Decrease in Brain Serotonin 2 Receptor Binding in Patients With Major Depression Following Desipramine Treatment

Lakshmi N. Yatham, MBBS, FRCPC; Peter F. Liddle, PhD, MBBS; Joelle Dennie, MSc; I-Shin Shiah, MD; Michael J. Adam, PhD; Carol J. Lane, MSc; Raymond W. Lam, MD; Thomas J. Ruth, PhD

Background: The neuroreceptor changes involved in therapeutic efficacy of various antidepressants remain unclear. Preclinical studies have shown that long-term administration of various antidepressants causes down-regulation of brain serotonin 2 (5-HT2) receptors in rodents, but it is unknown if similar changes occur following antidepressant treatment in depressed patients. Our purpose, therefore, was to assess the effects of treatment with desipramine hydrochloride on brain 5-HT2 receptors in depressed patients using positron emission tomography (PET) and fluorine-18 (18F)-labeled setoperone.

Methods: Eleven patients who met DSM-IV criteria for major depression as determined by a structured clinical interview for DSM-III-R diagnosis and suitable for treatment with desipramine were recruited. Ten patients underwent a PET scan before and another after 3 to 4 weeks of treatment with desipramine.

Results: Eight of the 10 patients responded to desipramine treatment as indicated by more than 50% decrease in Hamilton Depression Rating Scale scores. Depressed patients showed a significant decrease in 5-HT2 receptor binding as measured by setoperone binding in frontal, temporal, parietal, and occipital cortical regions following desipramine treatment. The decrease in 5-HT2 receptor binding was observed bilaterally and was particularly prominent in frontal cortex.

Conclusions: Depressed patients showed a significant reduction in available 5-HT2 receptors in the brain following desipramine treatment, but it is unknown if this change in 5-HT2 receptors is due to clinical improvement or an effect of desipramine that is unrelated to clinical status.

Arch Gen Psychiatry. 1999;56:705-711

THE MECHANISMS by which antidepressants exert their therapeutic effects in major depression have remained elusive. Since there is a time lag of about 2 to 4 weeks between initiating antidepressant treatment and the clinical response, it has been suggested that alterations in neurotransmitter receptors occurring within this time frame might be relevant to therapeutic effects of these drugs.1 Because 5-hydroxytryptamine (serotonin [5-HT]) has been implicated in depression,2,3 a number of animal studies4-15 have assessed the changes in 5-HT receptors after 2 to 4 weeks of the administration of antidepressants. Serotonin 2 receptors are the most widely studied,4,9,11-13 and these studies have shown that long-term administration of tricyclic antidepressants,4,9,11-13 monoamine oxidase inhibitors,4,6,12 atypical antidepressants such as iprindole4,9,12 and mianserin hydrochloride,7,8,11 and most but not all serotonin reuptake inhibitors4,9,12,16-19 decreases the density of cortical 5-HT2 receptors in rats. It is, however, unknown if antidepressant treatment would lead to similar changes in 5-HT2 receptor density in depressed patients.

The purpose of our study was to ascertain the effects of 3- to 4-week treatment with an antidepressant on brain 5-HT2 receptors using positron emission tomography (PET) in patients with major depression. Ligands such as carbon 11 (11C (R)-(-)-4-(1-hydroxy-1-[2,3-dimethoxyphenyl]methyl)-N-2-(4-fluorophenylethyl)piperidine (MDL 100 907),20 11C-N-methylspiperone,21 18F-setoperone,22 and 18F-altanserin23 are available for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to-nonspecific binding ratio of greater than 2; (2) it was recommended by the European Task Force as a suitable ligand for imaging 5-HT2 receptors in human brain.24 We chose 18F-setoperone because (1) it has a total-to

©1999 American Medical Association. All rights reserved.
SUBJECTS AND METHODS

SUBJECTS

Eleven patients who met DSM-IV criteria for major depressive disorder and who were suitable for treatment with desipramine were recruited from the University of British Columbia Hospital, Vancouver. The study was approved by the University Ethics Committee, and subjects gave written informed consent. The diagnosis of major depression was made using the Structured Clinical Interview for DSM-III-R. None had other Axis I diagnoses or current or past alcohol or substance abuse. All subjects were physically healthy as determined by history and results of physical examination. The severity of depression was quantified using the 21-item Hamilton Depression Rating Scale (HAM-D)29. All study subjects were free of psychotropic drugs for at least 2 weeks (5 weeks in the case of fluoxetine hydrochloride) before baseline PET scan, and none had ever received electroconvulsive therapy.

PET PROCEDURE

Radiosynthesis of \(^{18}F\)-setoperone was accomplished by a modified method of Crouzel and colleagues, as described by Adam et al. Radioactivity in brain tissue was measured with a PET system (ECAT 93B/31; CTI/Siemens, Knoxville, Tenn). The spatial resolution of images is 6 mm (full width at half maximum). Subjects were supine with the head slightly tilted to obtain brain slices parallel to the canthomeatal line. Each subject had a 10-minute transmission scan for correcting PET images for attenuation. Following this, subjects were given 148 to 259 MBq of \(^{18}F\)-setoperone intravenously, and a 15-frame scan was performed. The numbers and durations of frames were as follows: 5 frames for 2 minutes each, 4 frames for 5 minutes each, 4 frames for 10 minutes each, and 2 frames for 20 minutes each (total duration, 110 minutes).

RESULTS

One patient could not tolerate the side effects of desipramine and dropped out on day 4. The other 10 patients completed the study, and the data analysis is presented for these 10.

The subjects had a mean age of 40.6 ± 9.2 years. Three patients had no previous depressive episodes, and 2 had 1 previous episode. The other 5 patients had from 3 to 12 previous episodes of depression (Table 1). The duration of current depressive episode ranged from 20 to 120 weeks. Four patients had been free of psychotropic medication for more than 6 months, and 1 patient was drug naive. The other 5 patients were drug free from 2 to 5 weeks. Three subjects received nighttime sedation with lorazepam or oxazepam during the study. The mean dose of desipramine hydrochloride was 160.0 ± 21.0 mg (range, 150-200 mg). The patients had a mean 21-item HAM-D score of 27.0 ± 5.6, and the mean HAM-D score decreased to 7.0 ± 7.8 following treatment. Eight of 10 patients improved (defined as ≥50% reduction in 21-item HAM-D score) with treatment by second PET scan.

Depressed patients showed a significant reduction in setoperone binding in several cortical areas, including frontal, temporal, parietal, and occipital regions, following desipramine treatment. Analysis using SPM96 demonstrated an extensive cluster of voxels in which there was a significant decrease in setoperone binding following treatment with desipramine (Table 2, Figure 1, and Figure 2). This cluster was highly significant after correcting for multiple comparisons (P < .001). It included 26,695 voxels, and this corresponds to approximately 46% of the volume of gray matter that was in the field of view. The entire cluster embraced medial frontal cortex, insula, and lateral frontal cortex and extended back to temporal and occipital cortices bilaterally. Within this cluster, 383 voxels satisfied the criteria for significance irrespective of their membership in the cluster. Table 2 gives the location and z value for change in setoperone binding...
nonspecific binding is identical in the region of interest and the reference region, the ratio of setoperone concentration in the region of interest (C_{local}) to that in the reference region (C_{reference}) is given using the following formula:

\[\frac{C_{local}}{C_{reference}} = \frac{fBP_{local} + k5}{k6} + 1, \]

where BP_{local} is the local binding potential, and f is a quantity that reflects the total binding capacity (specific + nonspecific) in the reference region. Although cerebellum has been used as a reference region, Petit-Taboue et al. have demonstrated that in humans, nonspecific binding of setoperone in cerebellum is different from that in cortex. Hence this equation is not accurate, and its use leads to errors of approximately 20% in the estimation of fBP_{local} if cerebellum is used as a reference region. However, Petit-Taboue et al. demonstrated that nonspecific binding does not vary substantially between different cortical regions. Therefore, when the object is to measure regional changes in setoperone binding, an alternative approach is to use the whole cortex as the reference region.

The following equation is used when the whole cortex is treated as the reference region:

\[f = \frac{1}{BP_{global} + k5/k6}, \]

where BP_{global} is mean global binding potential, and k5 and k6 are the transfer coefficients for attachment to and detachment from nonspecific binding sites. If BP_{global} + k5/k6 is not substantially affected by treatment, the change in C_{local}/C_{global} is proportional to the change in binding potential during treatment. If BP_{global} + k5/k6 changes during treatment, change in C_{local}/C_{global} is proportional to change in ratio of local binding potential to mean global binding capacity (specific + nonspecific), but there is reduced power to detect local changes in binding potential in regions where local change is in the same direction as the mean global change. Provided there is no substantial change in global binding, it is preferable to use the whole cortex as the reference region for the determination of local changes, as this avoids errors due to differences between cortical and cerebellar nonspecific binding.

We evaluated C_{global} using the middle 10 slices of the image and C_{cerebellum} in a cerebellar region drawn using the MPI tool. The pretreatment value of the ratio C_{global}/C_{cerebellum} was 1.173, whereas the posttreatment ratio was 1.148 (paired t = 0.514; P = .62). The minimal observed change in the ratio C_{global}/C_{cerebellum} justifies the use of whole cortex as the reference region for determining local changes in setoperone binding.

Using SPM96, we then determined the change in ratio of local setoperone concentration to mean global setoperone concentration during treatment with proportional scaling. The threshold for including voxels in the analysis was set at 1.3 times mean global cerebral image intensity to exclude non–gray matter voxels. For each voxel, the general linear model was used to estimate the mean change in C_{local}/C_{global}. The significance of the change for each voxel was determined applying the method developed by Worsley based on the theory of Gaussian fields, as implemented in SPM96. Although there are approximately 58,000 voxels in the image, the image intensity in adjacent voxels is strongly correlated, so that there are only about 90 independent measurements. In effect, Worsley’s method determines the number of independent measurements and applies the appropriate Bonferroni-type correction. Voxels in which the significance of z satisfies this correction can be accepted as significant irrespective of whether they are a part of a contiguous set of voxels exhibiting significant change.

The theory of Gaussian fields was also applied to determine the statistical significance of clusters of contiguous voxels in which change during treatment exceeded a specified threshold. For this calculation, we set the threshold of z = 1.96 corresponding to P < 0.025 one-tailed (or P < 0.05 two-tailed). Worsley’s method calculates the significance of clusters, taking account of the extent and peak z value within the cluster, and then applies a correction allowing for the multiple comparisons performed. Cluster significance level was set at P < 0.05.

Pearson correlations between changes in relative setoperone binding in the significant clusters and changes in 21-item HAM-D score and HAM-D suicide item score between pretreatment and posttreatment conditions were computed. Unless otherwise indicated, data are given as mean ± SD.

Comment

This is the first study to assess the effects of desipramine treatment on brain 5-HT_{1A} receptors in living, depressed patients. The results indicated that depressed patients had a significant decrease in brain setoperone binding in various cortical areas, including frontal, temporal, parietal, and occipital regions, following desipramine treatment. The decrease in setoperone binding was observed bilaterally, with decreases highly significant in left medial and orbitomedial frontal gyri, left inferior frontal gyrus, left middle and inferior temporal gyri, right lingual gyrus, and right middle occipital gyrus.

Several interpretations must be considered for a decrease in setoperone binding in our study subjects. First, the methods used in our study would not permit an independent determination of B_{max} and K_{d}. Hence, a decrease in setoperone binding observed following desipramine treatment in our study could be due to a decrease in B_{max} or an alteration in K_{d}. However, postmortem studi-
ies of brain 5-HT₂ receptors in depressed patients have shown a decrease in Bmax without any alteration in Kd for 5-HT₂ receptors. Similarly, studies of the effects of antidepressant treatments on brain 5-HT₂ receptors in rodents also have shown a decrease in Bmax without a change in Kd for 5-HT₂ receptors. Therefore, the decrease in setoperone binding observed in depressed patients following desipramine treatment in this study is likely to be due to a decrease in Bmax, indicating a decrease in 5-HT₂ receptor density.

Second, although desipramine does not inhibit 5-HT reuptake, long-term treatment with desipramine might lead to an increase in brain 5-HT levels through some other mechanism. An increase in brain 5-HT levels could occupy 5-HT₂ receptors, leaving a decreased number of receptors available for setoperone binding, thus account-

<table>
<thead>
<tr>
<th>Subject No./Sex</th>
<th>Age, y</th>
<th>No. of Previous Depressive Episodes</th>
<th>Duration of Current Episode, wk</th>
<th>Duration of Drug-Free Period</th>
<th>Pretreatment HAM-D Score</th>
<th>Posttreatment HAM-D Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/F</td>
<td>49</td>
<td>4</td>
<td>78</td>
<td></td>
<td>Drug naive</td>
<td>24</td>
</tr>
<tr>
<td>2/M</td>
<td>46</td>
<td>12</td>
<td>50</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>3/M</td>
<td>41</td>
<td>3</td>
<td>32</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>4/M</td>
<td>34</td>
<td>0</td>
<td>120</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>5/M</td>
<td>30</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>6/M</td>
<td>47</td>
<td>10</td>
<td>70</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>7/M</td>
<td>47</td>
<td>10</td>
<td>70</td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>8/F</td>
<td>50</td>
<td>0</td>
<td>52</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>9/F</td>
<td>40</td>
<td>7</td>
<td>26</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>10/F</td>
<td>22</td>
<td>3</td>
<td>26</td>
<td></td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

All, mean ± SD 40.6 ± 9.2 3.8 ± 4.4 57.4 ± 34.0 ... 27.0 ± 5.6 7.0 ± 7.8

*HAM-D indicates 21-item Hamilton Depression Rating Scale; ellipses, cannot be calculated. Desipramine was given as desipramine hydrochloride.

Table 2. Changes in Setoperone Binding During Desipramine Treatment in Depressed Patients*

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Voxels</th>
<th>¹⁸F-Setoperone Binding</th>
<th>Coordinates†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size</td>
<td>z Score</td>
<td>Corrected P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z Score</td>
<td>Corrected P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>26 695</td>
<td>4.53</td>
<td>.007</td>
<td>1.5626 ± 0.0514</td>
</tr>
<tr>
<td>4.51</td>
<td>.008</td>
<td></td>
<td>1.4617 ± 0.0590</td>
</tr>
<tr>
<td>4.50</td>
<td>.008</td>
<td></td>
<td>1.5003 ± 0.0941</td>
</tr>
<tr>
<td>4.18</td>
<td>.03</td>
<td></td>
<td>1.6116 ± 0.0403</td>
</tr>
<tr>
<td>4.17</td>
<td>.03</td>
<td></td>
<td>1.6981 ± 0.0538</td>
</tr>
<tr>
<td>4.10</td>
<td>.04</td>
<td></td>
<td>1.3829 ± 0.0971</td>
</tr>
<tr>
<td>4.10</td>
<td>.04</td>
<td></td>
<td>1.3316 ± 0.0313</td>
</tr>
<tr>
<td>4.08</td>
<td>.04</td>
<td></td>
<td>1.3451 ± 0.0723</td>
</tr>
<tr>
<td>4.04</td>
<td>.05</td>
<td></td>
<td>1.6257 ± 0.0338</td>
</tr>
</tbody>
</table>

*¹⁸F-setoperone indicates fluorine 18–labeled setoperone. Desipramine was given as desipramine hydrochloride.

†Coordinates are in millimeters from the origin at the midpoint of anterior commissure, in the coordinate frame employed in statistical parametric mapping.
ing for a decreased binding we observed. However, a recent PET study using 18F-setoperone reported no significant change in 5-HT$_2$ receptor binding following an acute challenge dose of paroxetine, the most potent 5-HT reuptake inhibitor in healthy subjects. This would suggest that elevation in 5-HT levels has no measurable impact on 5-HT$_2$ receptor binding as assessed with PET, thus suggesting that decreased setoperone binding observed in the study subjects is not due to a confounding effect of elevation in endogenous brain 5-HT levels.

Third, since patients underwent scanning while receiving treatment with desipramine, we cannot exclude the possibility that the decrease in setoperone binding is due to desipramine binding to 5-HT$_2$ receptors and not due to a decrease in 5-HT$_2$ receptor density. However, this is unlikely, because desipramine binding would be expected to occur wherever there are 5HT$_2$ receptors, but we observed no substantial global change in setoperone binding.

Our study has some limitations. First, although setoperone binds with higher affinity to 5-HT$_2A$ receptors ($K_i = 0.37$ nmol/L), it also has some affinity ($K_i = 50$ nmol/L) to 5-HT$_2C$ receptors, and hence we cannot tell whether a reduction in binding observed is due to a down-regulation of 5-HT$_2A$ or 5-HT$_2C$ or both receptor populations. Second, most patients in our study improved by the time the second PET scan was performed. Hence, we cannot tell if the decrease in 5-HT$_2$ receptor binding is due to clinical improvement that may or may not have been induced by desipramine or due to an effect of desipramine that was unrelated to clinical improvement. The fact that all 10 patients showed a reduction in 5-HT$_2$ receptor binding but only 8 improved substantially supports the latter possibility. Conversely, in a preliminary PET study, we reported that electroconvulsive therapy, another effective treatment for depression, induced a significant decrease in 5-HT$_2$ receptor binding in all 6 depressed patients who improved, supporting the former possibility.

Based on our finding of a decrease in 5-HT$_2$ receptor binding following desipramine treatment, one would expect an increase in 5-HT$_2$ receptor binding to be associated with depression. In this regard, several studies have observed increased 5-HT$_2$ receptor binding in depressed patients.
though not all\(^{46-51}\) postmortem studies that examined 5-HT\(_2\) receptor binding in brain samples from suicides reported increased \(B_{\text{max}}\) with no changes in \(K_{i}\) in various brain regions, particularly in frontal cortex, compared with control subjects. Similarly, 5-HT\(_2\) receptor binding was also reported to be increased in postmortem brain samples of depressed patients who died of natural causes, compared with controls.\(^{43,52}\) although not in all studies.\(^{46}\) Of the 2 studies that assessed brain 5-HT\(_2\) receptor density in living, depressed patients, the single-photon emission tomography scan study with 2–iodine 123–ketanserin reported an increase in \(B_{\text{max}}\) within parietal cortex and right inferior frontal region,\(^{53}\) whereas the PET study by Biver et al\(^{54}\) using [\(^{18}\)F]altanserin reported a decrease in 5-HT\(_2\) receptor binding in the right postrolateral orbitofrontal cortex and anterior insular cortex in depressed patients compared with controls. The discrepancy in findings between the latter study and previous single-photon emission tomography and postmortem studies that showed an increased 5-HT\(_2\) receptor binding in depression might be related to differences in duration of drug-free periods before ascertaining 5-HT\(_2\) receptor binding.

In conclusion, to our knowledge, we demonstrated for the first time in humans that depressed patients show a decrease in brain 5-HT\(_2\) ligand binding following desipramine treatment. Our results, however, cannot tell us whether the decrease in 5-HT\(_2\) receptor binding was related to clinical improvement or to an effect of desipramine that was unrelated to clinical status. Further studies assessing the effects of antidepressant treatment on brain 5-HT\(_2\) receptors in depressed patients are needed to verify the hypothesis that 5-HT\(_2\) receptors are an important target for antidepressant therapies.

Accepted for publication April 13, 1999.

This study was supported by a National Alliance for Research on Schizophrenia and Depression Young Investigator Award (Dr Yatham).

Preliminary results of this study were presented at the 21st Collegium Internationale Neuro-Psychopharmacologicum Congress, Glasgow, Scotland, July 13, 1998.

Reprints: Lakshmi N. Yatham, MBBS, FRCP(C), Mood Disorders Clinical Research Unit, The University of British Columbia, 2255, Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A1 (e-mail: yatham@unixg.ubc.ca).

Figure 3. Binding of fluorine 18–labeled setoperone (\(^{18}\)F-setoperone) in left medial frontal gyrus (\(x = -4, y = 68, z = -2\)) for 10 depressed patients (8 responders and 2 nonresponders) before and after treatment with desipramine hydrochloride.

REFERENCES

5. Peroutka SJ, Snyder SH. Regulation of serotonin-2 (5-HT\(_2\)) receptors labeled with \([\text{H}]\)spiroperidol by chronic treatment with the antidepressant amitryptiline. J Pharmacol Exp Ther. 1980;215:582-587.
21. Dannals RF, Ravert HT, Wilson AA, Wagner HNJ. An improved synthesis of (3-
with 3F18. J Labelled Compounds Radiopharmaceuticals. 1988;25:
403-414.
Multicompartmental study of fluorine-18 altanserin binding to brain 5HT2
24. Crouzel C, Guillaume M, Barle R, Lemaire C, Pike VW. Ligands and tracers for
870.
that loxapine is an equipotent blocker of 5-HT2 and D2 receptors: implications
5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET in-
27. Trichard C, Paillec-Martinet ML, Attar-Levy D, Recassens C, Monnet F, Marti-
not JL. Binding of antipsychotic drugs to cortical 5-HT1A receptors: a PET study
of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am J
not JL. No serotonin 5-HT2 receptor density abnormality in the cortex of schizophre-
ation; 1994.
30. Spitzer RL, Williams JBW, Gibbon M, First MB. Structured Clinical Interview for
ation; 1994.
1960;23:56-62.
32. Adam MJ, Lu S, Jivan S, Huser J. Simplified purification and synthesis of F-18
870.
34. Mann JJ. Autoradiographic demonstration of increased serotonin 5-HT2; and
5-HT1A receptor binding in the frontal cortices of suicide victims. Arch Gen Psy-
chiatry. 1986;43:954-959.
35. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Comparing function (PET) im-
36. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Statistical parametric maps in
37. Petit-Taboue M-C, Landeau B, Barre L, Domroy M-C, Noel M-C, Baron J-C. Para-
metric PET imaging of SHTA receptor distribution with 18F-setoperone in the nor-
38. Worsley KJ. Local maxima and the expected Euler characteristic of excursion
39. Stanley M, Mann JJ. Increased serotonin-2 binding sites in frontal cortex of sui-
40. Mann JJ. Stanley M, McBride A, McEwan BS. Increased serotonin, and β-ad-
renergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psy-
chiatry. 1986;43:954-959.
41. Stockmeier CA, Dilley GE, Shapiro LA, Overholser JC, Thompson PA, Meltzer HY.
Serotonin receptors in suicide victims: violence of death, depression and effects of anti-
42. Mann JJ. Serotonin 5-HT1A receptor binding sites in depressed suicide victims.
43. Yates M, Leake A, Candy JM, Fairbairn AF, McKeith JG, Ferrier IN. 5HT1A receptor
changes in major depression. Biol Psychiatry. 1990;27:489-496.
45. Yatham LN, Dennie J, Lane C, Shiah IS, Liddle PF. A PET study of effects of de-
sipramine or ECT on 5-HT1A receptors in depression. Paper presented at: the 21st
Collegium Internationale Neuro-Psychopharmacologicum (CINP) Congress;
Glasgow, Scotland; July 13, 1998:278.
46. Arango V, Ernsberger P, Mazzuk P, Chen JS, Tierney H, Stanley M, Reis DJ,
Mann JJ. Autoradiographic demonstration of increased serotonin 5-HT2; and
5-HT1A receptor binding sites in the brain of suicide victims. Arch Gen Psy-
47. Stockmeier CA, Dilley GE, Shapiro LA, Overholser JC, Thompson PA, Meltzer HY.
Serotonin receptors in suicide victims with major depression. Neuropsychophar-
49. Yatham LN, Dennie J, Lane C, Shiah IS, Liddle PF. A PET study of effects of de-
sipramine or ECT on 5-HT1A receptors in depression. Paper presented at: the 21st
Collegium Internationale Neuro-Psychopharmacologicum (CINP) Congress;
Glasgow, Scotland; July 13, 1998:278.
50. Stockmeier CA, Dilley GE, Shapiro LA, Overholser JC, Thompson PA, Meltzer HY.
Serotonin receptors in suicide victims with major depression. Neuropsychophar-
51. Stockmeier CA, Dilley GE, Shapiro LA, Overholser JC, Thompson PA, Meltzer HY.
Serotonin receptors in suicide victims with major depression. Neuropsychophar-
52. McKeith IG, Marshall AF, Ferrier IN, Armstrong MM, Kennedy WN, Perry RH,
Tomlinson BE. Neurontrans-
mitter receptors and monoamine metabolites in the brains of patients with Alz-
heimer-type dementia and depression, and suicides. Neuropsychopharmacology.
1984; 23:1561-1569.
53. Arango V, Ernsberger P, Mazzuk P, Chen JS, Tierney H, Stanley M, Reis DJ,
Mann JJ. Autoradiographic demonstration of increased serotonin 5-HT2; and
5-HT1A receptor binding sites in the brain of suicide victims. Arch Gen Psy-
54. Crow TJ, Cross AJ, Cooper SJ, Deakin JFW, Poulter M, Lothhouse R, Corsellis
JAN, Chambers DR, Blessed G, Perry EK, Perry RH, Tomlinson BE. Neurotrans-
mitter receptors and monoamine metabolites in the brains of patients with Alz-
heimer-type dementia and depression, and suicides. Neuropsychopharmacology.
1984; 23:1561-1569.
55. Whedon SC, Crompton MR, Katona CLE, Horton RW. Brain 5HT3 receptor bind-
56. Lawther S, De Paermentier F, Crompton MR, Katona CLE, Horton RW. Brain 5HT3
receptors in suicide victims: violence of death, depression and effects of anti-
57. Stockmeier CA, Dilley GE, Shapiro LA, Overholser JC, Thompson PA, Meltzer HY.
Serotonin receptors in suicide victims with major depression. Neuropsychophar-
58. McKeith IG, Marshall AF, Ferrier IN, Armstrong MM, Kennedy WN, Perry RH,
Perry EK, Eccleston D. 5-HT receptor binding in post-mortem brain from patients
59. Yatham LN, Dennie J, Lane C, Shiah IS, Liddle PF. A PET study of effects of de-
sipramine or ECT on 5-HT1A receptors in depression. Paper presented at: the 21st
Collegium Internationale Neuro-Psychopharmacologicum (CINP) Congress;
Glasgow, Scotland; July 13, 1998:278.
60. Arango V, Ernsberger P, Mazzuk P, Chen JS, Tierney H, Stanley M, Reis DJ,
Mann JJ. Autoradiographic demonsta
 newline