[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 54.145.218.90. Please contact the publisher to request reinstatement.
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
[Skip to Content Landing]
Article
March 1985

Experimental Myocardial IschemiaDifferential Injury of Mitochondrial Subpopulations

Author Affiliations

From the Department of Surgery (Drs Weinstein and Fry, Mr Benson, and Ms Ratcliffe) and Pathology (Dr Maksem), Veterans Administration Medical Center, Cleveland; and the Department of Surgery, Case Western Reserve University, Cleveland (Drs Weinstein and Fry, Mr Benson, and Ms Ratcliffe). Dr Weinstein is a Dudley P. Allen Research Fellow for the Department of General Surgery at Case Western Reserve University Hospitals.

Arch Surg. 1985;120(3):332-338. doi:10.1001/archsurg.1985.01390270070012
Abstract

• Distinct populations of subsarcolemmal (SS) and interfibrillar (IF) rat cardiac mitochondria were studied following 15 and 30 minutes of warm and cold global ischemia. The respiratory control index, state 3, state 4, adenosine diphosphate—oxygen ratio, and specific enzyme activities of these mitochondrial populations were examined. The subsarcolemmar and IF mitochondria were both severely uncoupled and inhibited by warm ischemia. However, IF mitochondria had a higher RCI at each ischemic interval. In cold ischemia, IF mitochondria were not injured compared with control specimens. Subsarcolemmar mitochondria showed a trend towards a lower RCI that was statistically significant at 30 minutes with succinate as a substrate. These data implicate a differential injury of ischemia on the compartmentalized bioenergy metabolism of the myocardial cell.

(Arch Surg 1985;120:332-338)

References
1.
Weinstein ES, Benson DW, Ratcliffe DJ, et al:  Cardiac mitochondrial subpopulations: Implications for shock research . Circ Shock 1984;13:93-94.
2.
Palmer JW, Tandler B, Hoppel CL:  Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle . J Biol Chem 1977;252:8731-8739.
3.
Tomec R, Hoppel CL:  Carnitine palmitoyltransferase in bovine fetal heart mitochondria . Arch Biochem Biophys 1975;170:716-723.Article
4.
Gornal AG, Bardawill CJ, David MM:  Determination of serum proteins by means of the Biuret reaction . J Biol Chem 1949;177:751-766.
5.
Chance B, Williams GR:  The respiratory chain and oxidative phosphorylation . Adv Enzymol 1956;17:65-71.
6.
Estabrook RW:  Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios . Methods Enzymol 1967;10:41-47.
7.
Sottocasa GL, Kuylenstierna B, Ernster L, et al:  An electron-transport system associated with the outer membrane of liver mitochondria . J Cell Biol 1976;32:415-438.Article
8.
Hughes BP:  A Method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathologic sera . Clin Chim Acta 1962;7:597-603.Article
9.
Taylor TH, Friedman ME:  Colorimetric determination of serum isocitrate dehydrogenase: Comparison with a spectrophotometric procedure . Clin Chem 1960;6:208-215.
10.
Hoppel CL, Tandler B, Parland W, et al:  Hamster cardiomyopathy: A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria . J Biol Chem 1982;257:1540-1548.
11.
Matlib MA, Wilson D, Rouslin W, et al:  On the existence of two populations of mitochondria in a single organ: Respiration, calcium transport and enzyme activities . Biochim Biophys Res Commun 1978;84:482-488.Article
12.
Tzagoloff A: Mitochondria . New York, Plenum Press, 1982.
13.
Reimer KA, Jennings RB, Tatum AH:  Pathobiology of acute myocardial ischemia: Metabolic, functional and ultrastructural studies . Am J Cardiol 1983;52:72A-81A.Article
14.
Williamson JR, Rich TL:  Mitochondrial function in normal and hypoxic states of the myocardium . Adv Myocardiol 1983;4:271-285.
15.
Shlafer M, Kirsh M, Lucchesi BR, et al:  Mitochondrial function after global cardiac ischemia and reperfusion: Influences of organelle isolation protocols . Basic Res Cardiol 1981;76:250-266.Article
16.
Watts JA, Koch CD, LaNoue KF:  Effects of Ca++ antagonism on energy metabolism: Ca++ and heart function after ischemia . Am J Physiol 1980;238:H909-H916.
17.
Peng CF, Kane JJ, Murphy ML, et al:  Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium reversed by Ca++-chelating agents . J Mol Cell Cardiol 1977;9:897-908.Article
18.
Schwartz A, Wood J, Allen JC, et al:  Biochemical and morphologic correlates of cardiac ischemia . Am J Cardiol 1973;32:46-61.Article
19.
McCaig DJ, Kane KA, Bailey G, et al:  Myocardial function and feline endotoxin shock: A correlation between myocardial contractility, electrophysiology and ultrastructure . Circ Shock 1979;6:201-211.
20.
Mela L, Hinshaw LB, Coalson JJ:  Correlation of cardiac performance, ultrastructural morphology and mitochondrial function in endotoxemia in the dog . Circ Shock 1974;1:265-272.
21.
McMillin-Wood J, Wolkowicz PE, Chu A, et al:  Calcium uptake by two preparations of mitochondria from heart . Biochem Biophys Acta 1980;591: 251-265.
22.
Meyer LR, Bonner HW, Farrar RP:  Myocardial mitochondrial synthesis in response to various workloads . Res Commun Chem Pathol Pharmacol 1981;34:157-160.
23.
Pinsky WW, Lewis RM, McMillin-Wood JB, et al:  Myocardial protection from ischemia arrest: Potassium and verapamil cardioplegia . Am J Physiol 1981;240:H326-H335.
×