[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.205.209.213. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Article
March 1995

Laser Photocoagulation of the Choroid Through Experimental Subretinal Hemorrhage

Author Affiliations

From the W. K. Kellogg Eye Center, Departments of Ophthalmology (Drs Johnson, Hassan, and Elner) and Pathology (Dr Elner), University of Michigan School of Medicine, Ann Arbor. The authors have no proprietary interest in any instrument described in this study.

Arch Ophthalmol. 1995;113(3):364-370. doi:10.1001/archopht.1995.01100030120034
Abstract

Objective:  To study the differential abilities of diode infrared, krypton red, and argon blue-green laser energies to penetrate experimental subretinal hemorrhage and coagulate the underlying choroid.

Methods:  Autologous, heparinized whole blood was injected beneath the neurosensory retina of pigmented rabbit eyes. After 30 to 60 minutes, confluent patches of moderate or severe diode, krypton, or argon laser burns were applied to adjacent healthy retina and continued into the region of the subretinal hematoma without varying the power setting or focal plane. Histopathologic evaluation of early lesions was performed in a masked fashion, and subretinal hemorrhage thickness was determined with computer-assisted image capture and analysis.

Results:  Retina overlying treated subretinal hemorrhage showed no ophthalmoscopically visible signs of photocoagulation with diode energy, a faint gray reaction with krypton energy, and an intense white reaction with argon energy. Histopathologic analysis revealed photocoagulative inner choroidal damage beneath a mean (±SD) maximum blood thickness of 0.56±0.14 mm with severe diode burns, 0.42±0.09 mm with severe krypton burns, and 0.22±0.04 mm with severe argon burns.

Conclusions:  These data demonstrate that laser penetration of subretinal blood increases with longer wavelengths in vivo. Diode infrared laser energy is capable of penetrating subretinal blood to coagulate the choroid in the absence of ophthalmoscopically visible changes in the overlying retina.

References
1.
Macular Photocoagulation Study Group.  Argon laser photocoagulation for neovascular maculopathy: five-year results from randomized clinical trials . Arch Ophthalmol . 1991;109:1109-1114.Article
2.
Macular Photocoagulation Study Group.  Laser photocoagulation for juxtafoveal choroidal neovascularization: five-year results from randomized clinical trials . Arch Ophthalmol . 1994;112:500-509.Article
3.
Macular Photocoagulation Study Group.  Laser photocoagulation of subfoveal neovascular lesions of age-related macular degeneration: updated findings from two clinical trials . Arch Ophthalmol . 1993;111:1200-1209.Article
4.
Macular Photocoagulation Study Group.  Visual outcome after laser photocoagulation for subfoveal choroidal neovascularization secondary to age-related macular degeneration: the influence of initial lesion size and initial visual acuity . Arch Ophthalmol . 1994;112:480-488.Article
5.
Chino K, Ohki R. Noyori K.  Krypton and argon laser photocoagulation effects in subretinal hemorrhage . Jpn J Ophthalmol . 1986;30:282-287.
6.
Mikami M.  Photocoagulation effects of dye lasers on chorioretinal lesions with subretinal hemorrhage . Nippon Ganka Gakkai Zasshi . 1988;92:468-476.
7.
Miki T, Inoue K, Obana A, Shiraki K.  Possibility of choriocapillary occlusion under experimental subretinal hemorrhage by photocoagulation with lasers of different wavelengths . Lasers Surg Med . 1989;9:543-555.Article
8.
Destro M, Puliafito CA.  Indocyanine green videoangiography of choroidal neovascularization . Ophthalmology . 1989;96:846-853.Article
9.
Guyer DR, Puliafito CA, Mones JM, Friedman E, Chang W, Verdooner SR.  Digital indocyanine-green angiography in chorioretinal disorders . Ophthalmology . 1992;99:287-291.Article
10.
Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA.  Digital indocyanine green videoangiography and choroidal neovascularization . Retina . 1992;12:191-223.Article
11.
Mainster MA.  Wavelength selection in macular photocoagulation: tissue optics, thermal effects, and laser systems . Ophthalmology . 1986;93:952-958.Article
12.
Puliafito CA, Duetsch TF, Boll J, To K.  Semiconductor laser endophotocoagulation of the retina . Arch Ophthalmol . 1987;105:424-427.Article
13.
McHugh JDA, Marshall J, Capon M, Rothery S, Raven A, Naylor RP.  Transpupillary retinal photocoagulation in the eyes of rabbits and human using a diode laser . Lasers Light Ophthalmol . 1988;2:125-143.
14.
Brancato R, Pratesi R, Leoni G, Trabucchi G, Vanni U.  Histopathology of diode and argon laser lesions in rabbit retina: a comparative study . Invest Ophthalmol Vis Sci . 1989;30:1504-1510.
15.
McHugh JDA, Marshall J, Ffytche TJ, Hamilton AM, Raven A.  Macular photocoagulation of human retina with a diode laser: a comparative histopathological study . Lasers Light Ophthalmol . 1990;3:11-28.
16.
Wallow IHL, Sponsel WE, Stevens TS.  Clinicopathologic correlation of diode laser burns in monkeys . Arch Ophthalmol . 1991;109:648-653.Article
17.
Menchini U, Trabucchi G, Brancato R, Cappellini A.  Can the diode laser (810 nm) effectively produce chorioretinal adhesion? Retina . 1992;12( (suppl 3) ):S80-S86.Article
18.
Benner JD, Huang M, Morse LS, Hjelmeland LM, Landers MB III.  Comparison of photocoagulation with the argon, krypton, and diode laser indirect ophthalmoscopes in rabbit eyes . Ophthalmology . 1992;99:1554-1563.Article
19.
McHugh JDA, Marshall J, Fytche TJ, Hamilton AM, Raven A, Keeler CR.  Initial clinical experience using a diode laser in the treatment of retinal vascular disease . Eye . 1989;3:516-527.Article
20.
Balles MW, Puliafito CA, D'Amico DJ, Jacobson JJ, Birngruber R.  Semiconductor diode laser photocoagulation in retinal vascular disease . Ophthalmology . 1990;97:1553-1561.Article
21.
Smiddy WE.  Diode endolaser photocoagulation . Arch Ophthalmol . 1992;110:1172-1174.Article
22.
Ulbig MW, McHugh DA, Hamilton AMP.  Photocoagulation of choroidal neovascular membranes with a diode laser . Br J Ophthalmol . 1993;77:218-221.Article
23.
Bandello F, Brancato R, Trabucchi G, Lattanzio R, Malegori A.  Diode versus argon-green laser panretinal photocoagulation in proliferative diabetic retinopathy: a randomized study in 44 eyes with a long follow-up time . Graefes Arch Clin Exp Ophthalmol . 1993;231:491-494.Article
24.
Reichel E, Puliafito CA.  ICG-enhanced diagnosis and treatment of choroidal neovascularization in age-related macular degeneration . In: Lewis H, Ryan S, eds. Medical and Surgical Retina . St Louis, Mo: Mosby-Year Book; 1994:30-40.
25.
Glatt H, Machemer R.  Experimental subretinal hemorrhage in rabbits . Am J Ophthalmol . 1982;94:762-773.Article
26.
Johnson MW, Olsen KR, Hernandez E.  Tissue plasminogen activator treatment of experimental subretinal hemorrhage . Retina . 1991;11:250-258.Article
27.
Folk JC, Shortt SG, Kleiber PD.  Experiments on the absorption of argon and krypton laser by blood . Ophthalmology . 1985;92:100-108.Article
28.
Horecker BL.  The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions . J Biol Chem . 1943;148:173-178.
29.
Cohen SM, Shen JH, Ren Q. Smiddy WE.  Argon, krypton, and diode laser transmission through blood . Invest Ophthalmol Vis Sci . 1994;35:1750. Abstract.
×