Recalcitrant, Recurrent Aphthous Stomatitis Treated With Etanercept

Neha D. Robinson, MD; Joan Guitart, MD; Department of Dermatology, Northwestern University Medical School, Chicago, Ill

The Cutting Edge: Challenges in Medical and Surgical Therapeutics

REPORT OF A CASE

A 50-year-old woman presented with a 24-year history of recurrent aphthous stomatitis. Nine to 12 new lesions usually appeared weekly, resolving in approximately 2 weeks. She experienced associated pain, dysphagia, and swelling of the lips and tongue with a subjective pain severity of 9 (scale, 1-10). Symptoms were exacerbated before menstrual periods and were unchanged with use of oral contraceptives and after menopause. There was no association with food or oral trauma, but she reported flares with emotional stress. She denied associated fever, genital ulcers, skin lesions, or ocular complaints.

On physical examination, there were small erosions (<5 mm) on the left lateral part of the tongue, gingival mucosa, and nonkeratinized labial mucosa, surrounded by erythematous halos (Figure 1).

A complete blood cell count, levels of serum urea nitrogen, creatinine, electrolytes, vitamins B1, B2, B6, B12, folate, zinc, ferritin, serum iron, thyrotropin, and antinuclear antibodies, and herpes simplex virus culture were within normal limits or negative. Patch testing for sensitivity to mercury chloride amalgams was also negative. A biopsy specimen showed a mucosal ulceration with acute and chronic inflammation.

Frequent tapered courses of oral prednisone resulted in improvement of pain and healing of ulcers. Intramuscular and topical corticosteroids, viscous lidocaine, acyclovir, oral erythromycin, doxycycline, clotrimazole troches, and mouthwashes consisting of diphenhydramine hydrochloride, tetracycline hydrochloride, and prednisone provided only minimal and transient improvement of symptoms. Dapsone was started November 1995 but discontinued because of angioedema. Colchicine was started March 1996 but not tolerated because of diarrhea. Minocycline, doxycycline, and acyclovir were not effective.

Thalidomide, 50 to 100 mg daily, was started in November 1998, with significant improvement in the patient’s symptoms. However, thalidomide was discontinued because of a sensory peripheral neuropathy in her toes. She started treatment with gabapentin, which resulted in an improvement in her neuropathic symptoms. On discontinuation of thalidomide, she experienced flares consisting of 9 to 12 new erosions every 2 weeks with a subjective pain severity of 8, once again requiring systemic corticosteroids.

THERAPEUTIC CHALLENGE

Treatment options for recurrent aphthous stomatitis include topical, intralesional, and systemic corticosteroids, azathioprine, dapsone, colchicine, pentoxifylline, oral tetracycline, and thalidomide. In our patient, her aphthous stomatitis was successfully controlled with thalidomide. However, she developed a sensory neuropathy that required its discontinuation. Other treatment options were either not tolerated or ineffective.

SOLUTION

Etanercept (Enbrel), 25 mg subcutaneously twice weekly, was started in May 2001, resulting in significant improvement in the patient’s aphthous stomatitis within 1 month (Figure 2). After 7 months of treatment, the patient’s condition continued to flare, but...
Recurrent aphthous stomatitis is the most common inflammatory ulcerative condition of the oral mucosa in North America. The lesions are localized, painful, shallow ulcers typically on nonkeratinized or poorly keratinized mucosa, often covered by a gray fibromembranous slough and surrounded by an erythematous halo. Sites of predilection include the ventral surface of the tongue, floor of the mouth, and buccal, labial, soft palatal, and oropharyngeal mucosa. Lesions are classified into 3 groups: minor, major, and herpetiform ulcers. Minor aphthous ulcers are most common, less than 1.0 cm, and resolve within 3 days, leaving postinflammatory hyperpigmentation and mild induration. She has treated these areas with topical hydrocortisone valerate cream. A complete blood cell count and differential count after 1 month and 7 months of etanercept treatment were within normal limits.

The only adverse effects of etanercept in our patient have been mild erythema, induration, and tenderness at etanercept injection sites. These injection site reactions occur the day after administration of etanercept and resolve within 3 days, leaving postinflammatory hyperpigmentation and mild induration. The patient has not required systemic corticosteroids since that time. During one severe flare (pain severity, 6) in October 2001, the patient added 1 additional dose of etanercept (25 mg, 3 times per week instead of twice per week) for 1 week, and the flare resolved the next day.

The cause is unclear, with many possible predisposing factors, including trauma, emotional stress, hormonal state, family history, food hypersensitivity, viruses, bacteria, and immune dysregulation. Smokers have aphthous stomatitis less often and with less severity than nonsmokers, possibly secondary to the increased keratinization due to tobacco irritation. Evidence suggests a cytotoxic effect of peripheral blood lymphocytes toward oral epithelial cells. Depressed or reversed CD4/CD8 cell ratios, and increased T-cell receptor-γδ+ cells have been found in patients with active recurrent aphthous ulcers compared with control subjects and patients with inactive disease. Elevated levels of interleukin (IL) 2, interferon γ, tumor necrosis factor (TNF) α, IL-4, and IL-5 messenger RNA and lower levels of IL-10 messenger RNA have been detected in aphthous stomatitis lesions compared with healthy controls. The high expression of TNF-α in recurrent aphthous ulcers may contribute to the activation and recruitment of leukocytes in these lesions.

Associated systemic diseases or correctable causes, such as Behçet disease; mouth and genital ulcers with inflamed cartilage (MAGIC) syndrome; fever, aphthosis, pharyngitis, and adenitis (FAPA) syndrome; Reiter syndrome; cyclic neutropenia; human immunodeficiency virus disease; inflammatory bowel disease; celiac disease; and vitamin (B1, B2, B6, B12, folate, zinc, and iron) deficiencies, must be excluded. However, most patients have no associated condition.

The most effective treatment options include topical, intralesional, and systemic corticosteroids, azathioprine, dapsone, colchicine, pentoxifylline, and thalidomide. Patch testing to food additives and flavoring agents also may be of value. A gluten-free diet has been reported to be successful in some patients even in the absence of demonstrable celiac disease. Thalidomide remains the most effective agent at doses of 100 to 300 mg/d in healing minor and major recurrent aphthous stomatitis. Thalidomide inhibits the production of TNF and reduces its activity by accelerating the degradation of its messenger RNA. The teratogenicity, sedation, and peripheral sensory neuropathy associated with thalidomide unfortunately limit its use.

Etanercept (Enbrel) is a recombinant TNF-soluble receptor composed of a dimeric fusion protein consisting of the extracellular portion of the human TNF receptor (p75) linked to the Fc portion of human immunoglobulin (IgG). The primary action of etanercept is competitive inhibition of TNF binding to cell surface TNF receptors, preventing TNF-mediated cellular responses. Etanercept is effective in reducing disease activity of rheumatoid arthritis, juvenile rheumatoid arthritis, psoriasis, and psoriatic arthritis, and is currently being studied in other disorders, such as chronic heart disease.

Figure 2. Resolution of ulcerations with etanercept treatment.
failure, sarcoidosis, ankylosing spondylitis, and Wege
er granulomatosis.27

Etanercept is well tolerated, and the most com-
monly reported events are mild to moderate injection site
reactions that do not result in ulceration or discontinua-
tion of treatment. The only adverse effect experienced by
our patient was injection site reactions, which have been
reported in 20% to 49% of patients within the first 2 months
of treatment and subsequently decrease in frequency. In-
jection site reactions are characterized by erythema, pain,
pruritus, or edema; occur 1 to 2 days after an injection;
and last 3 to 5 days. More than 90% of injection site re-
actions resolve without treatment; the rest are treated with
oral or topical antihistamines or topical corticoste-
roids.31-34 Injection site reactions may be an example of a
T-lymphocyte–mediated delayed-type hypersensitivity re-
action, with waning over time because of eventual induc-
tion of tolerance. Recall reactions, reactions at previous
injection sites after the last injection, may also occur with
continued etanercept treatment.35 There have been few re-
ports of unusual complications. Brion et al35 reported dis-
coid lupus and necrotizing vasculitis in patients with rheu-
matoid arthritis taking etanercept. Few patients (0.4%-3%)
develop antibodies to etanercept, but these antibodies
are sporadic and nonneutralizing and not correlated with
clinical response or adverse events.29-36 Etanercept has been
associated with upper respiratory tract infections, but se-
vere infections did not exceed those observed in control
groups.31,34 The frequency of nonlymphoid malignan-
cies is similar to the expected frequency in the age-
matched controls. However, long-term follow-up is nec-
essary.37 The numbers of observed tuberculosis cases to
date in patients receiving etanercept is similar to the ex-
pected background incidence. Unlike experience with anti-
TNF monoclonal antibodies, there is no temporal asso-
ciation between introduction of etanercept and onset of
clinical tuberculosis. Tuberculin skin testing has not been
required in etanercept clinical trials, but may be war-
ranted in patients with tuberculosis risk factors.36 The cost
of etanercept, 25 mg subcutaneously twice weekly, is ap-
proximately $1500 per month.

Etanercept has not been previously reported, to our
knowledge, for the treatment of recurrent aphthous stomat-
itis, but it has provided marked disease improve-
ment with minimal adverse effects in our patient, who
was unable to tolerate thalidomide. We propose that her
improvement is due to the inhibition of TNF-mediated
cellular responses by etanercept. This finding may offer
a novel therapeutic option for this chronic and debili-
tating disorder.

Accepted for publication May 21, 2002.

The authors have no relevant financial interest in
this article.

Corresponding author: Joan Guitart, MD, Depart-
ment of Dermatology, 675 N St Clair, Suite 19-130, Chi-
cago, IL 60611 (e-mail: j-guitart@northwestern.edu).

REFERENCES

2. Rogers RS III. Recurrent aphthous stomatitis: clinical characteristics and asso-

243-256.

4. Avell T, Henricsson V. Association between recurrent aphthous ulcers and to-

5. Pedersen A, Ryder LP. Gamma delta T-cell fraction of peripheral blood is in-
72:98-104.

6. Buno LJ, Huff JC, Weston WL, Cook DT, Brice SL. Elevated levels of interferon
gamma, tumor necrosis factor alpha, interleukins 2, 4, and 5, but not interleukin 10,
are present in recurrent aphthous stomatitis. Arch Dermatol. 1998;134:827-
831.

7. Nataf SS, Hayrinen-Immonen R, Hietanen J, Malmstrom M, Konttinen YT. Im-
munolocalization of tumor necrosis factor-alpha expressing cells in recurrent aph-

8. Tylleskar WL. Stomatitis and recurrent oral ulceration: is a full blood screen nec-

9. Wray D, Ferguson MM, Hutcheson WA, Dagg JH. Nutritional deficiencies in re-

10. Nolan A, McIntosh WB, Allam BF, Lamey PJ. Recurrent aphthous ulceration: vi-

11. MacPhail L. Topical and systemic therapy for recurrent aphthous stomatitis. Se-

12. Silverman S Jr, Lozada-Nur F, Migliorati C. Clinical efficacy of prednisone in the
treatment of patients with oral inflammatory ulcerative diseases: a study of fifty-

Laryngoscope. 1994;104:566-570.

14. Lozada F. Predisinone and azathioprine in the treatment of patient with
263.

15. Ghatje JV, Lorizzo JL. Behcet’s disease and complex aphthosis. J Am Acad Der-

thous stomatitis with colchicine: an open trial. J Am Acad Dermatol. 1994;31:
459-461.

17. Ruah CB, Stram JR, Chasin WD. Treatment of severe recurrent aphthous stom-

18. Wahba-Yahav AV. Pentoxifylline in intractable recurrent aphthous stomatitis:

cebo in severe recurrent aphthous stomatitis. J Dermatol. 1990;126:923-
927.

20. Bonnetblanc JM, Royer C, Bedane C. Thalidomide and recurrent aphthous sto-

22. Nolan A, Lamey PJ, Milligan KA, Forsyth A. Recurrent aphthous ulceration and

737-740.

24. Sampaio EP, Sarno EN, Galilhy R, Cohn ZA, Kaplan G. Thalidomide selectively
inhibits tumor necrosis factor alpha production by stimulated human mono-

25. Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G. Thalido-
mide exerts its inhibitory action on tumor necrosis factor alpha by enhancing

26. Calabrese L, Fleischer AB. Thalidomide: current and potential clinical applica-

Dis. 2000;59(suppl 1):i48-i49.

29. Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombi-
nant tumor necrosis factor receptor-Fc fusion protein, in patients with rheuma-

30. Yazici Y, Erkan D, Lockshin MD. A preliminary study of etanercept in the treat-
ment of severe, resistant psoriatic arthritis. Clin Exp Rheumatol. 2000;18:732-
734.

31. Moreland LW, Baumgartner SW, Schiff MH, et al. Treatment of rheumatoid ar-
thritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fu-