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THERE IS CLINICAL NEED FOR

predictive tests for patients
with newly diagnosed ERBB2
(HER2 or HER2/neu)–nega-

tive breast cancer whose clinical-
pathologic risk at presentation favors
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Context Prediction of high probability of survival from standard cancer treatments
is fundamental for individualized cancer treatment strategies.

Objective To develop a predictor of response and survival from chemotherapy for
newly diagnosed invasive breast cancer.

Design, Setting, and Patients Prospective multicenter study conducted from June
2000 to March 2010 at the M. D. Anderson Cancer Center to develop and test ge-
nomic predictors for neoadjuvant chemotherapy. Patients were those with newly di-
agnosed ERBB2 (HER2 or HER2/neu)–negative breast cancer treated with chemo-
therapy containing sequential taxane and anthracycline–based regimens (then endocrine
therapy if estrogen receptor [ER]–positive). Different predictive signatures for resis-
tance and response to preoperative (neoadjuvant) chemotherapy (stratified accord-
ing to ER status) were developed from gene expression microarrays of newly diag-
nosed breast cancer (310 patients). Breast cancer treatment sensitivity was then predicted
using the combination of signatures for (1) sensitivity to endocrine therapy, (2) che-
moresistance, and (3) chemosensitivity, with independent validation (198 patients) and
comparison with other reported genomic predictors of chemotherapy response.

Main Outcome Measures Distant relapse–free survival (DRFS) if predicted treat-
ment sensitive and absolute risk reduction ([ARR], difference in DRFS between 2 pre-
dicted groups) at median follow-up (3 years).

Results Patients in the independent validation cohort (99% clinical stage II-III) who
were predicted to be treatment sensitive (28%) had 56% (95% CI, 31%-78%) prob-
ability of excellent pathologic response and DRFS of 92% (95% CI, 85%-100%), with
an ARR of 18% (95% CI, 6%-28%). Survival was predicted in ER-positive (30% pre-
dicted sensitive; DRFS, 97% [95% CI, 91%-100%]; ARR, 11% [95% CI, 0.1%-
21%]) and ER-negative (26% predicted sensitive; DRFS, 83% [95% CI, 68%-
100%]; ARR, 26% [95% CI, 4%-48%]) subsets and was significant in multivariate
analysis. Other genomic predictors showed paradoxically worse survival for patients
predicted to be responsive to chemotherapy.

Conclusion A genomic predictor combining ER status, predicted chemoresistance,
predicted chemosensitivity, and predicted endocrine sensitivity identified patients with
high probability of survival following taxane and anthracycline chemotherapy.
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the use of chemotherapy.1 Identifica-
tion of patients with high likelihood of
survival following a current standard
chemotherapy regimen (and then en-
docrine therapy, if estrogen receptor
[ER]–positive) would reaffirm that
treatment decision. Conversely, iden-
tification of those with significant risk
of relapse despite standard chemo-
therapy could be used to advise par-
ticipation in an appropriate clinical trial
of potentially more effective treat-
ment. Also, because neoadjuvant (pre-
operative) and adjuvant (postopera-
tive) chemotherapy are equally
effective,2 the former provides a clini-
cal model for development of chemo-
predictive tests.

Inherent chemosensitivity of breast
cancers differs according to pheno-
type, as defined by combined ER and
ERBB2 receptor status.3 However, pa-
tients with breast cancer of any phe-
notype that achieves pathologic com-
plete response (ie, no invasive or
metastatic breast cancer identified) fol-
lowing neoadjuvant chemotherapy have
excellent probability of long-term sur-
vival.2,4,5 Unfortunately, molecular tests
specifically developed to predict patho-

logic complete response have not dem-
onstrated any predictive superiority
over the combination of standard clini-
copathologic parameters (ER status,
grade, and age) and have not been com-
pared with a survival end point.6-8 Simi-
larly, tests designed for molecular clas-
sification (including phenotype) or
prognosis without chemotherapy have
failed to predict a sufficiently high prob-
ability of survival in the patients they
classify as chemosensitive.9-11 Addition-
ally, there currently is no clinically use-
ful test for prognosis without chemo-
therapy or for prediction of response or
survival following chemotherapy for pa-
tients with ER-negative/ERBB2-
negative breast cancer.7,8,11

This study addresses our hypoth-
esis that a predictive test for response
and survival following sequential tax-
ane and anthracycline chemotherapy for
ERBB2-negative breast cancer would ac-
count for each of the following biologi-
cal characteristics (FIGURE 1): tumor
phenotype (ER-posit ive or ER-
negative), sensitivity to adjuvant en-
docrine therapy (if ER-positive), che-
moresistance (extensive residual cancer
burden [RCB] or early relapse), and

chemosensitivity (pathologic com-
plete response or minimal RCB).12,13

METHODS
Patients and Samples

Patients prospectively provided writ-
ten informed consent to participate
in an institutional review board–
approved research protocol (LAB99-402,
USO-02-103, 2003-0321, I-SPY-1) to ob-
tain a tumor biopsy sample by fine-
needle aspiration or core biopsy prior to
any systemic therapy for genomic stud-
ies to develop and test predictors of treat-
ment outcome.12,14 Clinical nodal sta-
tus was determined before treatment
from physical examination, with or with-
out axillary ultrasound, with diagnos-
tic fine-needle aspiration as required.
Pathologic ERBB2 status was defined as
negative according to American Soci-
ety of Clinical Oncology/College of
American Pathologists guidelines.15 Pa-
tients with any nuclear immunostain-
ing of ER in the tumor cells were con-
sidered eligible for adjuvant endocrine
therapy.

All gene expression microarrays were
profiled in the Department of Pathol-
ogy at the M. D. Anderson Cancer Cen-
ter (MDACC), Houston, Texas. Biopsy
samples were either collected in 1.5 mL
of RNAlater (Qiagen, Valencia, Califor-
nia) and stored locally at −70°C and
transported to the laboratory on dry ice
(MDACC, Instituto Nacional de Enfer-
medades Neoplásicas, Lyndon B.
Johnson Hospital, and Grupo Español
de Investigación en Cáncer de Mama)
or couriered overnight in a cooler pack
from clinics to the laboratory (US On-
cology), or were frozen and cryosec-
tioned and an aliquot of RNA sent to the
laboratory on dry ice (I-SPY [Investiga-
tion of Serial Studies to Predict Your
Therapeutic Response With Imaging and
Molecular Analysis]).

Details of our methods for RNA
purification and microarray hybrid-
ization have been reported previ-
ously.6,13,16-19 Briefly, a single-round T7
amplification was used to generate bio-
tin-labeled complementary RNA for hy-
bridization to oligonucleotide micro-
arrays (U133A GeneChip; Affymetrix,

Figure 1. Decision Algorithm Used in the Genomic Test to Predict a Patient’s Sensitivity to
Adjuvant Chemotherapy or Chemoendocrine Therapy From a Biopsy of Newly Diagnosed
Invasive Breast Cancer
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RCB indicates residual cancer burden12; SET indicates sensitivity to endocrine therapy.13
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Santa Clara, California). Gene expres-
sion levels were derived from multiple
oligonucleotide probes on the micro-
array that hybridize to different se-
quence sites of a gene transcript (probe
sets). Details of the microarray data pro-
cessing are provided in the supplemen-
tary eMethods available at http://www
.jama.com.

Identification of Predictive
Signature for Early Relapse Events

To identify the signature of chemore-
sistance, we included higher-risk pa-
tients who were clinically lymph node–
positive at presentation and also
predicted to have low sensitivity to ad-
juvant endocrine therapy13 (Figure 1
and eFigure 1). Probe sets were evalu-
ated in univariate Cox regression analy-
ses under bootstrap, separately in ER-
positive and ER-negative training cases
to assess their association with distant
relapse or death. Minimal nonredun-
dant signatures were obtained through
a univariate shrinkage approach,20 with
optimal penalization determined un-
der cross-validation to yield the short-
est probe set list that resulted in the big-
gest incremental improvement in the
area under the receiver operating char-
acteristic curve for predicting 3-year dis-
tant relapse–free survival (DRFS) out-
come. The final predictors used 33
probe sets for the ER-positive subset
and 27 probe sets for the ER-negative
subset (eMethods and eFigure 2).

Identification of Predictive
Signatures for Excellent Pathologic
Response and for Extensive
Residual Disease

Differentially expressed genes (probe
sets) in 2 responder groups (patho-
logic complete response or minimal re-
sidual cancer burden [RCB-I] defin-
ing excellent response, vs moderate or
extensive residual cancer burden [RCB-
II/III] defining lesser response12) were
identified separately in ER-positive and
ER-negative training cases using a ro-
bust unequal-variance t statistic un-
der a bootstrap scheme. Subse-
quently, a multivariate penalized
optimization algorithm—gradient-

directed regularization—was used with
maximum penalization to select a mini-
mal signature that maximized the area
under the receiver operating charac-
teristic curve under complete cross-
validation.21 The final response pre-
dictors used 39 probe sets for the
ER-positive subset and 55 probe sets for
the ER-negative subset (eMethods and
eFigure 2).

A similar procedure was followed to
develop the predictor for resistance by
comparing patients with extensive re-
sidual disease (RCB-III) after neoadju-
vant chemotherapy treatment vs re-
maining patients. The final predictor of
extensive residual disease used 73 probe
sets for the ER-positive subset and 54
probe sets for the ER-negative subset
(eMethods and eFigure 2).

Development of the Predictive
Testing Algorithm

We combined the individual predic-
tions into a testing algorithm for pre-
dicted sensitivity to adjuvant treat-
ment of ERBB2-negative breast cancer
with taxane and anthracycline chemo-
therapy: (1) predicted moderate or
high sensitivity to endocrine therapy
(SET) assessed based on the published
165-gene SET index of strongly
ER-correlated genes that indepen-
dently predicts survival following adju-
vant endocrine or chemoendocrine
therapy13; (2) predicted resistance to che-
motherapy either by early distant re-
lapse events or by extensive residual dis-
ease after neoadjuvant chemotherapy;
and (3) predicted sensitivity (patho-
logic response) to chemotherapy
(Figure 1).

Statistical Analysis

Distant relapse–free survival was de-
fined as the interval from initial diag-
nostic biopsy until diagnosis of distant
metastasis or death from breast cancer,
nonbreast cancer, or unknown causes.22

The primary prediction end point was
DRFS at 3 years (median follow-up for
the validation cohort). Predictive per-
formance was assessed by the positive
predictive value (PPV), defined as the
probability of distant relapse or death for

patients predicted to be treatment in-
sensitive; the negative predictive value
(NPV), defined as the DRFS for pa-
tients predicted to be treatment sensi-
tive; and the absolute risk reduction
(ARR), defined as the absolute differ-
ence in DRFS between the 2 predicted
groups. These were calculated from the
Kaplan-Meier estimators of the sur-
vival function based on cumulative
events following the interval notion for
cases and controls.23 Confidence inter-
vals (CIs) for NPV and PPV were based
on the Greenwood variance estimate and
for ARR were estimated by bootstrap
using 999 replicates.24 The indepen-
dent prognostic value of the genomic
predictor compared with the full clini-
cal model was assessed in multivariate
Cox regression analyses using the like-
lihood ratio test. Pathologic response to
neoadjuvant chemotherapy was de-
fined as pathologic complete response
or RCB-I for evaluation of response
prediction.6,11,25

Statistical computations were per-
formed in R version 2.10.1 (R Devel-
opment Core Team, Vienna, Austria)
by an independent statistician (H.W.).
Significance was based on P�.05 and
95% CI estimates.

RESULTS
In the discovery cohort, biopsy samples
were obtained from June 2000 to De-
cember 2006; 227 were obtained by
fine-needle aspiration (MDACC) and 83
by core biopsy (I-SPY), and all chemo-
therapy was administered as neoadju-
vant treatment. In the validation co-
hort, biopsy samples were obtained
from April 2002 to January 2009; 157
were obtained by fine-needle aspira-
tion (MDACC, Peru, US Oncology) and
41 by core biopsy (MDACC, Lyndon B.
Johnson Hospital, Spain), and 165 of
198 patients received all chemo-
therapy as neoadjuvant treatment. De-
tailed characteristics of the patient and
biospecimen cohorts used for test de-
velopment and validation are pro-
vided in TABLE 1 and eFigure 1, respec-
tively. Details of the type of biopsies
collected for genomic analysis and the
sequential taxane and anthracycline–
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based chemotherapy treatments admin-
istered are provided in eTable 1.

Performance of the Predictive Test
in the Independent Validation
Cohort

The predictive test (algorithm) was ap-
plied to the discovery cohort of 310
samples (FIGURE 2) and then evalu-
ated in the independent validation co-
hort of 198 patients (99% clinical stage
II-III) who received sequential taxane
and anthracycline chemotherapy (and
then endocr ine therapy i f ER-
positive). The validation cohort had
pathologic response rates of 25%
(pathologic complete response) and
30% (pathologic complete response or

RCB-I), median follow-up of 3 years,
and overall 3-year DRFS of 79% (95%
CI, 74%-85%).

The chemopredictive test algo-
rithm had a PPV of 56% (95% CI, 31%-
78%) for prediction of pathologic re-
sponse (pathologic complete response
or RCB-I) after excluding patients with
predicted endocrine sensitivity
(TABLE 2).

In 28% of patients predicted to be
treatment sensitive, the 3-year DRFS
(NPV) was 92% (95% CI, 85%-100%),
and there was a significant ARR of 18%
(95% CI, 6%-28%). Conversely, the
3-year point estimate of DRFS for those
predicted to be treatment insensitive
was 75% (95% CI, 67%-82%), corre-

sponding to a PPV of 25% (Table 2) and
an odds ratio for relapse of 4.01 (95%
CI, 1.60-20.4) relative to those pre-
dicted to be treatment sensitive (eTable
2). Overall, there was a significant as-
sociation between predicted sensitiv-
ity to treatment and improved DRFS
(P=.002) (Figure 2). Also, the diag-
nostic likelihood ratio for occurrence
vs absence of 3-year distant relapse or
death, if patients were predicted to be
treatment sensitive, was 0.33 (95% CI,
0.07-0.72) (eTable 2).

Of note, 3-year DRFS in patients pre-
dicted to be treatment sensitive at the
time of diagnosis was similar to the
3-year DRFS of 93% (95% CI, 85%-
100%) in the 21% of patients who

Table 1. Pretreatment Characteristics of the Discovery and Validation Cohorts

Characteristic

No. (%)

Discovery Cohort Validation Cohort

MDACC
(n = 227)

I-SPY-1
(n = 83)

Total
(N = 310)

MDACC
(n = 86)

LBJ/INEN/GEICAM
(n = 58)

US Oncology
(n = 54)

Total
(N = 198)

Age, y
�50 112 (49) 30 (36) 142 (46) 48 (56) 30 (52) 31 (57) 109 (55)

�50 115 (51) 53 (64) 168 (54) 38 (44) 28 (48) 23 (43) 89 (45)

Mean (SD) 51 (11) 47 (8) 50 (10) 49 (11) 51 (11) 48 (9) 49 (11)

Nodal status
Positive 165 (73) 58 (70) 223 (72) 52 (60) 42 (72) 34 (63) 128 (65)

Negative 62 (27) 25 (30) 87 (28) 34 (40) 16 (28) 20 (37) 70 (35)

T stage
0 2 (1) 0 2 (1) 1 (1) 0 0 1 (1)

1 19 (8) 1 (1) 20 (6) 8 (9) 1 (1) 1 (2) 10 (5)

2 131 (58) 34 (41) 165 (53) 52 (61) 19 (33) 19 (35) 90 (45)

3 35 (15) 39 (47) 74 (24) 18 (21) 19 (33) 34 (63) 71 (36)

4 40 (18) 9 (11) 49 (16) 7 (8) 19 (33) 0 26 (13)

Grade
1 13 (6) 6 (7) 19 (6) 7 (8) 5 (8) 1 (2) 13 (7)

2 92 (40) 25 (30) 117 (38) 28 (33) 19 (33) 16 (30) 63 (32)

3 122 (54) 29 (35) 151 (49) 51 (59) 23 (40) 34 (63) 108 (54)

Unknown 0 23 (28) 23 (7) 0 11 (19) 3 (5) 14 (7)

AJCC stage
I 6 (3) 0 6 (2) 2 (2) 0 0 2 (1)

II 126 (55) 39 (47) 165 (53) 57 (66) 18 (31) 32 (59) 107 (54)

III 95 (42) 44 (53) 139 (45) 27 (32) 40 (69) 22 (41) 89 (45)

ER status
Positive 131 (58) 43 (52) 174 (56) 60 (70) 37 (64) 26 (48) 123 (62)

Negative 96 (42) 35 (42) 131 (42) 26 (30) 21 (36) 27 (50) 74 (37)

Indeterminate 0 5 (6) 5 (2) 0 0 1 (2) 1 (1)

PR status
Positive 102 (45) 40 (48) 142 (46) 43 (50) 31 (53) 27 (50) 101 (51)

Negative 125 (55) 37 (45) 162 (52) 43 (50) 27 (47) 26 (48) 96 (48)

Indeterminate 0 6 (7) 6 (2) 0 0 1 (2) 1 (1)
Abbreviations: AJCC, American Joint Committee on Cancer; ER, estrogen receptor; GEICAM, Grupo Español de Investigación en Cáncer de Mama; INEN, Instituto Nacional de

Enfermedades Neoplásicas; I-SPY-1, Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis; MDACC, M. D. Anderson Can-
cer Center; LBJ, Lyndon B. Johnson Hospital; PR, progesterone receptor.
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Table 2. Performance of Genomic Signatures for Predicting Pathologic Response and 3-Year DRFS

Predictor

% (95% CI)

Prediction of Pathologic Response Prediction of Distant Relapse or Death Within 3 Years

Discovery Cohort (n = 310) Validation Cohort (n = 198) Discovery Cohort (n = 310) Validation Cohort (n = 198)

No.
(%)a PPVb NPVb

No.
(%)a PPVb NPVb PPV

NPV
(DRFS)c ARRd PPV

NPV
(DRFS)c ARRd

Genomic Grade
Index, high

301
(29)

36
(30 to 43)

88
(79 to 93)

101
(30)

40
(28 to 54)

84
(70 to 93)

14
(6 to 22)

72
(65 to 79)

−14
(−25 to −3)

7
(1 to 13)

72
(64 to 80)

−21
(−30 to −10)

Genomic
subtype
classifier,
luminal B or
basal-like

301
(29)

40
(32 to 48)

85
(78 to 90)

101
(30)

40
(25 to 56)

78
(65 to 87)

13
(7 to 19)

66
(58 to 76)

−20
(−31 to −10)

12
(6 to 20)

72
(62 to 81)

−16
(−27 to −5)

Genomic
predictor of
pathologic
complete
response

301
(29)

46
(37 to 55)

83
(77 to 88)

101
(30)

40
(24 to 58)

75
(63 to 85)

15
(9 to 20)

62
(52 to 73)

−24
(−36 to −12)

10
(4 to 16)

62
(50 to 73)

−28
(−41 to −16)

ER-stratified
genomic
predictor of
pathologic
complete
response/
RCB-Ie

301
(29)

69
(60 to 77)

100
(98 to 100)

101
(30)

42
(28 to 57)

81
(68 to 91)

30
(22 to 37)

85
(78 to 93)

15
(4 to 25)

24
(14 to 32)

82
(74 to 90)

5
(−7 to 16)

Predictive test,
treatment
sensitivee,f,g

256
(31)

78
(66 to 88)

84
(78 to 89)

91
(33)

56
(31 to 78)

73
(61 to 82)

36
(27 to 44)

95
(91 to 100)

31
(22 to 41)

25
(18 to 33)

92
(85 to 100)

18
(6 to 28)

Abbreviations: ARR, absolute risk reduction; DRFS, distant relapse–free survival; NPV, negative predictive value; PPV, positive predictive value; RCB-I, minimal residual cancer burden.
aPercentages represent pathologic response rates.
bConfidence intervals based on binomial approximation.
cDistant relapse–free survival estimate at 3 years.
dFor event within 3 years if predicted to be treatment sensitive (negative values indicate that any negative risk reduction was in favor of predicted treatment insensitive).
ePerformance of the pathologic complete response predictor on the discovery cohort is optimistically biased because the predictor was trained on a subset of these samples. Perfor-

mance of the pathologic complete response or RCB-I predictor and of the overall genomic prediction test on the discovery cohort represents resubstitution performance, because the
predictors were trained on the same cohort.

fGenomic prediction of pathologic response was evaluated in the subset in both cohorts with low sensitivity to endocrine therapy to evaluate the chemopredictive component only
(Figure 1).

gPerformance of the predictive test is optimistically biased in the discovery cohort because a component of the test was trained on DRFS events to define resistance.

Figure 2. Kaplan-Meier Estimates of Distant Relapse–Free Survival According to Genomic Predictions (Before Treatment) as
Treatment Sensitive or Treatment Insensitive and to Pathologic Response (After Treatment) as Pathologic Complete Response
or Residual Disease
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achieved pathologic complete re-
sponse after completion of neoadju-
vant chemotherapy (Figure 2). Simi-
larly, 3-year DRFS for those predicted
to be treatment insensitive was identi-
cal to the 3-year DRFS of 75% (95% CI,
68%-83%) in those with residual dis-
ease (Figure 2). Furthermore, DRFS es-
timates for the predicted treatment sen-
sitive and the actual pathologic
complete response groups were un-

changed at 5 years and were identical
at 65% (95% CI, 56%-75%) for the pre-
dicted treatment insensitive and the ac-
tual residual disease groups (Figure 2).

Predicted Treatment Sensitivity
According to ER Status

Treatment sensitivity was predicted in
37 of 123 patients (30%) in the ER-
positive phenotypic subgroup and in 19
of 74 (26%) in the ER-negative sub-

group. In the ER-positive subgroup,
these patients had excellent DRFS
(NPV) of 97% (95% CI, 91%-100%) and
a significant ARR of 11% (95% CI,
0.1%-21%) at 3 years of follow-up
(FIGURE 3). In the subset of ER-
positive patients predicted to be insen-
sitive to endocrine therapy (low SET in-
dex), the PPV for pathologic response
(pathologic complete response or
RCB-I) was 42% (95% CI, 15%-72%)
in 20% of patients predicted to be treat-
ment sensitive. Conversely, if patients
were ER-positive and predicted to be
treatment insensitive, the PPV for 3-year
DRFS event was 14% (95% CI,
6%-21%).

Patients with ER-negative cancer
predicted to be treatment sensitive
had significantly improved 3-year
DRFS (NPV) of 83% (95% CI, 68%-
100%) (Figure 3), with an ARR of
26% (95% CI, 4%-48%) and a PPV for
pathologic response (pathologic com-
plete response or RCB-I) of 83% (95%
CI, 36%-100%). Conversely, the PPV
for 3-year relapse was 43% (95% CI,
28%-55%) for patients predicted to be
treatment insensitive. Lastly, this test
had a significant diagnostic likelihood
ratio for predicted occurrence vs
absence of 3-year distant relapse or
death, if patients were predicted to be
treatment sensitive, of 0.27 (95% CI,
0.01-0.94) for ER-positive and 0.35
(95% CI, 0.04-0.91) for ER-negative
breast cancer (eTable 2).

Performance of the Predictive Test
in Other Relevant Subsets

The association between predicted
treatment sensitivity and DRFS ap-
pears to be unrelated to the type of tax-
ane therapy administered (FIGURE 4).
For patients predicted to be treatment
sensitive, the 3-year DRFS was 90%
(95% CI, 80%-100%) in the subset who
received 12 cycles of weekly pacli-
taxel and 96% (95% CI, 88%-100%) in
the subset who received 4 cycles of
3-times-weekly docetaxel with ca-
pecitabine. Similarly, the 3-year DRFS
was 93% (95% CI, 84%-100%) with sig-
nificantly improved DRFS compared
with prediction of treatment insensi-

Figure 3. Phenotypic Subset Analysis of Genomic Predictions in the Validation Cohort
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Figure 4. Taxane Chemotherapy Regimen Subset Analysis of Genomic Predictions in the
Validation Cohort
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tivity (P=.003) in 128 patients with
clinically positive nodes. The 3-year
DRFS was 91% (95% CI, 81%-100%)
in 70 patients with clinically negative
nodes but was not significantly differ-
ent from predicted insensitivity.

Comparison of the Predictive Test
With Clinical-Pathologic
Parameters

Genomic predictions were indepen-
dently and significantly associated with
risk of distant relapse or death (sensi-
tive vs insensitive; hazard ratio, 0.19
[95% CI, 0.07-0.55]; P=.002) after ad-
justing for standard clinical-patho-
logic parameters (eTable 3). Addition
of the genomic prediction to a multi-
variate Cox model of the clinical-
pathologic factors significantly in-
creased the predictive utility of the
model (likelihood ratio of complete
model vs clinical model, 13.8; P� .001).
In this model, higher clinical tumor
stage (tumor stage T3 or T4 vs T1 or
T2: hazard ratio, 2.13 [95% CI, 1.13-
4.02]; P=.02) and ER-negative status
(ER-positive vs ER-negative: hazard ra-
tio, 0.34 [95% CI, 0.18-0.65]; P=.001)
were associated with statistically sig-
nificant greater risk of distant relapse
or death.

Comparison With Other Predictive
Genomic Signatures

We also evaluated other phenotypic
predictors that have published associa-
tion with higher probability of patho-
logic complete response to neoadju-
vant chemotherapy, have a predefined
threshold for prediction of pathologic
complete response based on Af-
fymetrix microarray data, and that we
have confirmed to be correctly calcu-
lated: the 96-gene genomic grade in-
dex (GGI) to define high vs low grade
(high GGI predicted pathologic com-
plete response),11 a 52-gene signature
(PAM50) to assign intrinsic subtype
(basal-like, ERBB2, and luminal B sub-
types predicted pathologic complete
response),25 and a 30-gene signature
(DLDA30) developed to predict patho-
logic complete response vs residual dis-
ease.6 These tests were significantly pre-

dictive of pathologic response in the
discovery cohort (lower 95% confi-
dence limit of the PPV greater than the
baseline response [pathologic com-
plete response or RCB-I] rate of 29%),
and the tests had NPVs of 83% or
greater (Table 2). Performance in the
validation cohort was similar (Table 2),
but none of these tests had a PPV sig-
nificantly greater than the baseline re-
sponse (pathologic complete re-
sponse or RCB-I) rate of 30%.

The entire prediction algorithm
(Figures 1 and 2) and its component
to predict pathologic complete re-
sponse or RCB-I (Figure 1 and eFig-
ure 3D and H) demonstrated signifi-
cantly improved DRFS for patients
predicted to be treatment sensitive
(Table 2). The other tests (GGI,
PAM50, DLDA30) demonstrated worse
DRFS for patients predicted to have che-
mosensitive breast cancer (eFigure 3)
and within the ER-positive (eFigure 4)
and ER-negative (eFigure 5) subsets, as
indicated by their negative ARRs
(Table 2) and paradoxical diagnostic
likelihood ratios (eTable 2).

COMMENT
Any test based on predicted sensitiv-
ity, resistance, or both to guide the
selection of a standard adjuvant treat-
ment regimen should predict a high
probability of survival for patients pre-
dicted to be treatment sensitive (NPV,
no relapse if predicted to be treatment
sensitive) and a clinically meaningful
survival difference between patients
predicted to be treatment sensitive and
insensitive (ARR) as well as improve
on predictions using existing clinical-
pathological information. The perfor-
mance of our predictive test meets
these criteria in an independent vali-
dation cohort. The 3-year DRFS of
92% for patients predicted to be treat-
ment sensitive (NPV) was higher than
in the unselected cohort (79%), with a
statistically significant ARR of 18%.
Furthermore, the predictive test added
significantly to a multivariate clinical-
pathologic model (age, tumor size,
nodal status, grade, ER status, and
type of taxane administered), wherein

patients predicted to be treatment
sensitive had a 5-fold reduction in the
risk of distant relapse (eTable 3). It
also should be noted that in the valida-
tion cohort the a priori test results (pre-
dicted treatment sensitive or insensi-
tive) from a tumor sample obtained
before treatment were as predictive of
DRFS as the pathologic response as-
sessed after the completion of chemo-
therapy (Figure 2).

Strictly, an unequivocal estimate of
the extent of chemopredictive effect of
this test on DRFS (rather than progno-
sis from natural history) would re-
quire comparison with a randomized
control population who did not re-
ceive chemotherapy. However, this ap-
proach is not justifiable for patients with
stage II-III disease without strong evi-
dence of safety. Therefore, we sepa-
rately demonstrated that this test was
not prognostic using available data from
2 retrospective cohorts that did not re-
ceive chemotherapy for earlier-stage
cancer (eFigure 6).

We observed similar performance of
this test in patients who received
equivalent chemotherapy regimens con-
taining 12 cycles of weekly paclitaxel
or 4 cycles of 3-times-weekly doce-
taxel with capecitabine (Figure 4), in
each case sequentially administered be-
fore or after 4 cycles of anthracycline-
based chemotherapy.26 Of course, ad-
ditional studies must address the
generalizability of these results to other
study cohorts and other chemo-
therapy regimens that combine tax-
anes and anthracyclines in sequence or
concurrently or that do not include a
taxane or anthracycline component.

A predictive test with this perfor-
mance could potentially assist medi-
cal decision-making. It could identify
patients with stage II-III, ER-positive
and ERBB2-negative breast cancer with
excellent 3-year and 5-year DRFS (97%)
following a standard adjuvant treat-
ment (Figure 3). This group included
the subset of patients predicted to be
treatment sensitive who were also pre-
dicted to have low endocrine sensitiv-
ity and so were specifically predicted
to be chemosensitive (eFigure 7). The
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subset of ER-negative cancers pre-
dicted to be treatment sensitive had a
DRFS of 83% and a significant ARR of
26% (Figure 3).

At issue is whether an 83% 3-year
DRFS for ER-negative breast cancers is
sufficiently high to justify use of this test
to choose a currently standard taxane
and anthracycline chemotherapy regi-
men. One clinical strategy might be to
perform the test on needle biopsy
samples obtained before treatment and
select patients predicted to be treat-
ment sensitive for neoadjuvant taxane
and anthracycline chemotherapy. Using
this approach, additional postopera-
tive adjuvant therapy, preferably in a
clinical trial, could be considered if the
patient proved to have significant re-
sidual disease (RCB-II or RCB-III) at the
time of surgery (17% of evaluable cases
in our study). Conversely, the 3-year
probability of relapse or death if a pa-
tient were predicted to be treatment in-
sensitive was 25% overall (14% if ER-
positive; 43% if ER-negative). This
probability should not be misinter-
preted as futility of current standard
treatment (there was no randomized
control) but for some patients may be
sufficiently high to encourage consid-
eration of other therapeutic options, in-
cluding participation in a clinical trial.

The future ability to effectively pri-
oritize and complete prospective clini-
cal trials in breast oncology may be chal-
lenged by an increasing number of new
treatments to test, questions of syn-
ergy in combined treatments, ques-
tions of efficacy in biological subsets,
and generally low rates of participa-
tion in prospective clinical trials of ad-
juvant treatments.27 It is relevant to con-
sider whether more patients would
choose to participate in a clinical trial
from which they might benefit if they
knew in advance that they had signifi-
cant probability of early relapse follow-
ing a current and intensive adjuvant
treatment strategy. Furthermore, any
increase in the rate of participation in
prospective clinical trials, especially
those that target therapeutic strategies
for patients predicted to be insensitive
to current standard treatments, could

profoundly accelerate clinical investi-
gation of new adjuvant treatments.27

It is essential to realize that predic-
tion of pathologic response from neo-
adjuvant chemotherapy does not nec-
essarily predict improved survival. This
apparent paradox is attributable to the
relationship between the biologic in-
formation captured by the predictor and
the frequency and prognosis of false-
positive response predictions. Tu-
mors that are less differentiated often
have high proliferation and are gener-
ally more likely to have poor progno-
sis, respond to cytotoxic chemo-
therapy, and have poor prognosis if they
do not respond to chemotherapy.1,28

Therefore, tests that are prognostic in
the absence of chemotherapy may pre-
dict response in patients at higher risk
but without an associated high prob-
ability of survival. This is likely to be
most apparent in stage II-III breast can-
cers, as illustrated for GGI and intrin-
sic subtype (Table 2, eFigures 3-5),11

and in reports concerning the commer-
cially available 70-gene prognostic sig-
nature (that uses a different microar-
ray platform)10 and the recurrence
score.9,29,30 The latter tests could not be
directly compared in our study be-
cause each uses a different technology
lacking direct correlation with our Af-
fymetrix microarray platform. A simi-
lar paradox was observed for DLDA30,
a predictor trained on pathologic com-
plete response in unselected patients,6

and is probably related to different fre-
quency of pathologic complete re-
sponse according to ER status and
grade, reflecting differentiation and pro-
liferation (Table 2, eFigure 3C and G).28

We conclude that prediction of patho-
logic response alone is not sufficient to
demonstrate clinical validity of a test.
There also must be a survival advan-
tage, with an appropriately high sur-
vival estimate, for patients predicted to
be treatment sensitive.

In this study, overcoming the pre-
diction paradox involved the incorpo-
ration of several elements in the pre-
diction algorithm (Figure 1) potentially
relevant to other technologies or other
types of cancer. One element was to

identify patients whose excellent sur-
vival after chemoendocrine therapy was
likely attributable to the endocrine sen-
sitivity of their breast cancer.13 That
convinced us to evaluate predictors of
chemotherapy response in breast can-
cers with predicted low endocrine
sensitivity. Another element was to
separately develop predictors within
relevant phenotypic subsets using
an improved measure of pathologic
response (pathologic complete re-
sponse or RCB-I).12 That improve-
ment is sufficient to reverse the pre-
diction paradox, but not to a level of
clinical utility (Table 2, eFigure 3D and
H, and eTable 2). Yet another element
was to develop predictors based on
clinically relevant definitions of resis-
tance, so that resistant disease could be
identified first to avoid misclassifica-
tion as responsive.12 That further im-
proved predictions to a level of poten-
tial clinical utility (Figures 2-4, Table 2,
and eTable 2).

In its current format, this predictive
test would be performed on fresh pri-
mary tumor sample obtained from clini-
cal core needle biopsy (2 cores), fine-
needle aspiration (2 passes), or surgical
resection (eg, tumoral punch biopsy) and
placed into a vial containing 1.5 mL of
a standard RNA preservative (RNAlater)
at room temperature. Similar methods
could become feasibly implemented into
diagnostic practice if procurement of
a tumor sample of optimal quality
became a priority for molecular diagnos-
tic tests of proven accuracy and medi-
cal utility. Meanwhile, it is also impera-
tive to continue to evaluate the predictive
accuracy of this test in additional vali-
dation studies.
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