[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.197.171.35. Please contact the publisher to request reinstatement.
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
[Skip to Content Landing]
Article
October 2000

Nebulizer Use in Inner-City Children With AsthmaMorbidity, Medication Use, and Asthma Management Practices

Author Affiliations

From Departments of Pediatrics (Drs Eggleston and Butz) and Pulmonary Medicine (Dr Rand), The Johns Hopkins University School of Medicine, and the School of Nursing (Drs Butz and Huss), and Innovative Medical Research, INC (Dr Kolodner), Baltimore, Md.

Arch Pediatr Adolesc Med. 2000;154(10):984-990. doi:10.1001/archpedi.154.10.984
Abstract

Objective  To assess the frequency of nebulizer use, describe morbidity and patterns of medication administration, and examine the potential relationships between inhaled anti-inflammatory medication administration, asthma morbidity, and asthma management practices in children with asthma using a nebulizer compared with children with asthma not using a nebulizer.

Research Design  A cross-sectional, descriptive survey of previous events.

Setting  Elementary schools and participants' homes in Baltimore, Md, and Washington, DC.

Participants  Six hundred eighty-six families of children aged 5 to 12 years with a diagnosis of at least mild, persistent asthma.

Interventions  None.

Measurements and Main Results  Asthma morbidity, health care utilization, pattern of asthma medication administration, nebulizer use, and asthma management data were collected by telephone survey administered to caregivers. Nebulizer use was defined as use at least 1 or more days per month during the last 6 months. Of 686 children identified, 231 (33%) reported current nebulizer use. Nebulizer users had significantly increased lifetime hospital admissions, hospitalizations, and emergency department visits in the last 6 months compared with nonnebulizer users. Inhaled corticosteroid administration was low for both groups (nonnebulizer users, 8%; nebulizer users, 15%). In the nebulizer users group, administration of inhaled anti-inflammatory medications was associated with increased asthma morbidity (increased hospitalizations, days and nights with symptoms, and oral steroid use).

Conclusions  Nebulizer use by inner-city children with asthma is higher than anticipated but is not associated with reduced asthma morbidity. This group of high-risk children was undertreated with inhaled corticosteroids for long-term control of asthma despite reports of adequate monitoring by a primary care physician.

THE PREVALENCE of asthma, the most common long-term disease of childhood, significantly increased in children aged 5 to 14 years from 1980 to 1994 (42.8 to 74.4 per 1000 children).1 Children with a history of frequent emergency department (ED) care and hospitalizations are at the greatest risk for reduced quality of life, increased school absences, and life-threatening asthma exacerbations.25 This increased risk is related to young age, poor access to medical care, undertreatment of asthma, and poor asthma self-management.4,6

Studies indicate that there is no difference in efficacy between using a metered-dose inhaler (MDI) with a spacer and using a nebulizer for administration of inhaled albuterol to older children with mild to severe asthma. Both devices are the ideal delivery system for inhaled β-adrenergic agonists.714 However, home nebulizer use is favored over MDI use when there is difficulty in coordinating inspiration with MDI actuation, particularly in acutely ill, crying, or dyspneic children with asthma.15 It is estimated that more than 50% of patients have problems using MDIs.16

Current National Asthma Education Prevention Program (NAEPP) guidelines17 recommend nebulizer use for children younger than age 2 years and patients unable to use an MDI with a spacer. Recent trends in asthma care encourage early initiation of home nebulizer use for relief of acute, severe symptoms, especially in young children,15,18 to decrease ED visits and hospitalization.19,20

While there are data describing short-term morbidity in children with asthma using MDIs,9,11 there are little data describing the morbidity, medication administration, and asthma management characteristics for children using nebulizers and even less data describing inner-city children's use of nebulizers. The objectives of this study were (1) to assess the frequency of nebulizer use in an inner-city pediatric population, (2) to describe the morbidity, pattern of medication administration, and asthma management in children with asthma using a nebulizer compared with children with asthma not using a nebulizer, and (3) to examine potential relationships between inhaled anti-inflammatory medication administration, asthma morbidity, and asthma management practices in children with current nebulizer use.

PATIENTS, MATERIALS, AND METHODS

This study has a cross-sectional design, using data collected from parents or caregivers of children with asthma enrolled in 2 community-based asthma intervention studies in Baltimore, Md, and Washington, DC. The first study (Community-Based Adherence Intervention for African American Children With Asthma) tested the effectiveness of school-based asthma education and community health worker intervention on reducing ED visits, hospitalizations, school absences, and asthma care practices.21 The second study (A+ Asthma Partnership for Minority Children With Asthma) examined the effectiveness of a community physician educational program to increase knowledge of asthma management and skills of community physicians and to reduce ED visits and hospitalizations in inner-city children with asthma. Both intervention studies were approved by the Institutional Review Boards of the Johns Hopkins Medical Institutions, Baltimore, and the Howard University College of Medicine, Washington.

PARTICIPANTS

Seven hundred thirty children (338 enrolled in Community-Based Adherence Intervention for African American Children With Asthma; 392, A+ Asthma Partnership for Minority Children With Asthma) were included in the data presented in this article. Study participants with a physician diagnosis of asthma were recruited from 42 elementary schools in Baltimore and Washington during September 1992 through June 1996.

Criteria for inclusion were physician-diagnosed asthma based on parent and school health record reports. Of the enrolled children, 60% reported asthma symptoms consistent with mild, persistent asthma or a greater severity of asthma based on the NAEPP guidelines17 (eg, daytime or nighttime cough or wheeze >2 times a week). Another 29% of these children reported symptoms consistent with mild intermittent asthma (eg, daytime or nighttime cough or wheeze ≤2 times a week). No asthma symptoms were reported by 11% of the children. For each child identified from school records, a short survey was sent home to the parent to confirm that the child had asthma and that the parent agreed to participate in the study. Exclusion criteria included any current participation in other asthma studies. Excluded from this analysis were children with multiple missing data (n = 26) or missing data regarding nebulizer use (n = 5) and children younger than age 5 years (n = 13). These exclusions resulted in a final sample of 686 (94%) from the total children enrolled in both studies.

MEASURES

Baseline study data were obtained via telephone interview after obtaining written parental or legal guardian consent. The 30-minute telephone survey was conducted by professional interviewers from June 1994 through June 1998 to families of children with asthma enrolled in either study. Families without telephones or those who could not be contacted were mailed a card with a toll-free telephone number to call, which linked them to an interviewer who administered the interview. These families were sent a $20 incentive after completion of the interview.

Data were collected using a 170-item baseline questionnaire that included questions in 5 domains: sociodemographic, asthma morbidity, health care utilization (asthma as well as primary care), asthma medication use, and asthma self-care management practices. Nebulizer use was ascertained by asking, "Do you have a nebulizer (a special machine that gives prescribed medicines) in your home for your child's asthma?" and "How many times in the last 30 days did you use the nebulizer (mist machine) for your child's asthma?" Children were defined as a nebulizer user (NU) if they reported use of a nebulizer at least 1 or more days per month during the last 6 months.

Assessment of asthma morbidity included number of symptom (cough or wheeze) days and nights per month in the last 6 months, number of school absences due to asthma in the last 12 months, number of times receiving oral steroids in the last 12 months and past 30 days, and current use of oral steroids. Health care utilization items included the number of hospitalizations in the child's lifetime and in the last 6 months, number of ED visits in the child's lifetime and the last 6 months, and number of physician visits for regular asthma care in the last 12 months. Asthma medication administration was assessed using items asking asthma medication type, frequency of administration, and type of medication administration (oral or inhaled) used presently and during the last 6 to 12 months. Assessment of asthma management included having a regular source of asthma care, peak flow meter use, and receiving allergy skin testing.

DATA ANALYSIS

Data were summarized by examining frequency distributions for all sociodemographic, asthma morbidity, health care utilization, asthma medication, and asthma management variables for 686 participants. Child participants were categorized either as NUs (use of a nebulizer ≥1 day during the past month) or nonnebulizer users (NNUs) (no nebulizer use or <1 day per month of nebulizer use). Categories of asthma medications were created by examining the pattern of medication administration across all participants and were collapsed into the 5 most common patterns: (1) β-adrenergic agonist and/or theophylline only; (2) β-adrenergic agonist and cromolyn sodium with or without theophylline; (3) inhaled corticosteroids and β-adrenergic agonist with or without cromolyn, or inhaled corticosteroids and theophylline with or without cromolyn; (4) inhaled corticosteroid only or in combination with cromolyn, or cromolyn only; or (5) no medication. Children receiving inhaled corticosteroids and cromolyn were further classified into an inhaled anti-inflammatory group.

Bivariate analysis of NUs vs NNUs were examined using χ2 analysis for the categorical variables (previous ED visits [ever] and hospitalized last 6 months [yes/no]) and t test for continuous variables (mean number of days and nights with symptoms, mean number of visits to regular physician for care). We additionally analyzed the NU group for differences in asthma morbidity measures and asthma management characteristics by administration of inhaled anti-inflammatory (receiving inhaled corticosteroids or cromolyn vs not receiving anti-inflammatory medications). All data analysis was conducted using SAS 7.0 (SAS Institute, Cary, NC).

RESULTS
SAMPLE CHARACTERISTICS OF ALL PARTICIPANTS

Overall, children were primarily male (58%), African American (98.6%), and had a mean age of 8.2 years (age range, 5-12 years). Most respondents (89%) were either the child's biological mother or father. Most parents (75%) reported receiving at least a high school education or general education diploma. The number of household members was high with more than two thirds (68%) reporting 4 or more people living in the household. Although most mothers (79%) reported they did not have asthma, more than half (54%) reported other family members with asthma. More than half (60%) reported medical assistance as the child's type of medical insurance, and half (53%) reported receiving Aid to Families With Dependent Children (AFDC) or welfare.

Of 686 identified children with mild, persistent asthma or a greater severity of asthma, 231 (33%) reported using a nebulizer for medication administration at least 1 or more days per month. Three hundred twelve (45%) reported having a nebulizer machine at home. Nebulizer users were significantly younger (P = .02) and more likely to be male (P = .05) compared with NNUs (P = .02) (Table 1). A logistic regression model indicated that age and sex were independently associated with nebulizer use (children aged 2-6 years, odds ratio [OR] = 2.4, P = .003; aged 7-8 years, OR = 2.0, P = .01; aged 9-10 years, OR = 1.5, P = .13) (reference groups, aged ≥11 years, male, OR = 1.4, P = .03). Although there was a statistically significant difference by ethnicity, there was very little variation by ethnicity in the total sample.

Table 1. 
Sociodemographic Characteristics for Nonnebulizer Users and Nebulizer Users*
Sociodemographic Characteristics for Nonnebulizer Users and Nebulizer Users*
NEBULIZER USE BY AGE

Nebulizer use was significantly more frequent in children younger than age 8 years (Table 1) (P = .02). Among NUs, though there was no significant difference between the mean number of times using a nebulizer in the past 30 days by age (F3 = 0.90, P = .44), children younger than age 11 years tended to report a higher mean number of times of use (aged 6 years, 25.4 times; aged 7-8 years, 23.8 times; aged 9-10 years, 24.6 times; and aged ≥11 years, 13.6 times).

ASTHMA MORBIDITY BY NEBULIZER USE

As given in Table 2, the NU group had significantly more lifetime hospital admissions (P = .001), a higher rate of hospitalizations during the past 6 months (P = .001), a higher mean number of days and nights with symptoms (P = .001), more children with at least 11 school absences in the past year (P = .001), a higher proportion of 3 or more ED visits in the last 6 months (P = .001), and a higher proportion of children with a previous ED visit compared with the NNU group (P = .001). Additionally, NUs had a higher rate of oral steroid administration in mean number of times receiving oral steroids in the last 12 months (P = .003) and a higher percentage of children reporting oral steroid administration in the last 30 days (P = .001) compared with NNUs.

Table 2. 
Asthma Morbidity in Children by Nebulizer Use*
Asthma Morbidity in Children by Nebulizer Use*
PATTERN OF ASTHMA MEDICATION USE BY NEBULIZER USE

Administration of a β-adrenergic agonist medication alone or in combination with theophylline was the predominant type of asthma medication for both groups (51%, NNUs; 46%, NUs) (Table 3). The NUs had a higher percentage of cromolyn administration in combination with a β-adrenergic agonist with and without theophylline compared with the NNUs (NNUs, 9%; NUs, 33%). Theophylline administration was low for both groups (NNUs, 10 [2%] of 455; NUs, 9 [4%] of 231). Inhaled corticosteroid administration only or in combination with a bronchodilator was low for both groups (NNUs, 36 [8%] of 455; NUs, 35 [15%] of 231), and there was a significant difference between the 2 groups (χ21 = 7.89, P = .004). No medication was received by almost one third (32%) of the NNUs. Data for type of medication administered were missing for 6% of NUs.

Table 3. 
Pattern of Medication Administration by Nonnebulizer Users vs Nebulizer Users*
Pattern of Medication Administration by Nonnebulizer Users vs Nebulizer Users*
ASTHMA MORBIDITY IN NUs BY INHALED ANTI-INFLAMMATORY ADMINISTRATION

Children receiving inhaled anti-inflammatory medications, defined as any cromolyn or inhaled corticosteroid, had increased morbidity as evidenced by a significantly increased rate of a hospitalization in the past 6 months (P = .004), increased number of days and nights with symptoms (P = .03), more children with 3 or more ED visits in the last 6 months (P = .05), and an increased mean number of nebulizer treatments in the last 30 days (group not receiving inhaled anti-inflammatory medications, 16 times; group receiving inhaled anti-inflammatory medications, 32 times; P = .03) (Table 4). Administration of oral steroids in the past 12 months was reported significantly more often by those receiving inhaled anti-inflammatory medications (P<.001). There were no significant differences in the number of school days missed by administration of inhaled anti-inflammatory medications.

Table 4. 
Asthma Morbidity by Inhaled Anti-inflammatory Administration for Nebulizer Users*
Asthma Morbidity by Inhaled Anti-inflammatory Administration for Nebulizer Users*
ASTHMA MANAGEMENT IN NUs BY INHALED ANTI-INFLAMMATORY ADMINISTRATION

As given in Table 5, children receiving inhaled anti-inflammatory medications reported significantly more physician visits for regular asthma care in the past 12 months (P = .03) and had a peak flow meter in the home (P = .001) compared with children receiving noninhaled anti-inflammatory medications. Although not statistically significant, there was a trend for the children receiving anti-inflammatory medications to have undergone allergy testing (P = .08). The 2 groups did not differ by having a regular source of asthma care; more than 97% of children in both groups reported having a regular source of asthma care. Last, there were no differences in sociodemographic status by administration of inhaled anti-inflammatory medications (income, P = .60; receiving medical assistance, P = .26; receiving AFDC, P = .29; or caregiver unable to afford asthma medicines or physician visits, P = .79).

Table 5. 
Asthma Management Practices by Inhaled Anti-inflammatory Administration in Nebulizer Users*
Asthma Management Practices by Inhaled Anti-inflammatory Administration in Nebulizer Users*
COMMENT

These data confirm that nebulizer use is high in inner-city children with asthma (33%), consistent with a recent prevalence rate for nebulizer use for patients with asthma of all ages (32%).22 In our study, one third of children older than age 6 years reported nebulizer use at least 1 day per month. Although nebulizer use was significantly more frequent in children younger than age 8 years, 40% of NUs were aged 8 years or older. This high rate of nebulizer use in older children is concerning. The NAEPP guidelines suggest nebulizer use for children aged 2 years or younger or when a proper MDI with spacer technique cannot be achieved.17 Considerable research supports that MDIs with spacers and nebulizers are equally efficient in administering inhaled medications to children with asthma,9,1114,2327 suggesting that the preferred mode of asthma medication delivery for children is use of an MDI with a spacer. Cost-savings of MDI use vs nebulizer use were reported to be 4-fold in reducing billing charges for acutely ill, hospitalized patients with acute exacerbation of obstructive airway disease.24 In children, similar reductions of nebulizer use and increase of MDI use should yield comparable cost-savings. However, owing to some regulatory issues, medical assistance insurance may not cover the cost of a spacer for MDI use, resulting in less effort and out-of-pocket expense for some caregivers to obtain a nebulizer.

Even though an MDI with a spacer is the preferred mode of delivery of inhaled medications,28 many physicians continue to prescribe nebulizers for home use.29 Ideally, the decision to prescribe an MDI or nebulizer is based on family needs and the child's inhalation and coordination skill level.30 Physicians who treat inner-city children with asthma may believe that nebulizer use improves morbidity in this group of children, particularly if parents are more prone to use a nebulizer than an MDI for acute asthma episodes. Anecdotally, many families reported requesting a nebulizer for their child to avoid an ED visit by having the "same machine as they use in the emergency room." Additionally, families reported "sharing" a nebulizer among family members and neighbors. While we lack objective data to support these claims, it is troubling to consider that a nebulizer may be misused or may lead to delay in seeking medical care for a child experiencing an acute exacerbation of asthma.

We observed a high rate of morbidity in this population, including increased hospitalizations, ED visits, days and nights with symptoms, and school absences, suggesting a more severe asthma that requires long-term, inhaled corticosteroid therapy.17 Despite the high prevalence of nebulizer use in this sample, an extraordinarily low rate of children (15%) reported receiving inhaled corticosteroids. While this is contrary to NAEPP guidelines,17 it is consistent with previous reports of low rates of inhaled corticosteroid administration in inner-city pediatric populations.31 This lack of inhaled corticosteroid therapy may be a major contribution to poor asthma control21 as evidenced in this sample. Our data indicate serious undertreatment of an identified high-risk group of children with asthma whose morbidity was significantly increased compared with NNU counterparts.

On the other hand, use of anti-inflammatory medication in the NU group was not associated with a decrease in asthma morbidity as evidenced by the increased number of ED visits, administration of oral steroids, and days and nights with symptoms in those receiving inhaled anti-inflammatory medications vs those not receiving them. Perhaps this reflects a subgroup of NUs who receive anti-inflammatory medications but whose symptoms are more severe and require more ED visits for control of asthma. An alternative hypothesis may be confounding by severity3234 in which anti-inflammatory medications are more likely to be prescribed to children who have more severe asthma, which is associated with a higher probability of an ED visit or hospitalization. Sociodemographic factors such as income, receiving medical assistance, or receiving AFDC did not influence the administration of inhaled anti-inflammatory medication. Thus, there was no disparity of inhaled anti-inflammatory administration in the more disadvantaged families. It is unclear if this low rate of inhaled anti-inflammatory administration is a result of physicians not following clinical practice guidelines due to lack of awareness, familiarity, agreement, or outcome expectancy35 or families' failure to fill or adhere to prescribed medications.3640 Considerable failure to refill medication was shown in a pediatric asthma study in which 63% of caregivers reportedly were out of albuterol for their child when the child was seen in the ED and the caregiver indicated that 1 of their child's medications was albuterol.38 In either case, low rates of administration of inhaled corticosteroid medication is of great concern based on the high morbidity we observed and indicates the need for increased attention to both provider and patient education regarding preventive therapy. There is some evidence that this subgroup of children receiving inhaled corticosteroids demonstrated a pattern of receiving more NAEPP guideline–based care (eg, more physician visits for regular asthma care, more likely to have a peak flow meter, and a trend toward receiving allergy tests, a marker for specialty care).

This study's findings must be interpreted with some caution. This study relied on a structured interview rather than clinical records, so it is likely that parental reports of asthma morbidity are subject to recall bias. Furthermore, all surveyed families had consented to participating in a school- or home-based asthma education program. Therefore, this sample might be biased toward families that are either more concerned about their child's asthma or more in need of asthma education and services. However, the asthma morbidity and health care utilization baseline data found in this intervention study are remarkably similar to other inner-city asthma surveys that did not enroll participants in an asthma intervention.41,42 For this reason, we believe that our participants are representative of urban African American families with a child with asthma. Another caveat with our self-reported data is that we are unable to determine if a nebulizer or medication was not prescribed or whether there was poor adherence with a prescribed treatment plan. Verification of type of medications and presence of a peak flow meter in the home was not conducted owing to budgetary restraints. However, families were asked to obtain all of their child's medications at the beginning of the interview so that the parent could read the label for medication name and instructions for use. We feel that we report actual practice in the home, which reflects the reality of the child's asthma care.

In conclusion, we observed high nebulizer use in inner-city children despite the limited evidence base for nebulizer use in children older than age 2 years. We also observed that this group of high-risk children was undertreated (6 of 7 children) with inhaled corticosteroids for long-term control of their asthma. We recommend that nebulizer therapy should not be used in the absence of an NAEPP guideline–based preventive medication regimen. Further studies need to carefully evaluate the clinical benefit and cost-effectiveness of home-based nebulizer therapy on asthma morbidity in inner-city children.

Back to top
Article Information

Accepted for publication May 30, 2000.

This research was supported by the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md, grants R18-HL52013 and HL52833 (Dr Rand).

The authors thank Barbara Calabrese, RN, Francine Lampros-Klein, MEd, and David Lang, MD, for their thoughtful review of the manuscript.

Reprints: Arlene M. Butz, ScD, RN, Department of Pediatrics, Johns Hopkins University, School of Medicine, 600 N Wolfe St, Baltimore, MD 21287-3144 (e-mail: Abutz@jhmi.jhu.edu).

References
1.
Mannino  DMHoma  DMPertowski  CA  et al.  Surveillance for asthma—United States, 1960-1995. Mor Mortal Wkly Rep CDC Surveill Summ. 1998;471- 27
2.
Rand  CSWise  RA Adherence with asthma therapy in the management of asthma. Szefler  SJLeung  DYMSevere Asthma Pathogenesis and Clinical Management: Lung Biology in Health and Disease. New York, NY Marcel Dekker Inc1996;435- 464
3.
Weitzman  MGortmaker  SSobol  A Racial, social and environmental risks for childhood asthma. AJDC. 1990;1441189- 1194
4.
Kesten  SChew  RHanania  NA Health care utilization after near-fatal asthma. Chest. 1995;1071564- 1569Article
5.
Campbell  DAMcLennan  GCoates  JR  et al.  A comparison of asthma deaths and near-fatal asthma attacks in South Australia. Eur Respir J. 1994;7490- 497Article
6.
Jones  SLJones  PKKatz  J Compliance in acute and chronic patients receiving a health belief model intervention in the emergency department. Soc Sci Med. 1991;321183- 1189Article
7.
Lemanske  RF  JrBusse  WW Asthma. JAMA. 1997;2781855- 1873Article
8.
Pallares  DEPilarski  BRRodriguez  JLLeickly  FE A comparison of bronchodilator responses to albuterol delivered by ultrasonic versus jet nebulization in moderate to severe asthma. Ann Allergy Asthma Immunol. 1996;77292- 297Article
9.
Karem  ELevison  HSchuh  S  et al.  Efficacy of albuterol administered by nebulizer versus spacer device in children with acute asthma. J Pediatr. 1993;123313- 317Article
10.
Lewis  RAFleming  SS Factional deposition from a jet nebulizer: how it differs from a metered dose inhaler. Br J Dis Chest. 1985;79361- 367Article
11.
Chou  KJCunningham  SJCrain  EF Metered-dose inhalers with spacers vs nebulizers for pediatric asthma. Arch Pediatr Adolesc Med. 1995;149201- 205Article
12.
Freelander  MVan Asperen  PP Nebuhaler versus nebulizer in children with acute asthma. BMJ. 1984;2881873- 1874Article
13.
Lin  YZHsieth  KH Metered dose inhaler and nebulizer in acute asthma. Arch Dis Child. 1995;72214- 218Article
14.
Schuh  SJohnson  DWStephens  DCallahan  SWinders  PCanny  GJ Comparison of albuterol delivered by a metered dose inhaler with spacer versus a nebulizer in children with mild acute asthma. J Pediatr. 1999;13522- 27Article
15.
Canny  GJLevison  H Aerosols: therapeutic use and delivery in childhood asthma. Ann Allergy. 1988;6011- 20
16.
Crompton  GK Problems patients have using pressurized aerosol inhalers. Eur J Respir Dis. 1982;63 (suppl 119) 101- 104
17.
National Heart, Lung, and Blood Institute, National Asthma Education and Prevention Program., Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma.  Baltimore, Md National Institutes of Health1997;Publication 97-4051.
18.
Barry  PWO'Callaghan  CO Nebuliser therapy in childhood. Thorax. 1997;52 (suppl 2) S78- S88Article
19.
Madge  PJNisbet  LMcColl  JVallance  APaton  JYBeattie  JO Home nebuliser use in children with asthma in two Scottish Health Board areas. Scott Med J. 1995;40141- 143
20.
Zimo  DAGaspar  MAkhter  J The efficacy and safety of home nebuliser therapy for children with asthma. AJDC. 1989;143208- 211
21.
Rand  CSButz  AMHuss  KKolodner  KEggleston  PE Emergency department utilization of urban African American children with asthma. J Allergy Clin Immunol. 2000;10583- 90Article
22.
Neville  RGHoskins  GSmith  BClark  RA How general practitioners manage acute asthma attacks. Thorax. 1997;311153- 156Article
23.
Wildhaber  JHDore  NDWilson  JMDevadason  SGLeSouef  PN Inhalation therapy in asthma: nebulizer or pressurized metered-dose inhaler with holding chamber? in vivo comparison of lung deposition in children. J Pediatr. 1999;13528- 33Article
24.
Summer  WElston  RTharpe  LNelson  SHaponik  EF Aerosol bronchodilator delivery methods: relative impact on pulmonary function and cost of respiratory care. Arch Intern Med. 1989;149618- 623Article
25.
Robertson  CFNorden  MAFitzgerald  DA  et al.  Treatment of acute asthma: salbutamol via jet nebulizer vs spacer and metered dose inhaler. J Paediatr Child Health. 1998;34142- 146Article
26.
Lewis  RAFleming  JS Fractional deposition from a jet nebulizer: how it differs from a metered dose inhaler. Br J Dis Chest. 1985;79361- 367Article
27.
Rodrigo  CRodrigo  G Salbutamol treatment of acute severe asthma in the ED: MDI versus hand-held nebulizer. Am J Emerg Med. 1998;16637- 642Article
28.
Amirav  INewhouse  MT Metered-dose inhaler accessory devices in acute asthma: a literature review. Arch Pediatr Adolesc Med. 1997;151876- 882Article
29.
Newhouse  MT Asthma therapy with aerosols: are nebulizers obsolete? a continuing controversy. J Pediatr. 1999;1355- 8Article
30.
Andersson  LBoethius  G Effect of domiciliary treatment with nebulized beta 2-stimulants: a retrospective follow-up of 102 patients. Eur J Respir Dis. 1984;136205- 212
31.
Eggleston  PAMalveaux  FJButz  AM  et al.  Medications used by children with asthma living in the inner city. Pediatrics. 1998;101349- 354Article
32.
Blais  LErnst  PBoivin  JFSuissa  S Inhaled corticosteroids and the prevention of readmission to hospital for asthma. Am J Respir Crit Care Med. 1998;158126- 132Article
33.
Donahue  JGWeiss  STLivingston  JMGoetsch  MAGreineder  DKPlatt  R Inhaled steroids and the risk of hospitalization for asthma. JAMA. 1997;277887- 891Article
34.
Lieu  TAQuesenberry  CPCapra  AMSorel  MEMartin  KEMendoza  GR Outpatient management practices with reduced risk of pediatric asthma hospitalization and emergency department visits. Pediatrics. 1997;100334- 341Article
35.
Cabana  MDRand  CSPowe  NR  et al.  Why don't physicians follow clinical practice guidelines? a framework for improvement. JAMA. 1999;2821458- 1465Article
36.
Celano  MGeller  RJPhillips  KMZiman  R Treatment adherence among low-income children with asthma. J Pediatr Psychol. 1998;23345- 349Article
37.
Winkelstein  MLEggleston  PEHuss  KVargas  PButz  ARand  C Factors associated with medication self-administration in children with asthma. Clin Pediatr. 2000;39337- 345Article
38.
Simon  HK Caregiver knowledge and delivery of a commonly prescribed medication (albuterol) for children. Arch Pediatr Adolesc Med. 1999;153615- 618Article
39.
Vargas  PRand  CS Concordance between patient self-reported and physician reported asthma regimen in low-income, minority children with asthma [abstract]. Am J Respir Crit Care Med. 1999;159A267Article
40.
DiMatteo  MR Enhancing patient adherence to medical recommendations. JAMA. 1994;2717983Article
41.
Mak  HJohnston  PAbbey  HTalamo  RC Prevalence of asthma and health service utilization of asthmatic children in an inner city. J Allergy Clin Immunol. 1982;70367- 372Article
42.
Fisher  EBSussman  LKArfken  C  et al.  Targeting high risk groups: neighborhood organization for pediatric asthma management in the neighborhood asthma coalition. Chest. 1994;106248S- 259SArticle
×