[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.158.169.168. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Article
July 1983

Outward Transport of Fluorescein From the Vitreous in Normal Human Subjects

Author Affiliations

From the University of Illinois Eye and Ear Infirmary, Chicago (Drs Blair, Zeimer, and Cunha-Vaz and Mr Rusin); and the University of Coimbra (Portugal) (Dr Cunha-Vaz).

Arch Ophthalmol. 1983;101(7):1117-1121. doi:10.1001/archopht.1983.01040020119021
Abstract

• The permeability of the blood-vitreous barrier to fluorescein passing out of the vitreous does not necessarily equal the permeability to fluorescein passing into it. We calculated the ratio between the outward and inward permeability coefficients of the blood-vitreous barrier in eight normal men who ingested 3-g of sodium fluorescein. The calculation was based on the ratio between the serum free fluorescein and the vitreous fluorescein concentrations (as determined by fluorophotometry) when the net transport across the barrier was zero. The outward permeability to fluorescein was 31 ± 18 times (mean ± SD) the inward permeability. To our knowledge, this article provides the first direct evidence for a specialized transport mechanism in humans whereby fluorescein is removed from the vitreous into the blood. The malfunction of this process may be important in human disease. Pharmacologic manipulation of this process may be possible.

References
1.
Cunha-Vaz JG, Maurice DM:  The active transport of fluorescein by the retinal vessels and the retina . J Physiol 1967;191:467-486.
2.
Cunha-Vaz JG, Maurice DM:  Fluorescein dynamics in the eye . Doc Ophthalmol 1969;26:61-72.Article
3.
Jones CW, Cunha-Vaz JG, Zweig KO, et al:  Kinetic vitreous fluorophotometry in experimental diabetes . Arch Ophthalmol 1979;97:1941-1943.Article
4.
Krupin T, Waltman SR, Szewczyk P, et al:  Fluorometric studies on the blood-retinal barrier in experimental animals . Arch Ophthalmol 1982;100:631-634.Article
5.
Anstadt B, Blair NP, Rusin MM, et al:  Alteration of the blood-retinal barrier by sodium iodate: Kinetic vitreous fluorophotometry and horseradish peroxidase tracer studies . Exp Eye Res 1982;35:653-662.Article
6.
Palestine AG, Brubaker RF:  Pharmacokinetics of fluorescein in the vitreous . Invest Ophthalmol Vis Sci 1981;21:542-549.
7.
Neame KD, Richards TG:  Diffusion , in Elementary Kinetics of Membrane Carrier Transport . New York, John Wiley & Sons Inc, 1972, pp 8-27.
8.
Cunha-Vaz JG, Zeimer RC, Johnson ME:  Studies on the technique of vitreous fluorophotometry . Invest Ophthalmol Vis Sci 1980;19( (suppl) ):15.
9.
Zeimer RC, Cunha-Vaz JG:  Evaluation and comparison of commercial vitreous fluorophotometers . Invest Ophthalmol Vis Sci 1981;21:865-868.
10.
Zeimer RC, Cunha-Vaz JG, Johnson ME:  Studies on the technique of vitreous fluorophotometry . Invest Ophthalmol Vis Sci 1982;22:668-674.
11.
Klein R, Ernest JT, Engerman R:  Fluorophotometry: I. Technique . Arch Ophthalmol 1980;98:2231-2232.Article
12.
Prager TC, Wilson DJ, Avery GD, et al:  Vitreous fluorophotometry: Identification of sources of variability . Invest Ophthalmol Vis Sci 1981;21:854-864.
13.
Zeimer RC, Blair NP, Cunha-Vaz JG: Vitreous fluorophotometry for clinical research: I. Description and evaluation of a new fluorophotometer. Arch Ophthalmol, in press.
14.
Zeimer RC, Blair NP, Cunha-Vaz JG: Vitreous fluorophotometry for clinical research: II. Methodology of data acquisition and processing. Arch Ophthalmol, in press.
15.
Nagataki S:  Aqueous humor dynamics of human eyes as studied using fluorescein . Jpn J Ophthalmol 1975;19:235-249.
16.
Li W, Rockey JH:  Fluorescein binding to normal human serum proteins demonstrated by equilibrium dialysis . Arch Ophthalmol 1982:100:484-487.Article
17.
Brubaker RF, Penniston JT, Grotte DA, et al:  Measurement of fluorescein binding in human plasma using fluorescence polarization . Arch Ophthalmol 1982;100:625-630.Article
18.
Araie M, Sawa M, Nagataki S, et al:  Aqueous humor dynamics in man as studied by oral fluorescein . Jpn J Ophthalmol 1980;24:346-362.
19.
Peyman GA, Bok D:  Peroxidase diffusion in the normal and laser-coagulated primate retina . Invest Ophthalmol Vis Sci 1972;11:35-45.
20.
Miller SS, Steinberg RH:  Passive ionic properties of frog retinal pigment epithelium . J Membr Biol 1977;36:337-372.Article
21.
Miller JE:  Alteration of the blood-aqueous potentials in the rabbit . Invest Ophthalmol Vis Sci 1962;1:59-62.
22.
Schultz SG:  Diffusion potentials , in Basic Principles of Membrane Transport . New York, Cambridge University Press, 1980, p 44.
23.
Gloor B:  The vitreous , in Moses RA (ed): Adler's Physiology of the Eye . St Louis, CV Mosby Co, 1981, pp 255-269.
24.
Moseley H, Foulds WS:  The movement of xenon-133 from the vitreous to the choroid . Exp Eye Res 1982;34:169-179.Article
25.
Rapaport SI:  Regulation of drug entry into the nervous system , in Blood-Brain Barrier in Physiology and Medicine . New York, Raven Press, 1976, p 154.
26.
Grimes PA, Stone RA, Laties AM, et al:  Carboxy fluorescein: A probe of the blood-ocular barriers with lower membrane permeability than fluorescein . Arch Ophthalmol 1982;100:635-639.Article
27.
Machemer R:  Angiographic-histologic correlation of eye vessel permeability with proteinbound fluorescent dye . Am J Ophthalmol 1970;69:27-38.
28.
Bito LZ:  Absorptive transport of prostaglandins from intraocular fluids to blood: A review of recent findings . Exp Eye Res 1973;16:299-306.Article
×