[Skip to Content]
[Skip to Content Landing]
Article
December 1992

Response of the Retinal Pigment Epithelium to Selective Photocoagulation

Author Affiliations

From the Wellman Laboratories of Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston (Drs Roider, Flotte, and Birngruber and Mr Michaud), and the Medical Laser Center of Lübeck (Germany), Medical University of Lübeck (Dr Birngruber). Dr Roider is now with the Department of Ophthalmology, Medical University of Lübeck. Dr Birngruber has a patent pending on some of the procedures described in this article. This patent may constitute a potential financial interest in the subject matter. The other authors have no proprietary interest in the subject matter of this article

Arch Ophthalmol. 1992;110(12):1786-1792. doi:10.1001/archopht.1992.01080240126045
Abstract

• Multiple short argon laser pulses can coagulate the retinal pigment epithelium selectively, while sparing the adjacent neural retina and choroid; in contrast, continuous-wave laser irradiation typically damages the neural retina and choroid. The healing response to selective photocoagulation of the retinal pigment epithelium was studied in rabbits during a period of 4 weeks. The lesions were never visible ophthalmoscopically. During the healing period, the epithelium was reformed by a single sheet of hypertrophic retinal pigment epithelial cells. In contrast to continuous-wave photocoagulation, only minimal inflammatory response was found. Retinal pigment epithelial cells showed clear signs of viability, eg, phagocytized outer segments. The local edema in the photoreceptor layer and subretinal space found in the early stage disappeared when the blood-retinal barrier was reestablished. The choriocapillaris remained unaffected. No subsequent damage to the photoreceptors was found. This type of photocoagulation may be useful for retinal pigment epithelium—related diseases, eg, diffuse diabetic macular edema.

References
1.
Wolbarsht MT, Landers MB.  The rationale of photocoagulation therapy for proliferative diabetic retinopathy: a review and model . Ophthalmic Surg . 1980;11:235-245.
2.
Tso MO, Cunha-Vaz JG, Shih C, Jones CW.  Clinicopathologic study of blood retinal barrier in experimental diabetes mellitus . Arch Ophthalmol . 1980;98:2032-2040.Article
3.
Glaser BM, Campochiaro PA, Davis JL, Jerdan JA.  Retinal pigment epithelial cells release inhibitors of neovascularization . Ophthalmology . 1987;94:780-784.Article
4.
Bresnick GH.  Diabetic maculopathy: a critical review highlighting diffuse macular edema . Ophthalmology . 1983;90:1301-1317.Article
5.
Wallow IH.  Repair of the pigment epithelial barrier following photocoagulation . Arch Ophthalmol . 1984;102:126-135.Article
6.
Gabel VP, Birngruber R, Hillenkamp F.  Visible and near infrared light absorption in pigment epithelium and choroid . In: Shimizu K, ed. International Congress Series No. 450, XXIII Concilium Ophthalmologicum, Kyoto . Princeton, NJ: Excerpta Medica; 1978:658-662.
7.
Anderson R, Parrish JA.  Selective photothermolysis . Science . 1983;220:524-527.Article
8.
Birngruber R, Hillenkamp F, Gabel VP.  Theoretical investigations of laser thermal retinal injury . Health Phys . 1985;48:781-796.Article
9.
Roider J, Birngruber R.  Spatial confinement of photocoagulation effects using high repetition rate laser pulses . In: Conference on Lasers and Electro-Optics, Technical Digest Series . Washington, DC: Optical Society of America; 1990;7:168-169.
10.
Marshall J.  Interactions between sensory cells, glia cells and the retinal pigment epithelium and their response to photocoagulation . Dev Ophthalmol . 1981;2:308-317.
11.
Pollack A, Korte GE.  Repair of retinal pigment epithelium and its relationship with capillary endothelium after krypton photocoagulation . Invest Ophthalmol Vis Sci . 1990;31:890-898.
12.
Wallow I.  Long term changes in photocoagulation burns . Dev Ophthalmol . 1981;2:318-327.
13.
Wallow IH, Tso MO.  Repair after xenon arc photocoagulation, II: a clinical and light microscopic study of the evolution of retinal lesions in the rhesus monkey . Am J Ophthalmol . 1973;75:610-626.
14.
Birngruber R, Gabel VP, Hillenkamp F.  Experimental studies of laser thermal retinal injury . Health Phys . 1983;44:519-531.Article
15.
Yanoff M, Fine BS. Ocular Pathology; A Text and Atlas . 2nd ed. New York, NY: Harper & Row Publishers Inc; 1982:196-201.
16.
Del Priore LV, Glaser BM, Quigley HA, Green R.  Response of pig retinal pigment epithelium to laser photocoagulation in organ culture . Arch Opthalmol . 1989;107:119-122.Article
17.
Hergott GJ, Sandig M, Kalnins VI.  Cytoskeletal organization of migrating retinal pigment epithelial cells during wound healing in organ culture . Cell Motil Cytoskeleton . 1989;13:83-93.Article
18.
Marshall J, Fankhauser F, Lotmar W, Roulier W.  Pathology of short pulse retinal photocoagulations using the Goldmann contact lens . Graefes Arch Clin Exp Ophthalmol . 1971;182:154-169.Article
19.
Bülow N.  The process of wound healing of the avascular outer layers of the retina, light- and electron-microscopic studies on laser lesions of monkey eyes . Acta Ophthalmol Suppl (Copenh) . 1978;139:7-60.
20.
Inomata H.  Wound healing after xenon arc photocoagulation in the rabbit retina . Ophthalmologica . 1975;170:462-474.Article
21.
Machemer R, Laqua H.  Pigment epithelium proliferation in retinal detachment (massive periretinal proliferation) . Am J Ophthalmol . 1975;80:1-23.
22.
Hergott GJ, Gallie B, Kalnins VI.  Proliferating cell nuclear antigen (PCNA) in migrating retinal pigment epithelial cells (RPE) during wound healing in organ culture . Invest Ophthalmol Vis Sci . 1991;32:1219. Abstract.
23.
Pollack A, Korte GE, Weitzner AL, Henkind P.  Ultrastructure of Bruch's membrane after krypton laser photocoagulation, I: breakdown of Bruch's membrane . Arch Ophthalmol . 1986;104:1372-1375.Article
24.
Marmor MF.  Control of subretinal fliud: experimental and clinical studies . Eye . 1990;4:340-344.Article
25.
Miller SS, Hughes BA, Machen TE.  Fluid transport across retinal pigment epithelium is inhibited by cyclic AMP . Proc Natl Acad Sci U S A . 1982;79:2111-2115.Article
26.
Zweig K, Cunha-Vaz J, Peyman G, Stein M, Raichand M.  Effect of argon laser photocoagulation on fluorescein transport across the blood retinal barrier . Exp Eye Res . 1981;32:323-329.Article
27.
Korte GE, Reppucci V, Henkind P.  RPE destruction causes choriocapillary atrophy . Invest Ophthalmol Vis Sci . 1984;25:1135-1144.
28.
Henkind P, Gartner S.  The relationship between retinal pigment epithelium and the choriocapillaris . Trans Ophthalmol Soc U K . 1983;103:444-447.
29.
Lewis H, Schachat A, Haiman M, et al.  Choroidal neovascularization after laser photocoagulation for diabetic macular edema . Ophthalmology . 1990;97:503-511.Article
30.
Olk RJ.  Argon green (514 nm) versus krypton red (647 nm) modified grid laser photocoagulation for diffuse diabetic macular edema . Ophthalmology . 1990;97:1101-1112.Article
×