Physician Staffing Patterns and Clinical Outcomes in Critically Ill Patients
A Systematic Review

Peter J. Pronovost, MD, PhD
Derek C. Angus, MB, ChB, MPH
Todd Dorman, MD
Karen A. Robinson, MSc
Tony T. Dremsizov, MBA
Tammy L. Young

Approximately 1% of the US gross domestic product is consumed in the care of intensive care unit (ICU) patients.1 Despite this considerable investment of resources, there is wide variation in ICU organization,2,3 and studies have suggested that differences in ICU organization may affect patient outcome. For example, staffing ICUs with critical care physicians (intensivists) may improve clinical outcomes.4 A conceptual model that explains this finding is that physicians who have the skills to treat critically ill patients and who are immediately available to detect and treat problems may prevent or attenuate morbidity and mortality.5 Staffing ICUs with intensivists may also decrease resource use because these physicians may be better at reducing inappropriate ICU admissions, preventing complications that prolong length of stay (LOS), and recognizing opportunities for prompt discharge.2

Intensive care unit staffing is typical of an organizational issue in health care in that, despite its potential importance in clinical and economic outcomes, it is not studied by using randomized trials. For example, the widely

Context Intensive care unit (ICU) physician staffing varies widely, and its association with patient outcomes remains unclear.

Objective To evaluate the association between ICU physician staffing and patient outcomes.

Data Sources We searched MEDLINE (January 1, 1966, through September 30, 2001) for the following medical subject heading (MeSH) terms: intensive care units, ICU, health resources/utilization, hospitalization, medical staff, hospital organization and administration, personnel staffing and scheduling, length of stay, and LOS. We also used the following text words: staffing, intensivist, critical, care, and specialist. To identify observational studies, we added the MeSH terms case-control study and retrospective study. Although we searched for non-English-language citations, we reviewed only English-language articles. We also searched EMBASE, HealthStar (Health Services, Technology, Administration, and Research), and HSIRPROJ (Health Services Research Projects in Progress) via Internet Grateful Med and The Cochrane Library and hand searched abstract proceedings from intensive care national scientific meetings (January 1, 1994, through December 31, 2001).

Study Selection We selected randomized and observational controlled trials of critically ill adults or children. Studies examined ICU attending physician staffing strategies and the outcomes of hospital and ICU mortality and length of stay (LOS). Studies were selected and critiqued by 2 reviewers. We reviewed 2590 abstracts and identified 26 relevant observational studies (of which 1 included 2 comparisons), resulting in 27 comparisons of alternative staffing strategies. Twenty studies focused on a single ICU.

Data Synthesis We grouped ICU physician staffing into low-intensity (no intensivist or elective intensivist consultation) or high-intensity (mandatory intensivist consultation or closed ICU [all care directed by intensivist]) groups. High-intensity staffing was associated with lower hospital mortality in 16 of 17 studies (94%) and with a pooled estimate of the relative risk for hospital mortality of 0.71 (95% confidence interval [CI], 0.62-0.82). High-intensity staffing was associated with a lower ICU mortality in 14 of 15 studies (93%) and with a pooled estimate of the relative risk for ICU mortality of 0.61 (95% CI, 0.50-0.75). High-intensity staffing reduced hospital LOS in 10 of 13 studies and reduced ICU LOS in 14 of 18 studies without case-mix adjustment. High-intensity staffing was associated with reduced hospital LOS in 2 of 4 studies and ICU LOS in both studies that adjusted for case mix. No study found increased LOS with high-intensity staffing after case-mix adjustment.

Conclusions High-intensity ICU physician staffing is associated with reduced hospital and ICU mortality and hospital and ICU LOS.
STAFFING AND OUTCOMES IN CRITICALLY ILL PATIENTS

held belief that outcomes are better after surgery performed by experienced surgeons or hospitals is based solely on observational data.3 Practical and ethical reasons exist to explain why such organizational characteristics are not subjected to randomized trials. Yet, as changes occur in the way health care is organized, financed, and delivered, it will be important to understand the impact of organizational characteristics, such as ICU physician and nurse staffing, on patient outcomes through systematic reviews.6 To inform health policy, we will need to synthesize evidence that is predominantly observational. Accordingly, the goal of this systematic review was to examine the effect of ICU physician staffing on hospital and ICU mortality and LOS.

METHODS

Study Selection Criteria

We sought to identify and review all studies that met the following criteria: randomized or observational controlled trials of critically ill adults or children, ICU physician staffing strategies, hospital and ICU mortality, and LOS.

Citation Search Strategy

To identify literature in electronic databases, we searched MEDLINE from January 1, 1965, through September 30, 2001, by using the following medical subject heading (MeSH) terms: intensive care units, ICU, health resources/utilization, hospitalization, medical staff, hospital organization and administration, personnel staffing and scheduling, length of stay, and LOS. We used the following text words: staffing, intensivist, critical, care, and specialist. We used the search strategy for retrieval of controlled clinical trials proposed by Robinson and Dickersin.7 To identify observational studies, we added the MeSH terms case-control study and retrospective study.

We also searched EMBASE, HealthStar (Health Services, Technology, Administration, and Research), and HSRPROJ (Health Services Research Projects in Progress) via Internet Grateful Med and The Cochrane Library (1998, issue 3), which contains the CENTRAL Database of Controlled Trials, the Database of Abstracts of Review Effectiveness, and the Cochrane Database of Systematic Reviews.

In addition, we used the related articles feature of PubMed, which identifies related articles by using a hierarchical search engine that is not solely based on MeSH headings. This search was completed with articles selected by 2 of the authors (P.J.P. and D.C.A.).8-12 Although we searched for non–English-language citations, subsequent article review involved only English-language publications. To identify studies published in abstract form only, we hand-searched the abstract proceedings from the annual scientific assemblies of the Society of Critical Care Medicine, the American College of Chest Physicians, and the American Thoracic Society from January 1, 1994, through December 31, 2001.

Study Selection

After all citations based on our search strategy were identified, 2 of the authors (P.J.P. and D.C.A.) independently reviewed each abstract to confirm eligibility. If an abstract was selected as eligible, the same authors independently reviewed the respective article, if available, to confirm that it met inclusion criteria. Abstracts from meeting proceedings were included if the data were not published as peer-reviewed articles. To resolve discrepancies, the 2 reviewers either had to reach consensus, or use a third reviewer (T.D.).

Data Extraction

Using a data collection form, we extracted data from the studies to describe patient characteristics, study methods, and study findings. We also abstracted quantitative data regarding the intervention, cointerventions, study design and duration, unit of analysis, risk adjustment, degree of follow-up, adjustment of historical trends, and type of ICU. All data were abstracted independently by each of the 2 primary reviewers and verified for accuracy by the third reviewer, again with discussion used to resolve differences among reviewers. All reviewers were intensivists with formal training in clinical epidemiology and biostatistics. We did not mask the reviewers to author, institution, or journal because such masking reportedly makes little difference to the results of a systematic review.13

Data Synthesis and Analysis

We measured the percentage of agreement before discussion among reviewers in study selection, study design, and data abstraction. For data synthesis, we constructed evidence tables to present data separately for the 4 main outcome variables: hospital mortality, ICU mortality, hospital LOS, and ICU LOS. Because of wide variation in the methods used to evaluate hospital costs, we did not include cost as an outcome.

We classified the study design as a randomized clinical trial, cohort study (prospective, retrospective, or historical control), case-control study, or outcome study (cross-sectional). We classified the method of risk adjustment as follows: validated physiologic method (discrimination and calibration of the model previously reported), selected clinical data (discrimination and calibration of the model not reported), and no risk adjustment.

Because ICU physician staffing varied widely among studies in the control and intervention groups, we initially classified ICU physician staffing as follows: (1) closed ICU (the intensivist is the patient’s primary attending physician), (2) mandatory critical care consultation (the intensivist is not the patient’s primary attending physician, but every patient admitted to the ICU receives a critical care consultation), (3) elective critical care consultation (the intensivist is involved in the care of the patient only when the attending physician requests a consultation), and (4) no critical care physician (intensivists were unavailable). Because it is difficult to distinguish between a closed ICU and a mandatory critical care consultation, and because in several studies we were not able to do so, we further grouped ICU physician staffing into high intensity (mandatory intensivist consultation or closed ICU) or...
Table 1. Characteristics of Reviewed Studies Concerning ICU Physician Staffing and Outcomes*

<table>
<thead>
<tr>
<th>Source</th>
<th>Population</th>
<th>Study Design</th>
<th>ICUs Studied, No.</th>
<th>High Intensity† Patients, No.</th>
<th>Low Intensity† Patients, No.</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronovost et al,2 1999</td>
<td>Surgical (AAA repair)</td>
<td>Outcomes CS</td>
<td>39</td>
<td>2036 MC</td>
<td>472 EC</td>
<td>Hospital mortality, hospital and ICU LOS, rates of complications</td>
</tr>
<tr>
<td>Brown and Sullivan,8 1989</td>
<td>Medical or surgical</td>
<td>Cohort HC</td>
<td>1</td>
<td>216 CU</td>
<td>223 NI</td>
<td>Hospital and ICU mortality</td>
</tr>
<tr>
<td>Baldock et al,9 2001</td>
<td>Medical or surgical</td>
<td>Cohort HC</td>
<td>1</td>
<td>330 CU</td>
<td>295 EC</td>
<td>Hospital mortality</td>
</tr>
<tr>
<td>Kuo et al,10 2000</td>
<td>Surgical</td>
<td>Cohort HC</td>
<td>1</td>
<td>491 CU or MC</td>
<td>176 Ni or EC</td>
<td>ICU mortality, ICU LOS</td>
</tr>
<tr>
<td>Multz et al,11 1998 (retrospective)</td>
<td>Medical</td>
<td>Cohort HC</td>
<td>1</td>
<td>154 CU</td>
<td>152 EC</td>
<td>Hospital mortality, hospital and ICU LOS, non-ICU LOS, duration of MV</td>
</tr>
<tr>
<td>Multz et al,11 1998 (prospective)</td>
<td>Medical</td>
<td>Cohort CC</td>
<td>2</td>
<td>185 CU</td>
<td>95 EC</td>
<td>Hospital mortality, hospital and ICU LOS, non-ICU LOS, procedure use, duration of MV</td>
</tr>
<tr>
<td>Reynolds et al,12 1988</td>
<td>Medical (sepsis)</td>
<td>Cohort HC</td>
<td>1</td>
<td>112 CU or MC</td>
<td>100 Ni</td>
<td>Hospital mortality, hospital and ICU LOS, hospital costs, duration of MV, LOS by survivorship, No. of consultations</td>
</tr>
<tr>
<td>Al-Asadi et al,27 1996‡</td>
<td>Medical</td>
<td>Cohort HC and CC</td>
<td>2</td>
<td>1005 CU</td>
<td>1404 EC</td>
<td>ICU mortality</td>
</tr>
<tr>
<td>Carson et al,28 1996</td>
<td>Medical</td>
<td>Cohort HC</td>
<td>1</td>
<td>121 CU</td>
<td>124 MC</td>
<td>Hospital mortality, hospital and ICU LOS, hospital costs, duration of MV, subgroup analysis, patient and family perceptions</td>
</tr>
<tr>
<td>Ghorra et al,29 1999</td>
<td>Surgical</td>
<td>Cohort HC</td>
<td>1</td>
<td>149 CU</td>
<td>125 EC</td>
<td>ICU mortality, ICU LOS, 30-day mortality, complications with procedure use</td>
</tr>
<tr>
<td>Li et al,30 1984</td>
<td>Medical or surgical</td>
<td>Cohort HC</td>
<td>1</td>
<td>517 CU</td>
<td>480 Ni</td>
<td>Hospital mortality, ICU LOS, 1-year mortality, tests, monitoring, post-ICU LOS</td>
</tr>
<tr>
<td>Jacobs et al,31 1998‡</td>
<td>Surgical</td>
<td>Cohort HC</td>
<td>1</td>
<td>1108 CU</td>
<td>1051 EC or Ni</td>
<td>ICU bed use efficiency, ICU readmission</td>
</tr>
<tr>
<td>Manthous et al,32 1997</td>
<td>Medical</td>
<td>Cohort HC</td>
<td>1</td>
<td>930 EC</td>
<td>459 Ni</td>
<td>Hospital and ICU mortality, hospital and ICU LOS</td>
</tr>
<tr>
<td>Marini et al,33 1995‡</td>
<td>Surgical</td>
<td>Cohort HC</td>
<td>1</td>
<td>112 CU</td>
<td>65 EC</td>
<td>ICU mortality, ICU LOS, duration of MV, No. of consultations</td>
</tr>
<tr>
<td>Pollack et al,34 1988</td>
<td>Pediatric</td>
<td>Cohort HC</td>
<td>1</td>
<td>113 MC</td>
<td>149 Ni</td>
<td>ICU mortality, ICU LOS, admission criteria, difference of case mix, TISS</td>
</tr>
<tr>
<td>Reich et al,35 1998‡</td>
<td>Medical or surgical</td>
<td>Cohort HC</td>
<td>1</td>
<td>830 CU</td>
<td>826 Ni</td>
<td>ICU mortality, PA catheter use, No. of patients requiring MV, nursing hours per patient</td>
</tr>
<tr>
<td>Tai et al,36 1998</td>
<td>Medical</td>
<td>Cohort HC</td>
<td>1</td>
<td>127 CU</td>
<td>112 Ni</td>
<td>ICU mortality, hospital and ICU LOS, PA catheter use, arterial catheter use, readmissions</td>
</tr>
<tr>
<td>Pollack et al,37 1994</td>
<td>Pediatric</td>
<td>Outcomes CS</td>
<td>16</td>
<td>2606 MC</td>
<td>2809 Ni</td>
<td>Hospital and ICU mortality</td>
</tr>
<tr>
<td>DiCosimo,38 1999‡</td>
<td>Medical</td>
<td>Cohort HC</td>
<td>1</td>
<td>1292 MC</td>
<td>1667 EC</td>
<td>ICU mortality, ICU LOS, LOS with MV, MV mortality</td>
</tr>
<tr>
<td>Dimick et al,39 2001</td>
<td>Surgical (esophagectomy)</td>
<td>Outcomes CS</td>
<td>35</td>
<td>182 MC</td>
<td>169 EC</td>
<td>Hospital mortality, hospital LOS, hospital costs, postoperative complications</td>
</tr>
</tbody>
</table>

*STAFFING AND OUTCOMES IN CRITICALLY ILL PATIENTS ©2002 American Medical Association. All rights reserved.

(Reprinted) JAMA, November 6, 2002—Vol 288, No. 17 2153

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 02/21/2020
low intensity (no intensivist or elective intensivist consultation).

Evaluation of Study Quality

We elected to evaluate study quality as the risk of bias caused by temporal trends, confounding, and incomplete follow-up. We classified the risk of bias caused by temporal trends as low if the study duration was shorter than 2 years, medium if 2 through 4 years, and high if longer than 4 years. We classified the risk of bias from confounding as low if the authors used a validated physiologic method of risk adjustment, medium if the authors used selected clinical data, and high if the authors used no risk adjustment. We classified the risk of bias from incomplete follow-up as low if it was 90% to 100% complete; medium for 80% to 89% complete; and high for less than 80% complete.

Data Analysis

Because the studies varied markedly in design, risk adjustment method, and ICU physician staffing in the control and intervention groups, we performed a qualitative and quantitative assessment of heterogeneity among trials.

Because we considered the qualitative heterogeneity among studies to be significant, we were reluctant to perform a quantitative synthesis of study results. Nevertheless, we used the test for quantitative heterogeneity. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian. We present a random-effects, summary relative risk (RR) by using the methods of DerSimonian.

RESULTS

Study Selection and Characteristics

We identified 3544 citations from the electronic search, of which 660 were duplicates and 294 were unavailable in English and were excluded. We also identified 13 citations from hand searching meeting proceedings. Of the 2590 abstracts reviewed, we rejected 2556 (99%) because the intervention was not ICU physician staffing or because the published abstract was superseded by the subsequent article. We rejected an additional 8 abstracts after reviewing and discussing the corresponding article because the intervention was not ICU physician staffing or because the reviewers were not able to determine the type of ICU physician staffing. Twenty-six studies met selection criteria (19 articles and 7 published abstracts). The reviewers had 99% crude agreement in the selection of eligible abstracts and 96% crude agreement in the selection of eligible articles (Table 1). Figure 1 presents the study search strategy (QUOROM: Quality of Reporting of Meta-analyses).

Twenty studies (77%) were from North America, 3 (12%) were from Eu-
STAFFING AND OUTCOMES IN CRITICALLY ILL PATIENTS

The remaining 2, one compared a closed ICU with a mandatory consultation and the other compared elective consultation with no intensivist involved. Of the 25 studies comparing high- with low-intensity staffing, 9 compared a closed ICU (intervention group) with elective consultation (control group), 4,11,27,29,33,42-44 3 compared mandatory consultation (intervention) with elective consultation (control), 34,37,46 5 compared mandatory consultation with no intensivist (control), 8,30,35,36,45 In 2 studies, we could not differentiate between a closed ICU and a mandatory consultation, 10,12 and in 2 studies 10,31 we could not differentiate between an elective consultation and no intensivist.

Quality Characteristics

The quality characteristics of the studies are listed in Table 2. Fifteen of the 24 studies that reported the study period had low risk of bias from temporal trends, whereas 8 studies had medium risk and 1 had high risk. All 27 studies had complete follow-up and thus a low risk of bias from incomplete follow-up. No study followed up patients after hospital discharge.

Twenty-one of 27 studies had low risk of bias from confounding, whereas 6 studies had medium risk. All studies reported some form of risk adjustment. Twenty-one studies used a validated physiologic method (15 used the Acute Physiology and Chronic Health Evaluation Score [APACHE] only, 28,49 2 used the Pediatric Risk of Mortality Score, 31,32 1 used the Physiologic Severity Index [PSI], 53 and 1 reported both APACHE II and the Glasgow Coma Scale 54). Six studies used selected clinical data (the first used nursing hours per patient, 35 a second used age, reason for admission, and mental status, 10 a third used a customized case-mix index and patient acuity measured by percentage of patients requiring mechanical ventilatory support, 38 and 3 others used discharge data in a regression model to adjust for patient demographics, severity of illness, comorbid disease, and hospital and surgeon volume 39,44). (Table 1).

Eleven studies reported differences in severity of illness between the high- and low-intensity groups. In 4 studies, 26,31,45,46 the high-intensity group compared with the low-intensity group had significantly higher APACHE scores, suggesting higher baseline severity of illness. Three studies reported higher severity in the low-intensity group by using different severity instruments. 42-44 Two studies reported higher baseline severity in the high-intensity group by using the distribution of the PSI score 38 and APACHE II score. 10 Another study reported higher ICU nursing hours per day and suggested that this represented

©2002 American Medical Association. All rights reserved.
higher severity in the high-intensity physician staffing group. The author of the study, which used patient acuity and case-mix index, also suggested greater severity in the arm with the high-intensity physician staffing. There was no evidence of publication bias on a funnel plot of hospital mortality (Figure 2).

Impact of High- vs Low-Intensity ICU Physician Staffing

Hospital Mortality. Seventeen studies (63%) reported hospital mortality according to ICU physician staffing as a primary outcome measure (Table 3). The hospital mortality rate ranged from 6% to 74% in the low-intensity staffing group and from 1% to 57% in the high-intensity staffing group (Table 3). Overall, 16 (94%) of the 17 studies showed a decrease in hospital mortality rate for ICU patients with high-intensity physician staffing; in the one study that showed increased mortality with high-intensity physician staffing, the increase was not statistically significant. In 10 (67%) of 15 studies that reported unadjusted mortality and 9 (64%) of 14 studies that reported adjusted mortality, the decrease was statistically significant (Table 3). No study reported a statistically significant increase in hospital mortality with high-intensity ICU physician staffing. The random-effects pooled estimate of the unadjusted RR for high-intensity vs low-intensity staffing is 0.71 (95% CI, 0.62-0.82) (Figure 3A).

ICU Mortality. Fifteen studies (56%) evaluated the impact of ICU physician...
staffing on ICU mortality, with 12 studies (80%) reporting ICU mortality adjusted for severity of illness (Table 3). Overall, 14 (93%) of these 15 studies showed a decrease in ICU mortality rate for ICU patients with high-intensity physician staffing. Nine (69%) of the 13 studies that reported unadjusted ICU mortality rates found a statistically significant reduction with high-intensity physician staffing in the ICU (Figure 3B and Table 3). In 9 (75%) of the 12 studies that adjusted for severity of illness, ICU mortality significantly decreased as well with high-intensity physician staffing. The random-effects, pooled estimate of the unadjusted RR for high-intensity vs low-intensity staffing is 0.61 (95% CI, 0.50–0.75).

Hospital LOS. Thirteen studies (48%) evaluated the impact of ICU physician staffing on hospital LOS (Table 4). The hospital LOS ranged from 8 to 33 days in the low-intensity group and 7 to 24 days in the high-intensity group. Ten (77%) of 13 studies reported a reduction in hospital LOS with high-intensity staffing (range of relative reduction, 5%–42%). In 6 of these studies, the reduction was statistically significant (Figure 4A). Only 1 study (8%) reported a statistically significant increase in hospital LOS with high-intensity physician staffing, but this study compared patients admitted to a neurosurgical ICU with patients admitted to a general ICU, and the results were not adjusted for baseline severity of illness. Only 4 studies adjusted hospital LOS for baseline severity of illness (29, 33, 34, 41, 43). Two of these studies showed a statistically significant decrease in hospital LOS with high-intensity physician staffing in the ICU, with the remaining 2 studies showing no significant difference in hospital LOS.

Intensive Care Unit LOS. Eighteen studies (67%) evaluated the impact of ICU physician staffing on ICU LOS (Table 4). The ICU LOS ranged from 2 to 10 days in the low-intensity group and 2 to 10 days in the high-intensity group. Fourteen (78%) of 18 studies reported that ICU LOS decreased with high-intensity physician staffing (Figure 4B). In 11 of these studies, this decrease was statistically significant. The study that compared a closed neurosurgical ICU to a general ICU was the only one to report a statistically significant increase in ICU LOS with high-intensity ICU physician staffing in the neurosurgical ICU. Three of 18 studies reported higher severity in the high-intensity group, and the remaining 13 reported no difference between the 2 groups. Only 2 studies adjusted ICU LOS for baseline severity of illness, and ICU LOS in both studies favored high-intensity physician staffing.

COMMENT

We found that greater use of intensivists in the ICU led to significant reductions in ICU and hospital mortality and LOS. These findings were consistent across a variety of populations and hospital settings and have potentially important implications for patient care. Given the variation in ICU physician staffing and the potential for reduced mortality implied by these studies, a more rigorous evaluation of the optimal ICU organization is essential.

Intensive care is one of the largest and most expensive aspects of US health care. There are approximately 6000 ICUs in the United States, caring for approximately 55,000 patients daily, with an annual budget of approximately $180 billion. The proportion of ICUs with high-intensity ICU physician staffing is unclear, but appears to be relatively small. In 1992, Groeger et al suggested that only 10% of ICUs in the United States require an intensivist to act as the patients’ primary physician. In 1999, Schmidt et al estimated that one third of all ICU patients in the United States were treated by intensivists acting as either primary physicians or consultants. Since most ICU patients are cared for with low-intensity physician staffing and high-intensity staffing appears to be associated with improved outcomes, mandatory ICU physician staffing may improve ICU process and outcomes.

The general lack of intensivist staffing in the United States contrasts with the usual closed ICU approach in Europe and Australia. A survey by the Audit Commission for Local Authorities and the National Health Service in England and Wales found that closed systems are common and intensivists initiate care in 80% of all ICUs. The average 6-bed general ICU in the United Kingdom has 3 consultants with fixed commitments to the unit and 3 more taking part in the on-call rota. According to Cole et al, all ICUs in Victoria, the second most populous state in Australia, have been following the closed model for more than a decade. In 1997, a task force of the European Society of Intensive Care Medicine issued recommendations on minimal requirements for intensive care departments (ICDs). Although the recommendations were not

Figure 2. Funnel Plot of Hospital Mortality

The funnel plot provides an estimate of publication bias. In the absence of bias, the studies should be symmetrically distributed along the funnel. If small studies with negative results are unpublished, the plot will appear asymmetrical. Our plot suggests no evidence of publication bias. Log OR indicates log odds ratio.

References 8-10, 27, 29, 31-36, 38, 41, 43.
References 2, 11, 28, 32, 39, 40, 44, 46.
References 2, 10-12, 29, 30, 32-34, 36, 41, 42.

©2002 American Medical Association. All rights reserved.

(Reprinted) JAMA, November 6, 2002—Vol 288, No. 17 2157
evidence based, the task force emphasized that the director of an ICU should be an intensivist and that it is essential that a qualified intensivist provide 24-hour coverage in level II and III (moderate- and high-intensity care) ICUs. The task force also recommended 24-hour coverage by an intensivist for level I ICUs.

Our review identified several issues that may be important for researchers studying health care organizational characteristics. Our initial search, based on MeSH terms and text words, yielded a large number of citations, yet failed to identify several relevant articles that we had previously identified. Although each shared intensive care unit as a MeSH term, the assignment of other MeSH terms was inconsistent. By incorporating the related articles feature, we were able to identify additional relevant articles. The configuration of MeSH terms is not ideal for a comprehensive review of health care organizational characteristics, and investigators and library scien-

Table 3. Hospital and ICU Mortality With Low- and High-Intensity ICU Physician Staffing*

<table>
<thead>
<tr>
<th>Source</th>
<th>Low-Intensity ICU Staff</th>
<th>High-Intensity ICU Staff</th>
<th>OR (95% CI)</th>
<th>Unadjusted</th>
<th>Adjusted‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronovost et al, 1999</td>
<td>52/472 (21)</td>
<td>131/2036 (6)</td>
<td>0.56 (0.40-0.78)</td>
<td><.05</td>
<td><.05</td>
</tr>
<tr>
<td>Brown and Sullivan, 1998</td>
<td>79/223 (36)</td>
<td>53/216 (25)</td>
<td>0.59 (0.39-0.90)</td>
<td><.01</td>
<td><.05</td>
</tr>
<tr>
<td>Baldock et al, 2001</td>
<td>107/294 (36)</td>
<td>78/330 (24)</td>
<td>0.54 (0.38-0.77)</td>
<td><.001</td>
<td>NR</td>
</tr>
<tr>
<td>Multz et al, 1998 (retrospective)</td>
<td>68/152 (45)</td>
<td>56/154 (36)</td>
<td>0.71 (0.47-1.12)</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Multz et al, 1998 (prospective)</td>
<td>36/95 (38)</td>
<td>52/185 (28)</td>
<td>0.64 (0.38-1.08)</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Reynolds et al, 2000</td>
<td>74/100 (74)</td>
<td>64/112 (57)</td>
<td>0.47 (0.26-0.83)</td>
<td><.05</td>
<td><.05</td>
</tr>
<tr>
<td>Carson et al, 1996</td>
<td>112/1404 (8)</td>
<td>66/1005 (7)</td>
<td>0.81 (0.59-1.11)</td>
<td>.19</td>
<td>NS</td>
</tr>
<tr>
<td>Li et al, 1994</td>
<td>28/124 (23); O/E, 0.9</td>
<td>38/121 (31); O/E, 1.17</td>
<td>1.57 (0.89-2.78); O/E, 0.89</td>
<td>.12</td>
<td>NR</td>
</tr>
<tr>
<td>Brown and Sullivan, 1989</td>
<td>57/292 (20)</td>
<td>12/112 (11)</td>
<td>0.48 (0.21-1.13)</td>
<td>.08</td>
<td>NS</td>
</tr>
<tr>
<td>Jacobs et al, 1996</td>
<td>153/480 (32)</td>
<td>154/517 (30)</td>
<td>0.91 (0.69-1.19)</td>
<td>NS</td>
<td>.01</td>
</tr>
<tr>
<td>Pollack et al, 1996</td>
<td>O/E, 0.98</td>
<td>O/E, 0.81</td>
<td>O/E, 0.83</td>
<td>NR</td>
<td>NS</td>
</tr>
<tr>
<td>Manthous et al, 1997</td>
<td>156/459 (34)</td>
<td>116/471 (25)</td>
<td>0.63 (0.48-0.84)</td>
<td><.05</td>
<td><.05</td>
</tr>
<tr>
<td>Pollock et al, 1994</td>
<td>24/169 (14)</td>
<td>7/182 (4)</td>
<td>0.24 (0.10-0.58)</td>
<td>.003</td>
<td>NS</td>
</tr>
<tr>
<td>Dimick et al, 2001</td>
<td>21/275 (8)</td>
<td>4/276 (1)</td>
<td>0.18 (0.05-0.50)</td>
<td><.001</td>
<td><.05</td>
</tr>
<tr>
<td>Rosenfeld et al, 2000</td>
<td>26/225 (12); O/E, 1.1</td>
<td>9/201 (5); O/E, 0.7</td>
<td>0.36 (0.16-0.79)</td>
<td><.008</td>
<td><.05</td>
</tr>
<tr>
<td>Diringer and Edwards, 2001</td>
<td>. . .</td>
<td>. . .</td>
<td>0.39 (0.22-0.67)</td>
<td>.001</td>
<td>NR</td>
</tr>
<tr>
<td>Blunt and Burchett, 2000</td>
<td>113/328 (34); O/E, 1.1</td>
<td>93/393 (24); O/E, 0.8</td>
<td>0.59 (0.43-0.82)</td>
<td><.001</td>
<td><.05</td>
</tr>
<tr>
<td>Hanson et al, 1999</td>
<td>6/100 (6)</td>
<td>4/100 (4)</td>
<td>0.65 (0.18-2.39)</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

*ICU indicates intensive care unit; OR, odds ratio; CI, confidence interval; NR, not reported; and NS, not significant. Low ICU physician staffing is either no intensivist available or elective consultation; high ICU physician staffing is either mandatory consultation or closed ICU. Ellipses indicate studies in which outcome was not evaluated.
†The ORs are quoted from the studies or calculated from unadjusted high-intensity mortality rate vs low-intensity mortality rate where rates were available.
‡Studies have more than 1 observation period after intervention. Information from observation period closest to intervention is included.
§Studies have more than 1 observation period after intervention. Information from observation period closest to intervention is included.
¶The ORs are quoted from the studies or calculated from unadjusted high-intensity mortality rate vs low-intensity mortality rate where rates were available.
∫Results were adjusted for baseline severity of illness. Adjusted P values and ORs (where available) shown as reported by the authors.
©Studies have more than 1 observation period after intervention. Information from observation period closest to intervention is included.
©The ORs are quoted from the studies or calculated from unadjusted high-intensity mortality rate vs low-intensity mortality rate where rates were available.
±ICU indicates intensive care unit; OR, odds ratio; CI, confidence interval; NR, not reported; and NS, not significant. Low ICU physician staffing is either no intensivist available or elective consultation; high ICU physician staffing is either mandatory consultation or closed ICU. Ellipses indicate studies in which outcome was not evaluated.
≥The ORs are quoted from the studies or calculated from unadjusted high-intensity mortality rate vs low-intensity mortality rate where rates were available.

JAMA, November 6, 2002—Vol 288, No. 17 (Reprinted) ©2002 American Medical Association. All rights reserved.
risk-adjustment methods that use sophisticated, well-validated, consistent use of risk-adjustment methods to predict the risk of in-hospital death. In our analysis, 22 (81%) of 27 studies used such methods to minimize bias from confounding variables. Finally, all 27 studies had complete follow-up, and there was therefore no risk of bias from distorted samples.

A second potential limitation is publication bias. However, the funnel plot suggested that risk for publication bias was not significant (Figure 2). There was no quantitative heterogeneity among studies, and the results were consistent across studies, increasing our confidence in the validity of our conclusions. Moreover, from our discussions with staff of critical care societies (American Thoracic Society, American College of Chest Physicians, and Society of Critical Care Medicine at their annual meetings during 1999-2001), we found no evidence of any relevant negative unpublished studies.

A third potential limitation is risk for temporal trends in mortality to bias study results. Temporal trends in any before-and-after study design could affect the results of this review and reduce the strength of our inferences. We believe this source of bias is small for several reasons. First, evidence for the effectiveness of therapies in reducing mortality in critically ill patients occurred only at the end of the study periods. Second, there were no trends for reduced mortality in critically ill patients during the study periods. Third, most of the studies were conducted during a short period, and thus the effect of any temporal trends is likely small.

A fourth potential limitation is the use of ICU mortality and LOS as outcome measures. Because no study described explicit criteria for discharge from the ICU, differences in discharge practices between the treatment and control groups may have influenced the results. For example, early ICU discharge may have artificially reduced ICU mortality without decreasing hospital mortality. However, the improvement in mortality and LOS observed with high-intensity ICU physician staff-

Figure 3. Unadjusted Hospital and ICU Mortality With Low- and High-Intensity ICU Physician Staffing

<table>
<thead>
<tr>
<th>Source</th>
<th>Weight</th>
<th>Risk Ratio (95% CI)</th>
<th>Favors High Intensity</th>
<th>Favors Low Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronovost et al8</td>
<td>8.4</td>
<td>0.58 (0.43-0.79)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Brown and Sullivan9</td>
<td>8.6</td>
<td>0.59 (0.52-0.90)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Baldick et al10</td>
<td>9.7</td>
<td>0.65 (0.51-0.81)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Mulnitz et al11 (Retropective)</td>
<td>9.0</td>
<td>0.81 (0.61-1.07)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Mulnitz et al11 (Prospective)</td>
<td>7.5</td>
<td>0.74 (0.53-1.05)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Reynolds et al12</td>
<td>10.7</td>
<td>0.77 (0.63-0.94)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Carson et al13</td>
<td>6.2</td>
<td>0.73 (0.91-2.11)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Li et al14</td>
<td>11.0</td>
<td>0.93 (0.78-1.13)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Manthous et al15</td>
<td>10.6</td>
<td>0.72 (0.59-0.89)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Dimick et al16</td>
<td>2.5</td>
<td>0.26 (0.12-0.59)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Dimick et al16</td>
<td>1.6</td>
<td>0.19 (0.07-0.55)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Rosenfeld et al17</td>
<td>2.9</td>
<td>0.29 (0.19-0.81)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Blunt and Burchett18</td>
<td>10.0</td>
<td>0.69 (0.54-0.87)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Hanson et al19</td>
<td>1.2</td>
<td>0.67 (0.19-2.29)</td>
<td>Favor</td>
<td>Favor</td>
</tr>
<tr>
<td>Overall (95% CI)</td>
<td>0.71 (0.62-0.82)</td>
<td>Favor</td>
<td>Favor</td>
<td></td>
</tr>
</tbody>
</table>

Data from studies demonstrate the relative risk (RR) with 95% confidence intervals (CI) of hospital and intensive care unit (ICU) mortality with high intensity vs low intensity ICU physician staffing. The RRs less than 1 suggest reduced mortality with high intensity staffing while RRs greater than 1 suggest increased mortality with high intensity staffing. The size of the data markers corresponds to the weight of the studies. Larger markers imply less uncertainty from the results of the individual study, and carry more weight in calculating the random effects pooled estimate from the systematic review.

©2002 American Medical Association. All rights reserved.

(Reprinted) JAMA, November 6, 2002—Vol 288, No. 17 2159
ing was observed at ICU and hospital discharge.

There are also limitations in the way we conducted our review. First, 3 of the authors (P.J.P., D.C.A., and T.D.) are intensivists and potentially biased. The high degree of agreement among reviewers may be due to similar clinical and research interests and may have encoded systematic error. Second, we included only articles published in English, although we are not aware of relevant non–English-language publications. The exclusion of non–English-language articles should not significantly affect the study results. Third, we did not perform a formal evaluation of study quality, because the particular scale chosen may influence the results. Rather, we identified relevant methodologic aspects of the study (a priori) and assessed these individually.

Our systematic review was rigorously conducted and transparently reported, following recommendations outlined by the Meta-analysis of Observational Studies in Epidemiology Group. Because it is unclear how to proceed when there is qualitative but not quantitative heterogeneity among studies, we present pooled estimates by using the random-effects model and recommend cautious interpretation of these results.

We should attempt to identify the characteristics of high-intensity ICU

Table 4. Hospital and ICU Length of Stay with Low- and High-Intensity ICU Physician Staffing

<table>
<thead>
<tr>
<th>Source</th>
<th>Low-Intensity ICU Staff</th>
<th>High-Intensity ICU Staff</th>
<th>(P) Value</th>
<th>Relative Reduction in LOS, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospital LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pronovost et al.(^2)</td>
<td>12.5 (11.5)</td>
<td>10.8 (10.5)</td>
<td><.05</td>
<td><.05</td>
</tr>
<tr>
<td>Multz et al.(^1) 1998 (retrospective)</td>
<td>31.2 (31.2)‡</td>
<td>22.2 (22.2)‡</td>
<td><.02</td>
<td>NR</td>
</tr>
<tr>
<td>Multz et al.(^1) 1998 (prospective)</td>
<td>33.2 (33.2)§</td>
<td>19.2 (19.2)‡</td>
<td><.01</td>
<td>NR</td>
</tr>
<tr>
<td>Reynolds et al.(^1) 1988</td>
<td>21 (22)</td>
<td>24 (23)</td>
<td>NS</td>
<td>NR</td>
</tr>
<tr>
<td>Carson et al.(^1) 1996</td>
<td>16.7 (19.4)</td>
<td>15.9 (4.2)‡</td>
<td>.75</td>
<td>NR</td>
</tr>
<tr>
<td>Manthous et al.(^1) 1997</td>
<td>22.6 (22.6)‡</td>
<td>17.7 (17.7)‡</td>
<td><.05</td>
<td>NR</td>
</tr>
<tr>
<td>Tai et al.(^1) 1998</td>
<td>11 (11)‡</td>
<td>10 (10)‡</td>
<td>NS</td>
<td>NR</td>
</tr>
<tr>
<td>Dimick et al.(^1) 2001</td>
<td>15 (11-25)</td>
<td>9 (8-11)</td>
<td><.05</td>
<td><.05</td>
</tr>
<tr>
<td>Dimick et al.(^1) 2001</td>
<td>8 (6-11)</td>
<td>7 (6-10)</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Rosenfeld et al.(^1) 2000</td>
<td>9.2 (9.2)‡</td>
<td>9.3 (9.3)‡</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Diringer and Edwards.(^1) 2001</td>
<td>11.4 (5.8)</td>
<td>15.5 (24.0)</td>
<td><.05</td>
<td>NR</td>
</tr>
<tr>
<td>Blunt and Burchett.(^1) 2000</td>
<td>14 (8-24)</td>
<td>13 (8-24)</td>
<td>NS</td>
<td>NR</td>
</tr>
<tr>
<td>Hanson et al.(^1) 1999</td>
<td>23.6 (23.6)‡</td>
<td>20.3 (20.3)‡</td>
<td><.05</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>ICU LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pronovost et al.(^1) 1999</td>
<td>6 (7)</td>
<td>3.8 (4)</td>
<td><.05</td>
<td><.05</td>
</tr>
<tr>
<td>Kuo et al.(^1) 2000</td>
<td>11.8 (13.1)</td>
<td>10.1 (11.0)</td>
<td><.001</td>
<td>NR</td>
</tr>
<tr>
<td>Multz et al.(^1) 1998 (retrospective)</td>
<td>9.3 (9.3)‡</td>
<td>6.1 (6.1)‡</td>
<td><.05</td>
<td>NR</td>
</tr>
<tr>
<td>Multz et al.(^1) 1998 (prospective)</td>
<td>12.6 (12.6)‡</td>
<td>6.2 (6.2)‡</td>
<td><.01</td>
<td>NR</td>
</tr>
<tr>
<td>Reynolds et al.(^1) 1988</td>
<td>8 (10)</td>
<td>10 (11)</td>
<td>NS</td>
<td>NR</td>
</tr>
<tr>
<td>Carson et al.(^1) 1996</td>
<td>4.4 (7.1)</td>
<td>4.9 (6.3)</td>
<td>.57</td>
<td>NR</td>
</tr>
<tr>
<td>Ghorra et al.(^1) 1999</td>
<td>5.8 (5.8)</td>
<td>5.5 (5.1)</td>
<td>.73</td>
<td>NR</td>
</tr>
<tr>
<td>Li et al.(^1) 1984</td>
<td>4 (3.9)</td>
<td>3.9 (4.9)</td>
<td>.05</td>
<td>NR</td>
</tr>
<tr>
<td>Manthous et al.(^1) 1997</td>
<td>5 (6)§</td>
<td>3.9 (3.9)§</td>
<td><.05</td>
<td>NR</td>
</tr>
<tr>
<td>Marini et al.(^1) 1995</td>
<td>9 (9)</td>
<td>4 (4)</td>
<td><.05</td>
<td>NR</td>
</tr>
<tr>
<td>Pollack et al.(^1) 1988</td>
<td>2 (2)</td>
<td>2 (2)</td>
<td>NS</td>
<td>NR</td>
</tr>
<tr>
<td>Tai et al.(^1) 1998</td>
<td>3 (3)‡</td>
<td>2 (2)‡</td>
<td>.01</td>
<td>NR</td>
</tr>
<tr>
<td>DiCosmo,(^1) 1999</td>
<td>4.1 (4.1)‡</td>
<td>3.6 (3.6)‡</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Rosenfeld et al.(^1) 2000</td>
<td>2.7 (2.7)‡</td>
<td>2 (2)‡</td>
<td><.01</td>
<td><.01</td>
</tr>
<tr>
<td>Diringer and Edwards.(^1) 2001</td>
<td>4.5 (8.2)</td>
<td>7.8 (12.5)</td>
<td><.05</td>
<td>NR</td>
</tr>
<tr>
<td>Coh et al.(^1) 2001</td>
<td>6.8 (10.3)</td>
<td>4.0 (5.6)</td>
<td><.001</td>
<td>NR</td>
</tr>
<tr>
<td>Blunt and Burchett.(^1) 2000</td>
<td>2.0 (66%)</td>
<td>1.9 (65%)§</td>
<td>NS</td>
<td>NR</td>
</tr>
<tr>
<td>Hanson et al.(^1) 1999</td>
<td>2.8 (2.8)‡</td>
<td>2 (2)‡</td>
<td><.05</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Results are presented as means (SDs) except where noted. ICU indicates intensive care unit; NR, not reported; NS, not significant; and O/E, observed-to-expected mortality ratio based on risk adjustment using the Acute Physiology and Chronic Health Evaluation Score II. Low-ICU physician staffing is either mandatory consultation or closed ICU.
†Results were adjusted for baseline severity of illness. Unadjusted and adjusted \(P \) values shown as reported by the authors.
‡The SD was not provided in the original study and was assumed to be equal to the mean LOS.
§Relative risk increase.
‖Medians reported instead of means. Range is shown in parentheses.
**Studies have more than one observation period after intervention. Information from the observation period closest to the intervention is included. Data shown are for survivors only.

©2002 American Medical Association. All rights reserved.
staffing that improved outcome. We found previously that daily rounds by an ICU physician were associated with improved outcomes in patients who underwent abdominal aortic surgery. Yet how daily rounds translate into improved outcomes remains unclear. For example, were the improved outcomes due to specific critical care training and expertise or to increased availability, perhaps with reduced response time, of a team of physicians whose sole responsibility was to provide care in the ICU? Some of the improvements may be possible through alternative staffing models, such as telemedicine. Finally, other ICU characteristics, such as nurse-to-patient ratios, also affect patient outcomes. Determining how to best organize ICU staffing from a multidisciplinary standpoint to optimize patient outcomes is a high research priority. Meanwhile, our findings provide evidence to support the recommendations by the Leapfrog Group and Society of Critical Medicine for ICU physician staffing. We believe this systematic review summarizes and clarifies the available literature, helps guide public policy, and provides a basis for future research.

Author Affiliations: Departments of Anesthesiology and Critical Care Medicine (Drs Pronovost and Dorman), Surgery (Drs Pronovost and Dorman), Medicine (Dr Dorman), Health Policy and Management (Dr Pronovost), and Epidemiology, Bloomberg School of Public Health (Ms Robinson), Johns Hopkins University, Baltimore, Md; and the Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine (Dr Angus, Mr Dremsizov, and Ms Young), and Department of Health Policy and Management, Graduate School of Public Health (Dr Angus), University of Pittsburgh, Pittsburgh, Pa.

Financial Disclosure: Dr Pronovost has been a consultant for VISICU, Baltimore, Md. **Author Contributions:** Study concept and design: Pronovost, Angus. Acquisition of data: Pronovost, Angus, Dremsizov, Young. Analysis and interpretation of data: Angus, Dorman, Robinson, Dremsizov. Drafting of the manuscript: Pronovost, Angus, Young.

REFERENCES

7. Robinson KA, Dickerson K. Development of a highly

©2002 American Medical Association. All rights reserved.
sensitive search strategy for the retrieval of con-
trolled trials using PubMed. Int J Epidemiol. 2003;31:
150-153.
total-time critical care specialist. Chest. 1989;96:127-
129.
isational change on outcome in an intensive care unit in
the United Kingdom. Intensive Care Med. 2001;
27:860-872.
mortality in a decade: effect of total intensive. Crit
medical intensive care unit (MICU) improves re-
source utilization when compared with an “open”
MICU. Am J Respir Crit Care Med. 1998;157:1468-
1473.
12. Reynolds HN, Haupt MT, Thill-Baharozian MC,
Carlson RW. Impact of critical care physician staffing
on patients with septic shock in a university hospital
medical intensive care unit. JAMA. 1988;260:3446-
3450.
13. Berlin JA. Randomized Trial Comparing Masked/
Unmasked Meta-analyses. Rockville, Md: Agency for
Health Care Policy and Research; 1996. Report AHCPR-
97-20.
analysis of Observational Studies in Epidemiol-
ogy (MOOSE) Group. Meta-analysis of observa-
tional studies in epidemiology: a proposal for report-
15. Abbie KA, Detsky AS, O’Rourke K. Meta-
16. Begg CB, Mazumdar M. Operating characteris-
tics of a rank correlation test for publication bias.
17. DeSimomian R. Meta-analysis in clinical trials. Con-
trol Clin Trials. 1986;7:177-188.
18. Woolf B. On estimating the relation between blood
group and disease. Ann Hum Genet. 1955;19:251-
253.
19. Eagle KA, Mulley AG, Field TS, et al. Variation in
intensive care unit practices in two community hos-
20. Wink SI, Chang CW, Cowan R. Impact of a neu-
rusocrit intensive care unit on neurological patient
21. Park CA, McGwin GJ, Smith DR, et al. Trauma-
specialized intensive care units can be cost effective and
contribute to reduced hospital length of stay. Am Surg.
22. van Weel W, Draper EA, Wagner DP, Zimmerman
JE. An evaluation of outcome from intensive care in
major medical centers. Ann Intern Med. 1986;104:
410-418.
23. Teres D, Brown RW, Lemeshow S, Parsell JI. A
comparison of mortality and charges in two differ-
ently staffed intensive care units. Inquiry. 1983;20:
282-289.
24. Lima C, Levy MM. The impact of an on-site in-
tensive care on patients length and length of stay in the
medical intensive care unit (abstract). Crit Care Med.
1995;23:A238.
T, Ray D. Progressive reduction in seventy-adjusted
mortality after implementation of a critical care pro-
26. Pollack MM, Patel KM, Ruttman E. Pediatric crit-
cal care training programs have a positive effect on
27. Al-Asadi L, Dellingr RP, Deutch J, Nathan SS.
Clinical impact of closed versus open provider care in
a medical intensive care unit (abstract). Am J Respir
ects of organizational change in the medical inten-
sive care unit of a teaching hospital. JAMA. 1996;
276:322-328.
29. Ghosh SA, Reinitert SE, Cioffi W, Buzcko G, Simms
HH. Analysis of impact of conversion from open to
30. Li TC, Phillips MC, Shaw L, Cook EF, Natsanon
C, Goldman I. On-site physician staffing in a com-
munity hospital intensive care unit. JAMA. 1984;252:
2023-2027.
ing the outcome and efficiency of surgical intensive
care: the impact of full time medical intensivists [ab-
32. Manthous CA, Amato-Adjepong Y, al-
Kharat T, et al. Effects of a medially intensivist on pa-
tient care in a community teaching hospital. Mayo Clin
33. Marin PS, Nathan IM, Ritter G, Rivera L, Jurk-
iewicz A, Cohen JH. The impact of full time intensivists
34. Pollack MM, Cuerdon TT, Patel KM, Ruttimann
UE, Getson PR. Improving the outcome and efficiency of intensive care:
the impact of an intensivist. Crit Care Med. 1988;16:
11-17.
35. Reich HS, Bulher L, David M, Whitmer G. Saving
lives in the community: impact of intensive care lead-
36. Tai DYH, Goh SK, Eng PCT, Wang YT. Impact
on quality of patient care and procedure use in the
medical intensive care unit (MICU) following reor-
gerization. Ann Acad Med Singapore. 1998;27:
309-313.
37. Pollack MM, Cuerdon TT, Patel KM, Ruttimann
UE, Getson PR. Effect on ICU utilization and mortality [ab-
38. Pollack MM, Patel KM, Ruttman UE. PRISM III:
an updated pediatric risk of mortality (PRISM) score. Crit Care Med. 1988;
16:1110-1116.
39. Pollack MM, Patel KM, Ruttman UE. PRISM III:
an updated pediatric risk of mortality score. Crit Care Med.
1996;24:743-752.
40. Yeh TS, Pollack MM, Ruttman UE, Holbrook PR,
Field AI. Validation of a physiologic stability index for
41. Teasdale GM, Jennett B. Assessment of coma and
42. Schmidt R, Lantin M, White A. Future Work-
force Needs in Pulmonary and Critical Care Medi-
43. Audit Commission. Critical to Success: The Place of
Effective and Efficient Critical Care Services Within the Acute Hospital.
London, England: Audit Commis-
sion; 1999.
44. Cole C, Bellomo R, Silvester W, Reeves JH, for the
Victorian Severe Acute Renal Failure Study Group. A
prospective, multicenter study of the epidemiology,
management, and outcome of severe acute renal fail-
ure in a “closed” ICU system. Am J Respir Crit Care
45. Boyar LS. eds. Critical Care Medicine: a Clinical
46. Pollack MM, Patel KM, Ruttman UE. PRISM III:
an updated pediatric risk of mortality score. Crit Care Med.
1996;24:743-752.
47. Young M. Leapfrog safety standards: the potential ben-
efits of universal adoption [Leapfrog Patient Safety
Standards Web site]. Available at: http://www.
leapfroggroup.org/PressEvent/birkmeyer.pdf. Accessibility verified
September 16, 2002.
JE. APACHE II: a severity of disease classification sys-
APACHE III prognostic system. Chest. 1991;100:1619-
1636.
50. Lemeshow S, Teres D, Klar J, Avrunin JS, Gehl-
bach SH, Rapoport J. Mortality Probability Models
(MPM II) based on an international cohort of inten-
sive care unit patients. JAMA. 1993;270:2478-2486.
51. Pollack MM, Ruttman UE, Getson PR. Pediatric
risk of mortality (PRISM) score. Crit Care Med. 1988;
16:1110-1116.
52. Pollack MM, Patel KM, Ruttman UE. PRISM III:
an updated pediatric risk of mortality score. Crit Care Med.
1996;24:743-752.
53. Pollack MM, Patel KM, Ruttman UE. PRISM III:
an updated pediatric risk of mortality score. Crit Care Med.
1996;24:743-752.