[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.211.41.181. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Article
May 1986

Accessory Cells in Vessels of the Paranatal Human Retina

Author Affiliations

From the National Eye Institute, National Institutes of Health, Bethesda, Md.

Arch Ophthalmol. 1986;104(5):747-752. doi:10.1001/archopht.1986.01050170137038
Abstract

• Retinas of the paranatal period contain two types of cell clusters that are generally believed to play a role in the developing vasculature. The more posterior cluster consists of angioblastic cells, which undergo lumenization to form the definitive vessels. Anterior to this cluster and separated from it by a distinct boundary are clusters of spindle cells extending a variable distance toward the periphery. These clusters of spindle cells maintain a fixed position relative to the angioblastic masses, without any admixture of the two. The precise function of the spindle cells in the vascularizing process has been a subject of controversy. We found evidence to identify them as glia and to suggest that their role is to provide an energy source for the developing retina as the hyaloid vessels recede and until the retinal vessels take over this function. It further appears that congenital failure of the vessels to develop may result in a persistence of these spindle cells, in the form of hyperplastic glia in the inner layers of the retina. Our study included normal eyes from full-term and premature infants and eyes from patients with retinopathy of prematurity (oxygen-related retinopathy), anencephaly, and other congenital anomalies.

References
1.
Friedenwald J, Owens WC, Owens EU:  Retrolental fibroplasia in premature infants: III. The pathology of the disease . Trans Am Ophthalmol Soc 1951;49:207-234.
2.
Ashton N:  Pathologic basis of retrolental fibroplasia . Br J Ophthalmol 1954;38:385-396.Article
3.
Ashton N:  The mode of development of the retinal vessels in man , in Cant JS (ed): The William MacKenzie Centenary Symposium on the Ocular Circulation in Health and Disease: Proceedings of a Symposium Held at Royal College of Physicians and Surgeons of Glasgow, Sept 23-24, 1968 . St Louis, CV Mosby Co, 1969, pp 7-17.
4.
Serpell G:  Polysaccharide granules in association with developing retinal vessels and with retrolental fibroplasia . Br J Ophthalmol 1954; 38:460-471.Article
5.
Cogan DG:  Development and senescence of the human retinal vasculature . Trans Ophthalmol Soc UK 1963;83:465-489.
6.
Anderson SR, Bro-Rasmussen F, Tygstrup I:  Anencephaly related to ocular development and malformation . Am J Ophthalmol 1967;64:559-566.
7.
Manschot WA:  Eye findings in hydranencephaly . Ophthalmologica 1971;162:151-159.Article
8.
Addison DJ, Font RL, Manschot WA:  Proliferative retinopathy in anencephalic babies . Am J Ophthalmol 1972;74:967-975.
9.
Foos RY, Kopelow SM:  Development of retinal vasculature in paranatal infants . Surv Ophthalmol 1973;18:117-127.
10.
Kushner BJ, Essner D, Cohen IJ, et al:  Retrolental fibroplasia . Arch Ophthalmol 1977; 95:29-38.Article
11.
Michaelson IC: Retinal Circulation in Man and Animals . Springfield, Ill, Charles C Thomas Publishers, 1954.
12.
Naiman J, Green WR:  Retrolental fibroplasia in hypoxic newborn . Am J Ophthalmol 1979; 88:55-58.
13.
Kretzer FL, Mehta RS, Johnson AT, et al:  Vitamin E protects against retinopathy of prematurity through action of spindle cells . Nature 1984;309:793-795.Article
14.
Wise GN, Dollery CT, Hendkind P: The Retinal Circulation . New York, Harper & Row Publishers Inc, 1971, pp 1-18.
15.
Singleman J, Ozanics V:  Retina , in Duane T (ed): Biomedical Foundations of Ophthalmology . New York, Harper & Row Publishers Inc, 1982, chap 19.
16.
Shakib M, De Oliveria LF, Hendkind P:  Development of retinal vessels: II. Earliest stages of vessel formation . Invest Ophthalmol Vis Sci 1968;7:689-700.
17.
Hamada Y, Hamada M, Yonemoto H, et al:  Histopathological studies of demarcation line and avascular area in very low birth weight infants . Folia Ophthalmol Jpn 1984;35:2414-2419.
18.
Flower RW, McLeod DS, Lutty GA, et al:  Postnatal retinal vascular development of the puppy . Invest Ophthalmol Vis Sci 1985;26:957-968.
19.
Patz A:  The effect of oxygen on immature vessels . Invest Ophthalmol Vis Sci 1965;4:988-999.
20.
Ashton N:  Retinal vascularization in health and disease . Am J Ophthalmol 1957;44:7-17.
21.
Patz A, Brem S, Finkelstein D, et al:  A new approach to the problem of retinal neovascularization . Trans Am Acad Ophthalmol Otol 1978; 85:626-637.
22.
Stone J, Rapoport DH, Williams RW, et al:  Uniformity of cell distribution in the ganglion cell layer of prenatal cat retina: Implications for mechanism of the retinal development . Brain Res 1981;254:231-242.Article
23.
Berkow JM, Patz A:  Developmental histochemistry of the rat eye . Invest Ophthalmol Vis Sci 1964;3:22-33.
24.
Bhattacharjee J, Sanyal S:  Developmental origin and early differentiation of retinal Müller cells in mice . J Anat 1975;120:367-372.
25.
Kuwabara T, Cogan DG:  Retinal glycogen . Arch Ophthalmol 1961;66:680-688.Article
26.
Green WR:  Retina , in Spencer WH (ed): Ophthalmic Pathology . Philadelphia, WB Saunders Co, 1985, chap 8, p 622.
27.
Foos RY:  Acute retrolental fibroplasia . Graefes Arch Clin Exp Ophthalmol 1975;195:87-100.Article
28.
Foos RY:  Chronic retinopathy of prematurity . Ophthalmology 1985;92:563-574.Article
×