current strategies toward finding a safe, effective, and less expensive way to eradicate posterior capsular opacification (PCO). IOL indicates intraocular lens.

Figure 3.
Schematic representation of the mechanism of posterior capsular opacification (PCO) development. Lens epithelial cells (LECs) left behind in the capsular bag after cataract surgery proliferate, migrate, convert from epithelial to mesenchymal cells (EMT), deposit collagen, and generate lens fibers, leading to PCO development.

Schematic representation of the mechanism of posterior capsular opacification (PCO) development. Lens epithelial cells (LECs) left behind in the capsular bag after cataract surgery proliferate, migrate, convert from epithelial to mesenchymal cells (EMT), deposit collagen, and generate lens fibers, leading to PCO development.

Figure 4.
The proteasome inhibitor MG132 inhibits lens epithelial cell (LEC) proliferation, migration, and epithelial-to-mesenchymal transition (EMT) marker production in primary human LECs. A, Cell proliferation assay was performed by treating cells with transforming growth factor β (TGF-β) (1 ng/mL), fibroblast growth factor 2 (FGF-2) (20 ng/mL), or MG132 (5μM or 10μM), alone or in combination. After 12 hours of incubation, proliferation was evaluated with a colorimetric WST-1 assay. B, Cell migration assay was performed using a transwell chamber assay. Serum-starved cells were treated with MG132 (10μM) or matrix metalloproteinase inhibitor GM600 (GM, 10μM) and added in upper polycarbonate membrane inserts in 24-well plates. Lower wells contained Dulbecco Modified Eagle Medium with or without 20% fetal bovine serum (FBS), indicated in parentheses, as chemoattractant. After 6 hours of incubation, migratory cells were stained and quantitated by absorption at 560 nm. C, Expression of the EMT marker α-smooth muscle actin (α-SMA) was observed by means of reverse-transcriptase polymerase chain reaction analysis after 16 hours of treatment with TGF-β (1 ng/mL) and MG132 (2.5μM), alone or in combination. OD indicates optical density; V, vehicle control. Reprinted from Hosler et aland Awasthi et alwith permission from the Association for Research in Vision and Ophthalmology.

The proteasome inhibitor MG132 inhibits lens epithelial cell (LEC) proliferation, migration, and epithelial-to-mesenchymal transition (EMT) marker production in primary human LECs. A, Cell proliferation assay was performed by treating cells with transforming growth factor β (TGF-β) (1 ng/mL), fibroblast growth factor 2 (FGF-2) (20 ng/mL), or MG132 (5μM or 10μM), alone or in combination. After 12 hours of incubation, proliferation was evaluated with a colorimetric WST-1 assay. B, Cell migration assay was performed using a transwell chamber assay. Serum-starved cells were treated with MG132 (10μM) or matrix metalloproteinase inhibitor GM600 (GM, 10μM) and added in upper polycarbonate membrane inserts in 24-well plates. Lower wells contained Dulbecco Modified Eagle Medium with or without 20% fetal bovine serum (FBS), indicated in parentheses, as chemoattractant. After 6 hours of incubation, migratory cells were stained and quantitated by absorption at 560 nm. C, Expression of the EMT marker α-smooth muscle actin (α-SMA) was observed by means of reverse-transcriptase polymerase chain reaction analysis after 16 hours of treatment with TGF-β (1 ng/mL) and MG132 (2.5μM), alone or in combination. OD indicates optical density; V, vehicle control. Reprinted from Hosler et al127and Awasthi et al128,129with permission from the Association for Research in Vision and Ophthalmology.

1.
Beebe  DC The lens. Kaufman  PLAlm  AAdler's Physiology of the Eye: Clinical Application. 10th ed. St Louis, MO Mosby–Year Book2003;117- 158
2.
Apple  DJSolomon  KDTetz  MR  et al.  Posterior capsule opacification. Surv Ophthalmol 1992;37 (2) 73- 116
PubMedArticle
3.
Pandey  SKApple  DJWerner  LMaloof  AJMilverton  EJ Posterior capsule opacification: a review of the aetiopathogenesis, experimental and clinical studies and factors for prevention. Indian J Ophthalmol 2004;52 (2) 99- 112
PubMed
4.
Spalton  DJ Posterior capsular opacification after cataract surgery. Eye 1999;13 (pt 3b) 489- 492
PubMedArticle
5.
Duncan  GWang  LNeilson  GJWormstone  IM Lens cell survival after exposure to stress in the closed capsular bag. Invest Ophthalmol Vis Sci 2007;48 (6) 2701- 2707
PubMedArticle
6.
Clark  DS Posterior capsule opacification. Curr Opin Ophthalmol 2000;11 (1) 56- 64
PubMedArticle
7.
McDonnell  PJZarbin  MAGreen  WR Posterior capsule opacification in pseudophakic eyes. Ophthalmology 1983;90 (12) 1548- 1553
PubMedArticle
8.
Binkhorst  CDGobin  MH Injuries to the eye with lens opacity in young children. Ophthalmologica 1964;148169- 183
PubMedArticle
9.
Hiles  DAWallar  PH Phacoemulsification versus aspiration in infantile cataract surgery. Ophthalmic Surg 1974;5 (2) 13- 16
PubMed
10.
Apple  DJPeng  QVisessook  N  et al.  Eradication of posterior capsule opacification: documentation of a marked decrease in Nd:YAG laser posterior capsulotomy rates noted in an analysis of 5416 pseudophakic human eyes obtained postmortem. Ophthalmology 2001;108 (3) 505- 518
PubMedArticle
11.
Aslam  TMDevlin  HDhillon  B Use of Nd:YAG laser capsulotomy. Surv Ophthalmol 2003;48 (6) 594- 612
PubMedArticle
12.
Trinavarat  AAtchaneeyasakul  LUdompunturak  S Neodymium:YAG laser damage threshold of foldable intraocular lenses. J Cataract Refract Surg 2001;27 (5) 775- 780
PubMedArticle
13.
Nagamoto  TEguchi  G Effect of intraocular lens design on migration of lens epithelial cells onto the posterior capsule. J Cataract Refract Surg 1997;23 (6) 866- 872
PubMedArticle
14.
Peng  QVisessook  NApple  DJ  et al.  Surgical prevention of posterior capsule opacification, part 3: intraocular lens optic barrier effect as a second line of defense. J Cataract Refract Surg 2000;26 (2) 198- 213
PubMedArticle
15.
Cobo  LMOhsawa  EChandler  DArguello  RGeorge  G Pathogenesis of capsular opacification after extracapsular cataract extraction: an animal model. Ophthalmology 1984;91 (7) 857- 863
PubMedArticle
16.
Wormstone  IM Posterior capsule opacification: a cell biological perspective. Exp Eye Res 2002;74 (3) 337- 347
PubMedArticle
17.
Saika  S Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog Retin Eye Res 2004;23 (3) 283- 305
PubMedArticle
18.
Meacock  WRSpalton  DJStanford  MR Role of cytokines in the pathogenesis of posterior capsule opacification. Br J Ophthalmol 2000;84 (3) 332- 336
PubMedArticle
19.
Nishi  O Posterior capsule opacification, part 1: experimental investigations. J Cataract Refract Surg 1999;25 (1) 106- 117
PubMedArticle
20.
Wallentin  NWickström  KLundberg  C Effect of cataract surgery on aqueous TGF-β and lens epithelial cell proliferation. Invest Ophthalmol Vis Sci 1998;39 (8) 1410- 1418
PubMed
21.
Wormstone  IMLiu  CSRakic  JMMarcantonio  JMVrensen  GFDuncan  G Human lens epithelial cell proliferation in a protein-free medium. Invest Ophthalmol Vis Sci 1997;38 (2) 396- 404
PubMed
22.
Duncan  GWormstone  IMLiu  CSMarcantonio  JMDavies  PD Thapsigargin-coated intraocular lenses inhibit human lens cell growth. Nat Med 1997;3 (9) 1026- 1028
PubMedArticle
23.
Massagué  J The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6597- 641
PubMedArticle
24.
Liu  JHales  AMChamberlain  CG McAvoy  JW Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor β. Invest Ophthalmol Vis Sci 1994;35 (2) 388- 401
PubMed
25.
Hales  AMChamberlain  CG McAvoy  JW Cataract induction in lenses cultured with transforming growth factor-β. Invest Ophthalmol Vis Sci 1995;36 (8) 1709- 1713
PubMed
26.
Saika  SOkada  YMiyamoto  TOhnishi  YOoshima  A McAvoy  JW Smad translocation and growth suppression in lens epithelial cells by endogenous TGFβ2 during wound repair. Exp Eye Res 2001;72 (6) 679- 686
PubMedArticle
27.
Saika  SMiyamoto  TIshida  I  et al.  TGFβ-Smad signalling in postoperative human lens epithelial cells. Br J Ophthalmol 2002;86 (12) 1428- 1433
PubMedArticle
28.
Kurosaka  DNagamoto  T Inhibitory effect of TGF-β2 in human aqueous humor on bovine lens epithelial cell proliferation. Invest Ophthalmol Vis Sci 1994;35 (9) 3408- 3412
PubMed
29.
Gotoh  NPerdue  NRMatsushima  HSage  EHYan  QClark  JI An in vitro model of posterior capsular opacity: SPARC and TGF-β2 minimize epithelial-to-mesenchymal transition in lens epithelium. Invest Ophthalmol Vis Sci 2007;48 (10) 4679- 4686
PubMedArticle
30.
McAvoy  JWChamberlain  CG Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 1989;107 (2) 221- 228
PubMed
31.
Tanaka  TSaika  SOhnishi  Y  et al.  Fibroblast growth factor 2: roles of regulation of lens cell proliferation and epithelial-mesenchymal transition in response to injury. Mol Vis 2004;10462- 467
PubMed
32.
Mansfield  KJCerra  AChamberlain  CG FGF-2 counteracts loss of TGFβ affected cells from rat lens explants: implications for PCO (after cataract). Mol Vis 2004;10521- 532
PubMed
33.
Wormstone  IMTamiya  SMarcantonio  JMReddan  JR Hepatocyte growth factor function and c-Met expression in human lens epithelial cells. Invest Ophthalmol Vis Sci 2000;41 (13) 4216- 4222
PubMed
34.
Choi  JPark  SYJoo  CK Hepatocyte growth factor induces proliferation of lens epithelial cells through activation of ERK1/2 and JNK/SAPK. Invest Ophthalmol Vis Sci 2004;45 (8) 2696- 2704
PubMedArticle
35.
Nishi  ONishi  KImanishi  M Synthesis of interleukin-1 and prostaglandin E2 by lens epithelial cells of human cataracts. Br J Ophthalmol 1992;76 (6) 338- 341
PubMedArticle
36.
Nishi  ONishi  KFujiwara  TShirasawa  EOhmoto  Y Effects of the cytokines on the proliferation of and collagen synthesis by human cataract lens epithelial cells. Br J Ophthalmol 1996;80 (1) 63- 68
PubMedArticle
37.
May  LTTorcia  GCozzolino  F  et al.  Interleukin-6 gene expression in human endothelial cells: RNA start sites, multiple IL-6 proteins and inhibition of proliferation. Biochem Biophys Res Commun 1989;159 (3) 991- 998
PubMedArticle
38.
Jiang  QZhou  CBi  ZWan  Y EGF-induced cell migration is mediated by ERK and PI3K/AKT pathways in cultured human lens epithelial cells. J Ocul Pharmacol Ther 2006;22 (2) 93- 102
PubMedArticle
39.
Beck  RNebe  BGuthoff  RRychly  J Inhibition of lens epithelial cell adhesion by the calcium antagonist Mibefradil correlates with impaired integrin distribution and organization of the cytoskeleton. Graefes Arch Clin Exp Ophthalmol 2001;239 (6) 452- 458
PubMedArticle
40.
Sugita  MKato  SSugita  GOshika  T Migration of lens epithelial cells through haptic root of single-piece acrylic-foldable intraocular lens. Am J Ophthalmol 2004;137 (2) 377- 379
PubMedArticle
41.
Wong  TTDaniels  JTCrowston  JGKhaw  PT MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br J Ophthalmol 2004;88 (7) 868- 872
PubMedArticle
42.
Lemaître  VD’Armiento  J Matrix metalloproteinases in development and disease. Birth Defects Res C Embryo Today 2006;78 (1) 1- 10
PubMedArticle
43.
Dewey  S Posterior capsule opacification. Curr Opin Ophthalmol 2006;17 (1) 45- 53
PubMedArticle
44.
Wilson  ME  JrTrivedi  RH The ongoing battle against posterior capsular opacification. Arch Ophthalmol 2007;125 (4) 555- 556
PubMedArticle
45.
BenEzra  DCohen  ERosa  L Traumatic cataract in children: correction of aphakia by contact lens or intraocular lens. Am J Ophthalmol 1997;123 (6) 773- 782
PubMed
46.
Atkinson  CSHiles  DA Treatment of secondary posterior capsular membranes with the Nd:YAG laser in a pediatric population. Am J Ophthalmol 1994;118 (4) 496- 501
PubMed
47.
Gimbel  HVNeuhann  T Development, advantages, and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg 1990;16 (1) 31- 37
PubMedArticle
48.
Gimbel  HV Posterior continuous curvilinear capsulorhexis and optic capture of the intraocular lens to prevent secondary opacification in pediatric cataract surgery. J Cataract Refract Surg 1997;23 ((suppl 1)) 652- 656
PubMedArticle
49.
Luo  YLu  YLu  GWang  M Primary posterior capsulorhexis with anterior vitrectomy in preventing posterior capsule opacification in pediatric cataract microsurgery. Microsurgery 2008;28 (2) 113- 116
PubMedArticle
50.
Ram  JBrar  GSKaushik  SGupta  AGupta  A Role of posterior capsulotomy with vitrectomy and intraocular lens design and material in reducing posterior capsule opacification after pediatric cataract surgery. J Cataract Refract Surg 2003;29 (8) 1579- 1584
PubMedArticle
51.
Mackool  RJChhatiawala  H Pediatric cataract surgery and intraocular lens implantation: a new technique for preventing or excising postoperative secondary membranes. J Cataract Refract Surg 1991;17 (1) 62- 66
PubMedArticle
52.
Guo  SWagner  RSCaputo  A Management of the anterior and posterior lens capsules and vitreous in pediatric cataract surgery. J Pediatr Ophthalmol Strabismus 2004;41 (6) 330- 337, 356-357
PubMed
53.
Frezzotti  RCaporossi  AMastrangelo  D  et al.  Pathogenesis of posterior capsular opacification, II: histopathological and in vitro culture findings. J Cataract Refract Surg 1990;16 (3) 353- 360
PubMedArticle
54.
Nishi  ONishi  K Intercapsular cataract surgery with lens epithelial cell removal, III: long-term follow-up of posterior capsular opacification. J Cataract Refract Surg 1991;17 (2) 218- 220
PubMedArticle
55.
Hara  THara  T Observations on lens epithelial cells and their removal in anterior capsule specimens. Arch Ophthalmol 1988;106 (12) 1683- 1687
PubMedArticle
56.
Nishi  O Intercapsular cataract surgery with lens epithelial cell removal, II: effect on prevention of fibrinous reaction. J Cataract Refract Surg 1989;15 (3) 301- 303
PubMedArticle
57.
Nishi  O Intercapsular cataract surgery with lens epithelial cell removal, I: without capsulorhexis. J Cataract Refract Surg 1989;15 (3) 297- 300
PubMedArticle
58.
Mathey  CFKohnen  TBEnsikat  HJKoch  HR Polishing methods for the lens capsule: histology and scanning electron microscopy. J Cataract Refract Surg 1994;20 (1) 64- 69
PubMedArticle
59.
Nishi  O Lens epithelial cell removal by ultrasound: access to 12 o’clock. J Cataract Refract Surg 1989;15 (6) 704- 706
PubMedArticle
60.
Nishi  O Removal of lens epithelial cells by ultrasound in endocapsular cataract surgery. Ophthalmic Surg 1987;18 (8) 577- 580
PubMed
61.
Green  WTBoase  DL How clean is your capsule? Eye 1989;3 (pt 6) 678- 684
PubMedArticle
62.
Humphry  RCDavies  EGJacob  TJThompson  GM The human anterior lens capsule: an attempted chemical debridement of epithelial cells by ethylenediaminetetracetic acid (EDTA) and trypsin. Br J Ophthalmol 1988;72 (6) 406- 408
PubMedArticle
63.
Nishi  ONishi  KHikida  M Removal of lens epithelial cells by dispersion with enzymatic treatment followed by aspiration. Ophthalmic Surg 1991;22 (8) 444- 450
PubMed
64.
Nishi  ONishi  KHikita  M A new approach to lens epithelial cell removal: dispersion aspiration. Dev Ophthalmol 1991;22101- 105
PubMed
65.
Nishi  ONishi  KHikida  M Removal of lens epithelial cells following loosening of the junctional complex. J Cataract Refract Surg 1993;19 (1) 56- 61
PubMedArticle
66.
Khalifa  MA Polishing the posterior capsule after extracapsular extraction of senile cataract. J Cataract Refract Surg 1992;18 (2) 170- 173
PubMedArticle
67.
Dahan  EAllarakhia  L Irrigation, aspiration, and polishing cannula. J Cataract Refract Surg 1991;17 (1) 97- 98
PubMedArticle
68.
Turtz  AI Sandblasted end-cutting tip for posterior capsular vacuuming and polishing. J Am Intraocul Implant Soc 1985;11 (1) 73
PubMedArticle
69.
Nishi  ONakai  YMizumoto  YYamada  Y Capsule opacification after refilling the capsule with an inflatable endocapsular balloon. J Cataract Refract Surg 1997;23 (10) 1548- 1555
PubMedArticle
70.
Liu  CSWormstone  IMDuncan  GMarcantonio  JMWebb  SFDavies  PD A study of human lens cell growth in vitro: a model for posterior capsule opacification. Invest Ophthalmol Vis Sci 1996;37 (5) 906- 914
PubMed
71.
O’Donnell  FE  JrSantos  B Posterior capsular-zonular disruption in planned extracapsular surgery. Arch Ophthalmol 1985;103 (5) 652- 653
PubMedArticle
72.
Osher  RHCionni  RJ The torn posterior capsule: its intraoperative behavior, surgical management, and long-term consequences. J Cataract Refract Surg 1990;16 (4) 490- 494
PubMedArticle
73.
Davidson  MGMorgan  DK McGahan  MC Effect of surgical technique on in vitro posterior capsule opacification. J Cataract Refract Surg 2000;26 (10) 1550- 1554
PubMedArticle
74.
Fine  IH Cortical cleaving hydrodissection. J Cataract Refract Surg 1992;18 (5) 508- 512
PubMedArticle
75.
Yeoh  R The “pupil snap” sign of posterior capsule rupture with hydrodissection in phacoemulsification. Br J Ophthalmol 1996;80 (5) 486
PubMedArticle
76.
Ota  IMiyake  SMiyake  K Dislocation of the lens nucleus into the vitreous cavity after standard hydrodissection. Am J Ophthalmol 1996;121 (6) 706- 708
PubMed
77.
Maloof  ANeilson  GMilverton  EJPandey  SK Selective and specific targeting of lens epithelial cells during cataract surgery using sealed-capsule irrigation. J Cataract Refract Surg 2003;29 (8) 1566- 1568
PubMedArticle
78.
Agarwal  AAgarwal  SAgarwal  AMaloof  A Sealed-capsule irrigation device. J Cataract Refract Surg 2003;29 (12) 2274- 2276
PubMedArticle
79.
Maloof  AJPandey  SKNeilson  GMilverton  EJ Selective death of lens epithelial cells using demineralized water and Triton X-100 with PerfectCapsule sealed capsule irrigation: a histological study in rabbit eyes. Arch Ophthalmol 2005;123 (10) 1378- 1384
PubMedArticle
80.
Rabsilber  TMLimberger  IJReuland  AJHolzer  MPAuffarth  GU Secondary cataract prevention. Ophthalmology 2007;114 (2) 397- 398
PubMedArticle
81.
Rabsilber  TMLimberger  IJReuland  AJHolzer  MPAuffarth  GU Long-term results of sealed capsule irrigation using distilled water to prevent posterior capsule opacification: a prospective clinical randomised trial. Br J Ophthalmol 2007;91 (7) 912- 915
PubMedArticle
82.
Hara  THara  THara  T Preventing posterior capsular opacification with an endocapsular equator ring in a young human eye: 2-year follow-up. Arch Ophthalmol 2007;125 (4) 483- 486
PubMedArticle
83.
Dick  HB Closed foldable capsular rings. J Cataract Refract Surg 2005;31 (3) 467- 471
PubMedArticle
84.
Dick  HBSchwenn  OPfeiffer  N Implantation of the modified endocapsular bending ring in pediatric cataract surgery using a viscoadaptive viscoelastic agent. J Cataract Refract Surg 1999;25 (11) 1432- 1436
PubMedArticle
85.
Werner  L Biocompatibility of intraocular lens materials. Curr Opin Ophthalmol 2008;19 (1) 41- 49
PubMedArticle
86.
Christ  FRFencil  DAVan Gent  SKnight  PM Evaluation of the chemical, optical, and mechanical properties of elastomeric intraocular lens materials and their clinical significance. J Cataract Refract Surg 1989;15 (2) 176- 184
PubMedArticle
87.
Christ  FRBuchen  SYDeacon  J  et al.  Biomaterials used for intraocular lenses. Wise  DLTrantolo  DJAltobelli  DEEncyclopedic Handbook of Biomaterials and Bioengineering, B Applications. Vol 2. New York, NY Marcel Dekker1995;1261- 1313
88.
Schmidbauer  JMVargas  LGApple  DJ  et al.  Evaluation of neodymium:yttrium-aluminum-garnet capsulotomies in eyes implanted with AcrySof intraocular lenses. Ophthalmology 2002;109 (8) 1421- 1426
PubMedArticle
89.
Linnola  RJWerner  LPandey  SKEscobar-Gomez  MZnoiko  SLApple  DJ Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes, part 1: histological sections. J Cataract Refract Surg 2000;26 (12) 1792- 1806
PubMedArticle
90.
Linnola  RJWerner  LPandey  SKEscobar-Gomez  MZnoiko  SLApple  DJ Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes, part 2: explanted intraocular lenses. J Cataract Refract Surg 2000;26 (12) 1807- 1818
PubMedArticle
91.
Hollick  EJSpalton  DJUrsell  PG Surface cytologic features on intraocular lenses: can increased biocompatibility have disadvantages? Arch Ophthalmol 1999;117 (7) 872- 878
PubMedArticle
92.
Müllner-Eidenböck  AAmon  MSchauersberger  JAbela  CPetternel  VZidek  T Cellular reaction on the anterior surface of 4 types of intraocular lenses. J Cataract Refract Surg 2001;27 (5) 734- 740
PubMedArticle
93.
Schauersberger  JAmon  MKruger  AAbela  CSchild  GKolodjaschna  J Lens epithelial cell outgrowth on 3 types of intraocular lenses. J Cataract Refract Surg 2001;27 (6) 850- 854
PubMedArticle
94.
Tognetto  DToto  LBallone  ERavalico  G Biocompatibility of hydrophilic intraocular lenses. J Cataract Refract Surg 2002;28 (4) 644- 651
PubMedArticle
95.
Hollick  EJSpalton  DJUrsell  PGMeacock  WRBarman  SABoyce  JF Posterior capsular opacification with hydrogel, polymethylmethacrylate, and silicone intraocular lenses: two-year results of a randomized prospective trial. Am J Ophthalmol 2000;129 (5) 577- 584
PubMedArticle
96.
Hayashi  KHayashi  HNakao  FHayashi  F Anterior capsule contraction and intraocular lens decentration and tilt after hydrogel lens implantation. Br J Ophthalmol 2001;85 (11) 1294- 1297
PubMedArticle
97.
Yuan  ZSun  HYuan  J A 1-year study on carbon, titanium surface-modified intraocular lens in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 2004;242 (12) 1008- 1013
PubMedArticle
98.
Larsson  RSelén  GBjördklund  HFagerholm  P Intraocular PMMA lenses modified with surface-immobilized heparin: evaluation of biocompatibility in vitro and in vivo. Biomaterials 1989;10 (8) 511- 516
PubMedArticle
99.
Werner  LLegeais  JMNagel  MDRenard  G Evaluation of teflon-coated intraocular lenses in an organ culture method. J Biomed Mater Res 1999;46 (3) 347- 354
PubMedArticle
100.
Hettlich  HJOtterbach  FMittermayer  CKaufmann  RKlee  D Plasma-induced surface modifications on silicone intraocular lenses: chemical analysis and in vitro characterization. Biomaterials 1991;12 (5) 521- 524
PubMedArticle
101.
Yammine  PPavon-Djavid  GHelary  GMigonney  V Surface modification of silicone intraocular implants to inhibit cell proliferation. Biomacromolecules 2005;6 (5) 2630- 2637
PubMedArticle
102.
Yuen  CWilliams  RBatterbury  MGrierson  I Modification of the surface properties of a lens material to influence posterior capsular opacification. Clin Experiment Ophthalmol 2006;34 (6) 568- 574
PubMedArticle
103.
Bozukova  DPagnoulle  CDe Pauw-Gillet  MC  et al.  Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules 2007;8 (8) 2379- 2387
PubMedArticle
104.
Hollick  EJSpalton  DJMeacock  WR The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol 1999;128 (3) 271- 279
PubMedArticle
105.
Hollick  EJSpalton  DJUrsell  PG  et al.  The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. Ophthalmology 1999;106 (1) 49- 54
PubMedArticle
106.
Nishi  ONishi  KSakanishi  K Inhibition of migrating lens epithelial cells at the capsular bend created by the rectangular optic edge of a posterior chamber intraocular lens. Ophthalmic Surg Lasers 1998;29 (7) 587- 594
PubMed
107.
Nishi  ONishi  K Preventing posterior capsule opacification by creating a discontinuous sharp bend in the capsule. J Cataract Refract Surg 1999;25 (4) 521- 526
PubMedArticle
108.
Nishi  ONishi  KWickström  K Preventing lens epithelial cell migration using intraocular lenses with sharp rectangular edges. J Cataract Refract Surg 2000;26 (10) 1543- 1549
PubMedArticle
109.
Nishi  ONishi  KAkura  JNagata  T Effect of round-edged acrylic intraocular lenses on preventing posterior capsule opacification. J Cataract Refract Surg 2001;27 (4) 608- 613
PubMedArticle
110.
Nishi  ONishi  KAkura  J Speed of capsular bend formation at the optic edge of acrylic, silicone, and poly(methyl methacrylate) lenses. J Cataract Refract Surg 2002;28 (3) 431- 437
PubMedArticle
111.
Oshika  TNagata  TIshii  Y Adhesion of lens capsule to intraocular lenses of polymethylmethacrylate, silicone, and acrylic foldable materials: an experimental study. Br J Ophthalmol 1998;82 (5) 549- 553
PubMedArticle
112.
Nishi  ONishi  KMano  CIchihara  MHonda  T The inhibition of lens epithelial cell migration by a discontinuous capsular bend created by a band-shaped circular loop or a capsule-bending ring. Ophthalmic Surg Lasers 1998;29 (2) 119- 125
PubMed
113.
Nishi  OYamamoto  NNishi  KNishi  Y Contact inhibition of migrating lens epithelial cells at the capsular bend created by a sharp-edged intraocular lens after cataract surgery. J Cataract Refract Surg 2007;33 (6) 1065- 1070
PubMedArticle
114.
Zemaitiene  RJasinskas  VAuffarth  GU Influence of three-piece and single-piece designs of two sharp-edge optic hydrophobic acrylic intraocular lenses on the prevention of posterior capsule opacification: a prospective, randomised, long-term clinical trial. Br J Ophthalmol 2007;91 (5) 644- 648
PubMedArticle
115.
Ursell  PGSpalton  DJPande  MV  et al.  Relationship between intraocular lens biomaterials and posterior capsule opacification. J Cataract Refract Surg 1998;24 (3) 352- 360
PubMedArticle
116.
Cheng  JWWei  RLCai  JP  et al.  Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis. Am J Ophthalmol 2007;143 (3) 428- 436
PubMedArticle
117.
Biswas  NRMongre  PKDas  GKSen  SAngra  SKVajpayee  RB Animal study on the effects of catalin on aftercataract and posterior capsule opacification. Ophthalmic Res 1999;31 (2) 140- 142
PubMedArticle
118.
Power  WJNeylan  DCollum  LM Daunomycin as an inhibitor of human lens epithelial cell proliferation in culture. J Cataract Refract Surg 1994;20 (3) 287- 290
PubMedArticle
119.
Cortina  PGómez-Lechón  MJNavea  AMenezo  JLTerencio  MCDiaz-Llopis  M Diclofenac sodium and cyclosporin A inhibit human lens epithelial cell proliferation in culture. Graefes Arch Clin Exp Ophthalmol 1997;235 (3) 180- 185
PubMedArticle
120.
Behar-Cohen  FFDavid  TD’Hermies  F  et al.  In vivo inhibition of lens regrowth by fibroblast growth factor 2-saporin. Invest Ophthalmol Vis Sci 1995;36 (12) 2434- 2448
PubMed
121.
Kim  JTLee  DHChung  KHKang  ICKim  DSJoo  CK Inhibitory effects of salmosin, a disintegrin, on posterior capsular opacification in vitro and in vivo. Exp Eye Res 2002;74 (5) 585- 594
PubMedArticle
122.
Ishida  ISaika  SOhnishi  Y Effect of minoxidil on rabbit lens epithelial cell behavior in vitro and in situ. Graefes Arch Clin Exp Ophthalmol 2001;239 (10) 770- 777
PubMedArticle
123.
Chandler  HLBarden  CALu  PKusewitt  DFColitz  CM Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition. Mol Vis 2007;13677- 691
PubMed
124.
Malecaze  FLubsen  NHSerre  B  et al.  Lens cell targeting for gene therapy of prevention of posterior capsule opacification. Gene Ther 2006;13 (19) 1422- 1429
PubMedArticle
125.
Malecaze  FDecha  ASerre  B  et al.  Prevention of posterior capsule opacification by the induction of therapeutic apoptosis of residual lens cells. Gene Ther 2006;13 (5) 440- 448
PubMedArticle
126.
Walker  JLWolff  IMZhang  LMenko  AS Activation of SRC kinases signals induction of posterior capsule opacification. Invest Ophthalmol Vis Sci 2007;48 (5) 2214- 2223
PubMedArticle
127.
Hosler  MRWang-Su  STWagner  BJ Role of the proteasome in TGF-β signaling in lens epithelial cells. Invest Ophthalmol Vis Sci 2006;47 (5) 2045- 2052
PubMedArticle
128.
Awasthi  NWagner  BJ Suppression of human lens epithelial cell proliferation by proteasome inhibition, a potential defense against posterior capsular opacification. Invest Ophthalmol Vis Sci 2006;47 (10) 4482- 4489
PubMedArticle
129.
Awasthi  NWang-Su  STWagner  BJ Downregulation of MMP-2 and -9 by proteasome inhibition: a possible mechanism to decrease LEC migration and prevent posterior capsular opacification. Invest Ophthalmol Vis Sci 2008;49 (5) 1998- 2003
PubMedArticle
130.
Kim  SYKim  JHChoi  JSJoo  CK Comparison of posterior capsular opacification in rabbits receiving either mitomycin-C or distilled water for sealed-capsule irrigation during cataract surgery. Clin Experiment Ophthalmol 2007;35 (8) 755- 758
PubMedArticle
Mechanisms of Ophthalmic Disease
April 13, 2009

Posterior Capsular OpacificationA Problem Reduced but Not Yet Eradicated

Author Affiliations

Author Affiliations:Departments of Biochemistry and Molecular Biology (Drs Awasthi and Wagner) and Ophthalmology (Drs Guo and Wagner), University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark. Dr Awasthi is now with the Department of Surgery, The University of Texas Southwestern Medical Center, Dallas.

 

LEVINLEONARD A.MD, PhD

Arch Ophthalmol. 2009;127(4):555-562. doi:10.1001/archophthalmol.2009.3
Abstract

Posterior capsular opacification (PCO) is the most frequent complication of cataract surgery. Advances in surgical techniques, intraocular lens materials, and designs have reduced the PCO rate, but it is still a significant problem. The only effective treatment for PCO, Nd:YAG laser capsulotomy carries vision-related complications and risks and puts a significant financial burden on the health care system. This review contains current knowledge about the mechanisms of PCO development. Posterior capsular opacification is caused mainly by remnant lens epithelial cell proliferation and migration, epithelial-mesenchymal transition, collagen deposition, and lens fiber generation. All of these processes are influenced by cytokines, growth factors, and extracellular matrix proteins. We also describe advances and improvements in surgical techniques, intraocular lens materials, and the designs and use of therapeutic agents leading to safe, effective, and less expensive strategies to eradicate PCO.

Cataract surgery is currently the most common and well-established ophthalmic surgical procedure in the world. This procedure involves the extracapsular extraction of the natural opaque lens fibers and implantation of an intraocular lens (IOL), which restores good vision.1However, posterior capsular opacification (PCO), which is also termed secondary cataract, is a common long-term complication of modern cataract surgery (Figure 1).26The first IOL implantation was performed by Sir Harold Ridley in 1950. Since that time, the technology has undergone a wide variety of improvements that reduced the incidence of PCO but did not eliminate it as a significant clinical problem. Decreased visual acuity induced by PCO is reported to occur in 20% to 40% of patients 2 to 5 years after surgery (Figure 1). Posterior capsular opacification development is age dependent, with a low incidence in older patients but high rates in young patients, especially children and infants.2,79

At present, the only effective treatment of PCO is Nd:YAG laser capsulotomy, which involves clearing the visual axis by creating a central opening in the opacified posterior capsule.2,10Although this procedure is easy and quick, there are complications, including retinal detachment, damage to the IOL, cystoid macular edema, an increase in intraocular pressure, iris hemorrhage, corneal edema, IOL subluxation, and exacerbation of localized endophthalmitis.2,10,11Changes induced by Nd:YAG capsulotomy have been shown to be affected by IOL material and design. Trinavarat et al12observed that silicone lenses were more easily damaged by laser capsulotomy than were acrylic or polymethyl methacrylate (PMMA) lenses. In addition, this treatment represents a considerable cost burden to national health care systems, and such laser treatment is not readily available in developing countries. Therefore, a better understanding of the pathogenic mechanism of PCO is highly desirable as a basis for improving the outcome of cataract surgery and eradicating PCO.

Research laboratories worldwide attempting to eliminate the problem of PCO development are focusing on several strategies, including improving surgical techniques, IOL materials, IOL designs, use of therapeutic agents, and combination therapy (Figure 2). Recent improvements in surgical techniques and IOL materials and designs have served mainly to delay the onset of PCO rather than eliminate the problem.13,14The use of cytotoxic agents carries the risk of toxic effects on surrounding ocular tissues.

The aim of this review is to describe current knowledge about the mechanisms of PCO development and strategies to eliminate this sight-threatening problem.

MECHANISMS OF PCO DEVELOPMENT

Lens epithelial cells (LECs) left behind in the capsular bag after any type of extracapsular cataract surgery are mainly responsible for PCO development.2Proliferation, migration, epithelial-to-mesenchymal transition (EMT), collagen deposition, and lens fiber regeneration of LECs are the main causes of opacification (Figure 3). It appears that cataract surgery induces a wound-healing response in the lens, and leftover LECs proliferate and migrate across the posterior capsule and undergo lens fiber regeneration and EMT.7,15,16Clinically, there are 2 morphological types of PCO, the fibrosis type and the pearl type. Fibrosis-type PCO is caused by the proliferation and migration of LECs, which undergo EMT, resulting in fibrous metaplasia and leading to significant visual loss by producing folds and wrinkles in the posterior capsule.7Pearl-type PCO is caused by the LECs located at the equatorial lens region (lens bow) causing regeneration of crystallin-expressing lenticular fibers and forming Elschnig pearls and Soemmering ring, responsible for most cases of PCO-related visual loss.2,17The histological features of PCO are now well established, but to date the molecular mechanisms influencing leftover LEC behavior after cataract surgery are not completely clear. In vitro studies and animal models of PCO suggest that several cytokines and growth factors play a major role in the pathogenesis of PCO.18,19

Studies show that levels of several cytokines and growth factors increase in aqueous humor and influence the behavior of the remaining LECs after cataract surgery. These factors include transforming growth factor β (TGF-β), fibroblast growth factor 2 (FGF-2), hepatocyte growth factor, interleukins 1 and 6 (IL-1 and IL-6), and epithelial growth factor.18,20Wormstone et al21and Duncan et al22have studied LEC growth on human capsular bags in a protein-free medium, which has allowed the autocrine control by individual growth factors to be analyzed.

Transforming growth factor β plays a central role in the cell biology of PCO. It is a multifunctional growth factor with a wide range of opposing effects on cellular processes.23Transforming growth factor β induces EMT2427and has been shown to suppress LEC proliferation.26,28A recent study showed that during PCO formation the TGFβ-activated pathway is influenced by SPARC (secreted protein, acidic, and rich in cysteine), which regulates matrix-cell interactions.29Members of the FGF family are known to play a critical role in establishing and maintaining normal lens structure and function. Proliferation, migration, and fiber differentiation of normal LECs have been shown to be affected by FGF-2 in vitro. Previous studies have shown that FGF-2 induces proliferation,30,31which may contribute to the development of PCO. Also, FGF-2 has been shown to counteract the TGF-β effect.32Hepatocyte growth factor is highly expressed in human capsular bag cultures in protein-free medium. Studies have shown that hepatocyte growth factor plays an important role in PCO development by inducing proliferation of LECs.33,34Interleukin 1 is synthesized by LECs in vitro35and stimulates LEC mitosis and collagen synthesis.36Interleukin 1 stimulates human LECs to produce prostaglandin-E2, which contributes to increased inflammation after cataract surgery. In human vein endothelial cells, IL-1 induced IL-6 secretion,37suggesting that the action of IL-1 on LECs may be mediated by IL-6. Jiang et al38have shown that LEC migration is induced by epithelial growth factor, suggesting its role in PCO development.

Migration of human LECs plays an important role in the remodeling of the lens capsule39,40and is associated with matrix metalloproteinase activity in the lens.41Matrix metalloproteinases are a group of proteolytic enzymes, essential for cell migration and cell-mediated contraction after wound healing.42Changes in lens capsule structure during PCO development may include remodeling of the extracellular matrix by matrix metalloproteinases.

PREVENTION OF PCO

There are several urgent reasons to eradicate PCO. First, PCO remains the most common complication of cataract surgery.43,44Posterior capsular opacification is even more threatening in young adults and children, with a higher incidence, quicker onset, and greater amblyogenic effect. The rates of PCO in children ranged from 43.7% to 100%, probably because of the high proliferation of LECs. Recent advances in pediatric cataract surgery, such as posterior continuous curvilinear capsulorrhexis and anterior vitrectomy, have decreased PCO incidence.2,4452Posterior capsular opacification in young children is always dense and may need to be removed with additional surgery, which carries more risks of potential complications.45,46In addition, Nd:YAG laser capsulotomy, the only currently available treatment of PCO, has several significant complications, and this procedure imposes a severe financial burden on the health care system. Therefore, investigators are constantly working to advance and improve the following areas to find a safe and effective way to eradicate PCO.

Surgical Techniques

Because PCO is predominantly caused by residual LECs in the capsular bag after cataract surgery,2,19,53several surgical techniques have been attempted for the removal of these LECs at the time of lens extraction. These techniques include aspiration of the anterior capsule using an extensive irrigation/aspiration system during cataract surgery,5461pharmacological dispersion and aspiration of the anterior capsule,6265and manual polishing of the anterior and/or posterior capsule.58,6668These studies provided limited and conflicting information about the effect of residual LECs on long-term PCO development. One study showed that ultrasonic vacuuming during cataract surgery reduced the number of patients requiring laser capsulotomy.54Another study showed that capsule vacuuming reduced but did not eliminate PCO.69Khalifa66determined that vacuuming the posterior capsule had no effect on the long-term development of PCO. Therefore, vacuuming or polishing the capsule may delay the onset of PCO, but the long-term benefit is limited because PCO is mainly caused by germinative LECs in the equatorial region rather than the displaced metaplastic LECs already on the posterior capsule.70Also, equatorial capsule vacuuming has been found to be associated with additional surgery time and trauma and risk of capsule tears, damaging the capsular support of the IOL implant.71,72Davidson et al73suggested that near 100% removal of residual LECs at the time of cataract surgery may be necessary to prevent LEC proliferation on the posterior capsule and development of PCO. Hydrodissection-enhanced cortical cleanup after cataract surgery to remove retained/regenerative cortical material and cells has been shown to be important for PCO prevention.14Fine74modified this technique by cleaning the residual cortex in the presence of a posterior chamber IOL, which protected the posterior capsule from disruption. These studies demonstrated that hydrodissection is an effective, practical, and inexpensive method for cortex removal, but alone it does not completely eliminate LECs. The rare complications of this technique are posterior capsule rupture75and nuclear dislocation into the vitreous.76Peng et al14demonstrated the importance of the barrier effect of the IOL optic in preventing LEC growth and suggested that it can be a second line of defense when cortical cleanup is incomplete.

A sealed capsule irrigation device was introduced by Maloof et al77and other investigators.7881This device consists of a foldable suction ring with 2 separate lines, one for vacuum application and the other for irrigation. The device allows the temporary seal of the capsulorrhexis after cataract removal and selective irrigation of the capsular bag with a pharmacological agent without damaging surrounding tissues. This device is minimally invasive and easy to use, fits through a small incision, is relatively inexpensive, and does not add significant time to cataract surgery and therefore shows great promise in combating PCO. Hara et al82reported the advantages of a closed endocapsular ring to prevent PCO. This approach was shown to be promising in PCO prevention in the eyes of adults and children.83,84Recently, primary capsulorrhexis with anterior vitrectomy has been suggested to be a necessary and effective procedure to lower PCO rates in pediatric cataract surgery.49

IOL Materials and Designs

Since IOLs were first implanted, a wide range of improvements has been introduced specifically to prevent PCO. Among these, several advancements have been made in IOL materials and designs to improve biocompatibility assessed in terms of the eye's foreign body reaction against the IOL (uveal biocompatibility) and interaction of the IOL with residual LECs within the capsular bag, which influences LEC proliferation, migration, and EMT, resulting in anterior capsular opacification and PCO (capsular biocompatibility).85

There are 2 main types of materials used for IOL manufacturing: acrylic and silicone. Acrylic lenses are rigid (made from PMMA) or foldable (made from hydrophobic material such as AcrySof [Alcon Inc, Fort Worth, Texas] and Sensar [Staar Surgical Company, Monrovia, California] or hydrophilic material [also known as hydrogels] such as Hydroview [Bausch and Lomb Surgical, Rochester, New York] and Centriflex [Edge Biosystems, Gaithersburg, Maryland]). Silicone lenses were initially made from polydimethylsiloxane.86,87

Several clinical and experimental studies have been performed to demonstrate the role of the IOL materials and designs to reduce the incidence of PCO. Comparison of hydrophobic and hydrophilic materials showed that the type of material might influence PCO development.8890Although it is well recognized that a hydrophilic acrylic material is more biocompatible,91IOLs made of this material have been shown to support LEC adhesion, migration, and proliferation and thus PCO development9294compared with an IOL made of PMMA or hydrophobic acrylic materials.95,96Modification of the IOL surface, which can inhibit cell and protein adhesion, has been suggested as one of the most tolerable methods for preventing PCO because it does not require any manipulation within the eye or the use of any active or harmful agents during IOL implantation. Surface modifications of PMMA IOLs by carbon and titanium,97heparin,98and polytetrafluoroethylene (Teflon; Dupont de Nemours, Wilmington, Delaware)99and of silicon IOLs by oxygen and carbon dioxide plasma100or a sulfonate and carboxylate group containing polymer101have been reported to have higher biocompatibility and effectiveness in prevention of PCO. Recently, IOL surface modification by gas plasma102and polyethylene glycol103has been shown to influence LEC behavior and to prevent PCO.

Many advances have been made in IOL designs that have reduced PCO incidence. A higher PCO inhibitory effect has been observed with IOLs that provide a mechanical barrier effect on the posterior lens capsule.2,4,19,104106Nishi et al106110demonstrated that the sharp-edge optic IOL and the formation of a capsular bend are highly effective in reducing PCO. Adhesion of the IOL material with the lens capsule also plays a role in PCO prevention by creating a sharp capsular bend,89,109111which inhibits LEC migration onto the posterior capsule. Nishi and other investigators106,107,112,113also demonstrated that contact inhibition of migrating LECs is induced at the capsular bend, which leads to PCO prevention. Recently, Zemaitiene et al114showed that there is no difference in PCO development between 3-piece and 1-piece acrylic hydrophobic IOLs.

Posterior capsular opacification is a multifactorial process. The 3 main factors for PCO development are patient related (eg, age and ocular disease), surgery related (eg, irrigation/aspiration of the capsule, hydrodissection-enhanced cortical cleanup, sealed capsule irrigation, capsulorrhexis size, and in-the-bag IOL fixation), and IOL related. It is well accepted that PCO incidence is greatly influenced by IOL material and design.103,115A recent meta-analysis of 23 randomized controlled trials concluded that the sharp-edge optic IOLs made of acrylic and silicone are superior in lowering the rates of PCO and laser capsulotomy.116

Therapeutic Agents

Improvements in surgical techniques and IOL materials and designs have lowered PCO rates but have not eradicated the problem. Therefore, despite several complications and the cost burden, Nd:YAG laser capsulotomy is still the most frequently used treatment of PCO. Consequently, the development of an alternative medical treatment of PCO is of critical importance. Alternatives include selectively destroying residual LECs while avoiding toxic effects on other intraocular tissues. Intraocular application of pharmacological agents to prevent PCO has been investigated by several laboratories, and the commonly used methods for this application are direct injection into the anterior chamber, addition to the irrigating solution, or impregnation of the IOL. Pharmacological agents such as thermosetting plastic prepared with phenol formaldehyde resins (Catalin), methotrexate, mitomycin, daunomycin, and fluorouracil have been shown to be effective in preventing PCO in vitro,19,117,118but in vivo studies have shown their toxicity to corneal endothelial cells, iris, ciliary body epithelial cells, and retina.19Studies tested cytotoxic and therapeutic agents, including diclofenac sodium,119saporin,120thapsigargin,22salmosin,121minoxidil,122a matrix metalloproteinase inhibitor (Ilomostat),41and cyclo-oxygenase 2 inhibitors.123These studies showed promise for finding medical treatment of PCO by targeting the survival, adhesion, proliferation, migration, and transdifferentiation of residual LECs, but the risk of their toxic effects on surrounding intraocular tissues has restricted their clinical use. Malecaze et al124,125provided a gene therapy approach to target LECs in the capsular bag by inducing therapeutic apoptosis by overexpression of proapoptotic genes. Walker et al126showed the blocking effect of an Src family kinase inhibitor on PCO development in a chick model of the lens capsular bag.

Posterior capsular opacification is a multifactorial disease and is influenced by the increased levels of several cytokines and growth factors, including TGF-β, FGF-2, hepatocyte growth factor, IL-6, and epithelial growth factor. These cytokines and growth factors differentially affect residual LEC behavior that leads to PCO development. We recently demonstrated that a reversible peptide aldehyde inhibitor of the proteasome MG132 can simultaneously block EMT markers127and proliferation128and migration129of LECs, suggesting that proteasome inhibition might be a good therapeutic strategy for PCO prevention (Figure 4127129). Maloof et al77developed the PerfectCapsule device (Milvella Ltd, Sydney, Australia), which permits cytotoxic agents to be delivered selectively to the capsular bag, thus selectively targeting residual LECs. This device also allows cytotoxic agents to be removed after treatment during the cataract surgery procedure. Duncan et al5demonstrated that the applications of the PerfectCapsule device in conjunction with the cytotoxic drug thapsigargin is effective in the prevention of PCO. A recent study by Kim et al130showed that in rabbit eyes mitomycin is more effective than distilled water for reducing PCO and that the sealed capsule irrigation device protected the surrounding tissue from mitomycin toxicity.

CONCLUSIONS

In recent years, our understanding of mechanisms of PCO development has increased significantly; therefore, several advances have been made to improve cataract surgery techniques, IOL materials and designs, and the use of therapeutic agents. Because of these improvements, PCO occurrence has decreased, or at least PCO onset has been delayed. Nevertheless, PCO remains the most common complication of cataract surgery, especially in young adults and children. Therefore, research aimed at improving surgical techniques to eliminate almost all LECs from the capsular bag at the time of surgery, optimizing IOL biocompatibility, minimizing postoperative inflammation reaction, and targeting residual LECs by therapeutic agents that have minimal or no effect on other ocular tissues is highly desirable.

Back to top
Article Information

Correspondence:Niranjan Awasthi, PhD, Department of Surgery, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390 (niranjan.awasthi@utsouthwestern.edu).

Submitted for Publication:June 14, 2008; final revision received August 23, 2008; accepted August 30, 2008.

Financial Disclosure:None reported.

Funding/Support:This study was supported in part by grant EY02299 from the National Eye Institute (Dr Wagner) and an unrestricted grant from Research to Prevent Blindness, Inc (Department of Ophthalmology).

References
1.
Beebe  DC The lens. Kaufman  PLAlm  AAdler's Physiology of the Eye: Clinical Application. 10th ed. St Louis, MO Mosby–Year Book2003;117- 158
2.
Apple  DJSolomon  KDTetz  MR  et al.  Posterior capsule opacification. Surv Ophthalmol 1992;37 (2) 73- 116
PubMedArticle
3.
Pandey  SKApple  DJWerner  LMaloof  AJMilverton  EJ Posterior capsule opacification: a review of the aetiopathogenesis, experimental and clinical studies and factors for prevention. Indian J Ophthalmol 2004;52 (2) 99- 112
PubMed
4.
Spalton  DJ Posterior capsular opacification after cataract surgery. Eye 1999;13 (pt 3b) 489- 492
PubMedArticle
5.
Duncan  GWang  LNeilson  GJWormstone  IM Lens cell survival after exposure to stress in the closed capsular bag. Invest Ophthalmol Vis Sci 2007;48 (6) 2701- 2707
PubMedArticle
6.
Clark  DS Posterior capsule opacification. Curr Opin Ophthalmol 2000;11 (1) 56- 64
PubMedArticle
7.
McDonnell  PJZarbin  MAGreen  WR Posterior capsule opacification in pseudophakic eyes. Ophthalmology 1983;90 (12) 1548- 1553
PubMedArticle
8.
Binkhorst  CDGobin  MH Injuries to the eye with lens opacity in young children. Ophthalmologica 1964;148169- 183
PubMedArticle
9.
Hiles  DAWallar  PH Phacoemulsification versus aspiration in infantile cataract surgery. Ophthalmic Surg 1974;5 (2) 13- 16
PubMed
10.
Apple  DJPeng  QVisessook  N  et al.  Eradication of posterior capsule opacification: documentation of a marked decrease in Nd:YAG laser posterior capsulotomy rates noted in an analysis of 5416 pseudophakic human eyes obtained postmortem. Ophthalmology 2001;108 (3) 505- 518
PubMedArticle
11.
Aslam  TMDevlin  HDhillon  B Use of Nd:YAG laser capsulotomy. Surv Ophthalmol 2003;48 (6) 594- 612
PubMedArticle
12.
Trinavarat  AAtchaneeyasakul  LUdompunturak  S Neodymium:YAG laser damage threshold of foldable intraocular lenses. J Cataract Refract Surg 2001;27 (5) 775- 780
PubMedArticle
13.
Nagamoto  TEguchi  G Effect of intraocular lens design on migration of lens epithelial cells onto the posterior capsule. J Cataract Refract Surg 1997;23 (6) 866- 872
PubMedArticle
14.
Peng  QVisessook  NApple  DJ  et al.  Surgical prevention of posterior capsule opacification, part 3: intraocular lens optic barrier effect as a second line of defense. J Cataract Refract Surg 2000;26 (2) 198- 213
PubMedArticle
15.
Cobo  LMOhsawa  EChandler  DArguello  RGeorge  G Pathogenesis of capsular opacification after extracapsular cataract extraction: an animal model. Ophthalmology 1984;91 (7) 857- 863
PubMedArticle
16.
Wormstone  IM Posterior capsule opacification: a cell biological perspective. Exp Eye Res 2002;74 (3) 337- 347
PubMedArticle
17.
Saika  S Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog Retin Eye Res 2004;23 (3) 283- 305
PubMedArticle
18.
Meacock  WRSpalton  DJStanford  MR Role of cytokines in the pathogenesis of posterior capsule opacification. Br J Ophthalmol 2000;84 (3) 332- 336
PubMedArticle
19.
Nishi  O Posterior capsule opacification, part 1: experimental investigations. J Cataract Refract Surg 1999;25 (1) 106- 117
PubMedArticle
20.
Wallentin  NWickström  KLundberg  C Effect of cataract surgery on aqueous TGF-β and lens epithelial cell proliferation. Invest Ophthalmol Vis Sci 1998;39 (8) 1410- 1418
PubMed
21.
Wormstone  IMLiu  CSRakic  JMMarcantonio  JMVrensen  GFDuncan  G Human lens epithelial cell proliferation in a protein-free medium. Invest Ophthalmol Vis Sci 1997;38 (2) 396- 404
PubMed
22.
Duncan  GWormstone  IMLiu  CSMarcantonio  JMDavies  PD Thapsigargin-coated intraocular lenses inhibit human lens cell growth. Nat Med 1997;3 (9) 1026- 1028
PubMedArticle
23.
Massagué  J The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6597- 641
PubMedArticle
24.
Liu  JHales  AMChamberlain  CG McAvoy  JW Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor β. Invest Ophthalmol Vis Sci 1994;35 (2) 388- 401
PubMed
25.
Hales  AMChamberlain  CG McAvoy  JW Cataract induction in lenses cultured with transforming growth factor-β. Invest Ophthalmol Vis Sci 1995;36 (8) 1709- 1713
PubMed
26.
Saika  SOkada  YMiyamoto  TOhnishi  YOoshima  A McAvoy  JW Smad translocation and growth suppression in lens epithelial cells by endogenous TGFβ2 during wound repair. Exp Eye Res 2001;72 (6) 679- 686
PubMedArticle
27.
Saika  SMiyamoto  TIshida  I  et al.  TGFβ-Smad signalling in postoperative human lens epithelial cells. Br J Ophthalmol 2002;86 (12) 1428- 1433
PubMedArticle
28.
Kurosaka  DNagamoto  T Inhibitory effect of TGF-β2 in human aqueous humor on bovine lens epithelial cell proliferation. Invest Ophthalmol Vis Sci 1994;35 (9) 3408- 3412
PubMed
29.
Gotoh  NPerdue  NRMatsushima  HSage  EHYan  QClark  JI An in vitro model of posterior capsular opacity: SPARC and TGF-β2 minimize epithelial-to-mesenchymal transition in lens epithelium. Invest Ophthalmol Vis Sci 2007;48 (10) 4679- 4686
PubMedArticle
30.
McAvoy  JWChamberlain  CG Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 1989;107 (2) 221- 228
PubMed
31.
Tanaka  TSaika  SOhnishi  Y  et al.  Fibroblast growth factor 2: roles of regulation of lens cell proliferation and epithelial-mesenchymal transition in response to injury. Mol Vis 2004;10462- 467
PubMed
32.
Mansfield  KJCerra  AChamberlain  CG FGF-2 counteracts loss of TGFβ affected cells from rat lens explants: implications for PCO (after cataract). Mol Vis 2004;10521- 532
PubMed
33.
Wormstone  IMTamiya  SMarcantonio  JMReddan  JR Hepatocyte growth factor function and c-Met expression in human lens epithelial cells. Invest Ophthalmol Vis Sci 2000;41 (13) 4216- 4222
PubMed
34.
Choi  JPark  SYJoo  CK Hepatocyte growth factor induces proliferation of lens epithelial cells through activation of ERK1/2 and JNK/SAPK. Invest Ophthalmol Vis Sci 2004;45 (8) 2696- 2704
PubMedArticle
35.
Nishi  ONishi  KImanishi  M Synthesis of interleukin-1 and prostaglandin E2 by lens epithelial cells of human cataracts. Br J Ophthalmol 1992;76 (6) 338- 341
PubMedArticle
36.
Nishi  ONishi  KFujiwara  TShirasawa  EOhmoto  Y Effects of the cytokines on the proliferation of and collagen synthesis by human cataract lens epithelial cells. Br J Ophthalmol 1996;80 (1) 63- 68
PubMedArticle
37.
May  LTTorcia  GCozzolino  F  et al.  Interleukin-6 gene expression in human endothelial cells: RNA start sites, multiple IL-6 proteins and inhibition of proliferation. Biochem Biophys Res Commun 1989;159 (3) 991- 998
PubMedArticle
38.
Jiang  QZhou  CBi  ZWan  Y EGF-induced cell migration is mediated by ERK and PI3K/AKT pathways in cultured human lens epithelial cells. J Ocul Pharmacol Ther 2006;22 (2) 93- 102
PubMedArticle
39.
Beck  RNebe  BGuthoff  RRychly  J Inhibition of lens epithelial cell adhesion by the calcium antagonist Mibefradil correlates with impaired integrin distribution and organization of the cytoskeleton. Graefes Arch Clin Exp Ophthalmol 2001;239 (6) 452- 458
PubMedArticle
40.
Sugita  MKato  SSugita  GOshika  T Migration of lens epithelial cells through haptic root of single-piece acrylic-foldable intraocular lens. Am J Ophthalmol 2004;137 (2) 377- 379
PubMedArticle
41.
Wong  TTDaniels  JTCrowston  JGKhaw  PT MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br J Ophthalmol 2004;88 (7) 868- 872
PubMedArticle
42.
Lemaître  VD’Armiento  J Matrix metalloproteinases in development and disease. Birth Defects Res C Embryo Today 2006;78 (1) 1- 10
PubMedArticle
43.
Dewey  S Posterior capsule opacification. Curr Opin Ophthalmol 2006;17 (1) 45- 53
PubMedArticle
44.
Wilson  ME  JrTrivedi  RH The ongoing battle against posterior capsular opacification. Arch Ophthalmol 2007;125 (4) 555- 556
PubMedArticle
45.
BenEzra  DCohen  ERosa  L Traumatic cataract in children: correction of aphakia by contact lens or intraocular lens. Am J Ophthalmol 1997;123 (6) 773- 782
PubMed
46.
Atkinson  CSHiles  DA Treatment of secondary posterior capsular membranes with the Nd:YAG laser in a pediatric population. Am J Ophthalmol 1994;118 (4) 496- 501
PubMed
47.
Gimbel  HVNeuhann  T Development, advantages, and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg 1990;16 (1) 31- 37
PubMedArticle
48.
Gimbel  HV Posterior continuous curvilinear capsulorhexis and optic capture of the intraocular lens to prevent secondary opacification in pediatric cataract surgery. J Cataract Refract Surg 1997;23 ((suppl 1)) 652- 656
PubMedArticle
49.
Luo  YLu  YLu  GWang  M Primary posterior capsulorhexis with anterior vitrectomy in preventing posterior capsule opacification in pediatric cataract microsurgery. Microsurgery 2008;28 (2) 113- 116
PubMedArticle
50.
Ram  JBrar  GSKaushik  SGupta  AGupta  A Role of posterior capsulotomy with vitrectomy and intraocular lens design and material in reducing posterior capsule opacification after pediatric cataract surgery. J Cataract Refract Surg 2003;29 (8) 1579- 1584
PubMedArticle
51.
Mackool  RJChhatiawala  H Pediatric cataract surgery and intraocular lens implantation: a new technique for preventing or excising postoperative secondary membranes. J Cataract Refract Surg 1991;17 (1) 62- 66
PubMedArticle
52.
Guo  SWagner  RSCaputo  A Management of the anterior and posterior lens capsules and vitreous in pediatric cataract surgery. J Pediatr Ophthalmol Strabismus 2004;41 (6) 330- 337, 356-357
PubMed
53.
Frezzotti  RCaporossi  AMastrangelo  D  et al.  Pathogenesis of posterior capsular opacification, II: histopathological and in vitro culture findings. J Cataract Refract Surg 1990;16 (3) 353- 360
PubMedArticle
54.
Nishi  ONishi  K Intercapsular cataract surgery with lens epithelial cell removal, III: long-term follow-up of posterior capsular opacification. J Cataract Refract Surg 1991;17 (2) 218- 220
PubMedArticle
55.
Hara  THara  T Observations on lens epithelial cells and their removal in anterior capsule specimens. Arch Ophthalmol 1988;106 (12) 1683- 1687
PubMedArticle
56.
Nishi  O Intercapsular cataract surgery with lens epithelial cell removal, II: effect on prevention of fibrinous reaction. J Cataract Refract Surg 1989;15 (3) 301- 303
PubMedArticle
57.
Nishi  O Intercapsular cataract surgery with lens epithelial cell removal, I: without capsulorhexis. J Cataract Refract Surg 1989;15 (3) 297- 300
PubMedArticle
58.
Mathey  CFKohnen  TBEnsikat  HJKoch  HR Polishing methods for the lens capsule: histology and scanning electron microscopy. J Cataract Refract Surg 1994;20 (1) 64- 69
PubMedArticle
59.
Nishi  O Lens epithelial cell removal by ultrasound: access to 12 o’clock. J Cataract Refract Surg 1989;15 (6) 704- 706
PubMedArticle
60.
Nishi  O Removal of lens epithelial cells by ultrasound in endocapsular cataract surgery. Ophthalmic Surg 1987;18 (8) 577- 580
PubMed
61.
Green  WTBoase  DL How clean is your capsule? Eye 1989;3 (pt 6) 678- 684
PubMedArticle
62.
Humphry  RCDavies  EGJacob  TJThompson  GM The human anterior lens capsule: an attempted chemical debridement of epithelial cells by ethylenediaminetetracetic acid (EDTA) and trypsin. Br J Ophthalmol 1988;72 (6) 406- 408
PubMedArticle
63.
Nishi  ONishi  KHikida  M Removal of lens epithelial cells by dispersion with enzymatic treatment followed by aspiration. Ophthalmic Surg 1991;22 (8) 444- 450
PubMed
64.
Nishi  ONishi  KHikita  M A new approach to lens epithelial cell removal: dispersion aspiration. Dev Ophthalmol 1991;22101- 105
PubMed
65.
Nishi  ONishi  KHikida  M Removal of lens epithelial cells following loosening of the junctional complex. J Cataract Refract Surg 1993;19 (1) 56- 61
PubMedArticle
66.
Khalifa  MA Polishing the posterior capsule after extracapsular extraction of senile cataract. J Cataract Refract Surg 1992;18 (2) 170- 173
PubMedArticle
67.
Dahan  EAllarakhia  L Irrigation, aspiration, and polishing cannula. J Cataract Refract Surg 1991;17 (1) 97- 98
PubMedArticle
68.
Turtz  AI Sandblasted end-cutting tip for posterior capsular vacuuming and polishing. J Am Intraocul Implant Soc 1985;11 (1) 73
PubMedArticle
69.
Nishi  ONakai  YMizumoto  YYamada  Y Capsule opacification after refilling the capsule with an inflatable endocapsular balloon. J Cataract Refract Surg 1997;23 (10) 1548- 1555
PubMedArticle
70.
Liu  CSWormstone  IMDuncan  GMarcantonio  JMWebb  SFDavies  PD A study of human lens cell growth in vitro: a model for posterior capsule opacification. Invest Ophthalmol Vis Sci 1996;37 (5) 906- 914
PubMed
71.
O’Donnell  FE  JrSantos  B Posterior capsular-zonular disruption in planned extracapsular surgery. Arch Ophthalmol 1985;103 (5) 652- 653
PubMedArticle
72.
Osher  RHCionni  RJ The torn posterior capsule: its intraoperative behavior, surgical management, and long-term consequences. J Cataract Refract Surg 1990;16 (4) 490- 494
PubMedArticle
73.
Davidson  MGMorgan  DK McGahan  MC Effect of surgical technique on in vitro posterior capsule opacification. J Cataract Refract Surg 2000;26 (10) 1550- 1554
PubMedArticle
74.
Fine  IH Cortical cleaving hydrodissection. J Cataract Refract Surg 1992;18 (5) 508- 512
PubMedArticle
75.
Yeoh  R The “pupil snap” sign of posterior capsule rupture with hydrodissection in phacoemulsification. Br J Ophthalmol 1996;80 (5) 486
PubMedArticle
76.
Ota  IMiyake  SMiyake  K Dislocation of the lens nucleus into the vitreous cavity after standard hydrodissection. Am J Ophthalmol 1996;121 (6) 706- 708
PubMed
77.
Maloof  ANeilson  GMilverton  EJPandey  SK Selective and specific targeting of lens epithelial cells during cataract surgery using sealed-capsule irrigation. J Cataract Refract Surg 2003;29 (8) 1566- 1568
PubMedArticle
78.
Agarwal  AAgarwal  SAgarwal  AMaloof  A Sealed-capsule irrigation device. J Cataract Refract Surg 2003;29 (12) 2274- 2276
PubMedArticle
79.
Maloof  AJPandey  SKNeilson  GMilverton  EJ Selective death of lens epithelial cells using demineralized water and Triton X-100 with PerfectCapsule sealed capsule irrigation: a histological study in rabbit eyes. Arch Ophthalmol 2005;123 (10) 1378- 1384
PubMedArticle
80.
Rabsilber  TMLimberger  IJReuland  AJHolzer  MPAuffarth  GU Secondary cataract prevention. Ophthalmology 2007;114 (2) 397- 398
PubMedArticle
81.
Rabsilber  TMLimberger  IJReuland  AJHolzer  MPAuffarth  GU Long-term results of sealed capsule irrigation using distilled water to prevent posterior capsule opacification: a prospective clinical randomised trial. Br J Ophthalmol 2007;91 (7) 912- 915
PubMedArticle
82.
Hara  THara  THara  T Preventing posterior capsular opacification with an endocapsular equator ring in a young human eye: 2-year follow-up. Arch Ophthalmol 2007;125 (4) 483- 486
PubMedArticle
83.
Dick  HB Closed foldable capsular rings. J Cataract Refract Surg 2005;31 (3) 467- 471
PubMedArticle
84.
Dick  HBSchwenn  OPfeiffer  N Implantation of the modified endocapsular bending ring in pediatric cataract surgery using a viscoadaptive viscoelastic agent. J Cataract Refract Surg 1999;25 (11) 1432- 1436
PubMedArticle
85.
Werner  L Biocompatibility of intraocular lens materials. Curr Opin Ophthalmol 2008;19 (1) 41- 49
PubMedArticle
86.
Christ  FRFencil  DAVan Gent  SKnight  PM Evaluation of the chemical, optical, and mechanical properties of elastomeric intraocular lens materials and their clinical significance. J Cataract Refract Surg 1989;15 (2) 176- 184
PubMedArticle
87.
Christ  FRBuchen  SYDeacon  J  et al.  Biomaterials used for intraocular lenses. Wise  DLTrantolo  DJAltobelli  DEEncyclopedic Handbook of Biomaterials and Bioengineering, B Applications. Vol 2. New York, NY Marcel Dekker1995;1261- 1313
88.
Schmidbauer  JMVargas  LGApple  DJ  et al.  Evaluation of neodymium:yttrium-aluminum-garnet capsulotomies in eyes implanted with AcrySof intraocular lenses. Ophthalmology 2002;109 (8) 1421- 1426
PubMedArticle
89.
Linnola  RJWerner  LPandey  SKEscobar-Gomez  MZnoiko  SLApple  DJ Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes, part 1: histological sections. J Cataract Refract Surg 2000;26 (12) 1792- 1806
PubMedArticle
90.
Linnola  RJWerner  LPandey  SKEscobar-Gomez  MZnoiko  SLApple  DJ Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes, part 2: explanted intraocular lenses. J Cataract Refract Surg 2000;26 (12) 1807- 1818
PubMedArticle
91.
Hollick  EJSpalton  DJUrsell  PG Surface cytologic features on intraocular lenses: can increased biocompatibility have disadvantages? Arch Ophthalmol 1999;117 (7) 872- 878
PubMedArticle
92.
Müllner-Eidenböck  AAmon  MSchauersberger  JAbela  CPetternel  VZidek  T Cellular reaction on the anterior surface of 4 types of intraocular lenses. J Cataract Refract Surg 2001;27 (5) 734- 740
PubMedArticle
93.
Schauersberger  JAmon  MKruger  AAbela  CSchild  GKolodjaschna  J Lens epithelial cell outgrowth on 3 types of intraocular lenses. J Cataract Refract Surg 2001;27 (6) 850- 854
PubMedArticle
94.
Tognetto  DToto  LBallone  ERavalico  G Biocompatibility of hydrophilic intraocular lenses. J Cataract Refract Surg 2002;28 (4) 644- 651
PubMedArticle
95.
Hollick  EJSpalton  DJUrsell  PGMeacock  WRBarman  SABoyce  JF Posterior capsular opacification with hydrogel, polymethylmethacrylate, and silicone intraocular lenses: two-year results of a randomized prospective trial. Am J Ophthalmol 2000;129 (5) 577- 584
PubMedArticle
96.
Hayashi  KHayashi  HNakao  FHayashi  F Anterior capsule contraction and intraocular lens decentration and tilt after hydrogel lens implantation. Br J Ophthalmol 2001;85 (11) 1294- 1297
PubMedArticle
97.
Yuan  ZSun  HYuan  J A 1-year study on carbon, titanium surface-modified intraocular lens in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 2004;242 (12) 1008- 1013
PubMedArticle
98.
Larsson  RSelén  GBjördklund  HFagerholm  P Intraocular PMMA lenses modified with surface-immobilized heparin: evaluation of biocompatibility in vitro and in vivo. Biomaterials 1989;10 (8) 511- 516
PubMedArticle
99.
Werner  LLegeais  JMNagel  MDRenard  G Evaluation of teflon-coated intraocular lenses in an organ culture method. J Biomed Mater Res 1999;46 (3) 347- 354
PubMedArticle
100.
Hettlich  HJOtterbach  FMittermayer  CKaufmann  RKlee  D Plasma-induced surface modifications on silicone intraocular lenses: chemical analysis and in vitro characterization. Biomaterials 1991;12 (5) 521- 524
PubMedArticle
101.
Yammine  PPavon-Djavid  GHelary  GMigonney  V Surface modification of silicone intraocular implants to inhibit cell proliferation. Biomacromolecules 2005;6 (5) 2630- 2637
PubMedArticle
102.
Yuen  CWilliams  RBatterbury  MGrierson  I Modification of the surface properties of a lens material to influence posterior capsular opacification. Clin Experiment Ophthalmol 2006;34 (6) 568- 574
PubMedArticle
103.
Bozukova  DPagnoulle  CDe Pauw-Gillet  MC  et al.  Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules 2007;8 (8) 2379- 2387
PubMedArticle
104.
Hollick  EJSpalton  DJMeacock  WR The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol 1999;128 (3) 271- 279
PubMedArticle
105.
Hollick  EJSpalton  DJUrsell  PG  et al.  The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. Ophthalmology 1999;106 (1) 49- 54
PubMedArticle
106.
Nishi  ONishi  KSakanishi  K Inhibition of migrating lens epithelial cells at the capsular bend created by the rectangular optic edge of a posterior chamber intraocular lens. Ophthalmic Surg Lasers 1998;29 (7) 587- 594
PubMed
107.
Nishi  ONishi  K Preventing posterior capsule opacification by creating a discontinuous sharp bend in the capsule. J Cataract Refract Surg 1999;25 (4) 521- 526
PubMedArticle
108.
Nishi  ONishi  KWickström  K Preventing lens epithelial cell migration using intraocular lenses with sharp rectangular edges. J Cataract Refract Surg 2000;26 (10) 1543- 1549
PubMedArticle
109.
Nishi  ONishi  KAkura  JNagata  T Effect of round-edged acrylic intraocular lenses on preventing posterior capsule opacification. J Cataract Refract Surg 2001;27 (4) 608- 613
PubMedArticle
110.
Nishi  ONishi  KAkura  J Speed of capsular bend formation at the optic edge of acrylic, silicone, and poly(methyl methacrylate) lenses. J Cataract Refract Surg 2002;28 (3) 431- 437
PubMedArticle
111.
Oshika  TNagata  TIshii  Y Adhesion of lens capsule to intraocular lenses of polymethylmethacrylate, silicone, and acrylic foldable materials: an experimental study. Br J Ophthalmol 1998;82 (5) 549- 553
PubMedArticle
112.
Nishi  ONishi  KMano  CIchihara  MHonda  T The inhibition of lens epithelial cell migration by a discontinuous capsular bend created by a band-shaped circular loop or a capsule-bending ring. Ophthalmic Surg Lasers 1998;29 (2) 119- 125
PubMed
113.
Nishi  OYamamoto  NNishi  KNishi  Y Contact inhibition of migrating lens epithelial cells at the capsular bend created by a sharp-edged intraocular lens after cataract surgery. J Cataract Refract Surg 2007;33 (6) 1065- 1070
PubMedArticle
114.
Zemaitiene  RJasinskas  VAuffarth  GU Influence of three-piece and single-piece designs of two sharp-edge optic hydrophobic acrylic intraocular lenses on the prevention of posterior capsule opacification: a prospective, randomised, long-term clinical trial. Br J Ophthalmol 2007;91 (5) 644- 648
PubMedArticle
115.
Ursell  PGSpalton  DJPande  MV  et al.  Relationship between intraocular lens biomaterials and posterior capsule opacification. J Cataract Refract Surg 1998;24 (3) 352- 360
PubMedArticle
116.
Cheng  JWWei  RLCai  JP  et al.  Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis. Am J Ophthalmol 2007;143 (3) 428- 436
PubMedArticle
117.
Biswas  NRMongre  PKDas  GKSen  SAngra  SKVajpayee  RB Animal study on the effects of catalin on aftercataract and posterior capsule opacification. Ophthalmic Res 1999;31 (2) 140- 142
PubMedArticle
118.
Power  WJNeylan  DCollum  LM Daunomycin as an inhibitor of human lens epithelial cell proliferation in culture. J Cataract Refract Surg 1994;20 (3) 287- 290
PubMedArticle
119.
Cortina  PGómez-Lechón  MJNavea  AMenezo  JLTerencio  MCDiaz-Llopis  M Diclofenac sodium and cyclosporin A inhibit human lens epithelial cell proliferation in culture. Graefes Arch Clin Exp Ophthalmol 1997;235 (3) 180- 185
PubMedArticle
120.
Behar-Cohen  FFDavid  TD’Hermies  F  et al.  In vivo inhibition of lens regrowth by fibroblast growth factor 2-saporin. Invest Ophthalmol Vis Sci 1995;36 (12) 2434- 2448
PubMed
121.
Kim  JTLee  DHChung  KHKang  ICKim  DSJoo  CK Inhibitory effects of salmosin, a disintegrin, on posterior capsular opacification in vitro and in vivo. Exp Eye Res 2002;74 (5) 585- 594
PubMedArticle
122.
Ishida  ISaika  SOhnishi  Y Effect of minoxidil on rabbit lens epithelial cell behavior in vitro and in situ. Graefes Arch Clin Exp Ophthalmol 2001;239 (10) 770- 777
PubMedArticle
123.
Chandler  HLBarden  CALu  PKusewitt  DFColitz  CM Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition. Mol Vis 2007;13677- 691
PubMed
124.
Malecaze  FLubsen  NHSerre  B  et al.  Lens cell targeting for gene therapy of prevention of posterior capsule opacification. Gene Ther 2006;13 (19) 1422- 1429
PubMedArticle
125.
Malecaze  FDecha  ASerre  B  et al.  Prevention of posterior capsule opacification by the induction of therapeutic apoptosis of residual lens cells. Gene Ther 2006;13 (5) 440- 448
PubMedArticle
126.
Walker  JLWolff  IMZhang  LMenko  AS Activation of SRC kinases signals induction of posterior capsule opacification. Invest Ophthalmol Vis Sci 2007;48 (5) 2214- 2223
PubMedArticle
127.
Hosler  MRWang-Su  STWagner  BJ Role of the proteasome in TGF-β signaling in lens epithelial cells. Invest Ophthalmol Vis Sci 2006;47 (5) 2045- 2052
PubMedArticle
128.
Awasthi  NWagner  BJ Suppression of human lens epithelial cell proliferation by proteasome inhibition, a potential defense against posterior capsular opacification. Invest Ophthalmol Vis Sci 2006;47 (10) 4482- 4489
PubMedArticle
129.
Awasthi  NWang-Su  STWagner  BJ Downregulation of MMP-2 and -9 by proteasome inhibition: a possible mechanism to decrease LEC migration and prevent posterior capsular opacification. Invest Ophthalmol Vis Sci 2008;49 (5) 1998- 2003
PubMedArticle
130.
Kim  SYKim  JHChoi  JSJoo  CK Comparison of posterior capsular opacification in rabbits receiving either mitomycin-C or distilled water for sealed-capsule irrigation during cataract surgery. Clin Experiment Ophthalmol 2007;35 (8) 755- 758
PubMedArticle
×