that, even with identical genetic deletions at the Xp22.3 locus, the phenotypes may vary. Patients 1 and 2 were similar in that both of them had microphthalmia, sclerocornea, and skin deformities. They also exhibited microcornea and a mild cardiac abnormality in the form of SVT. There were, however, several differences in the phenotypes of the twins. Patient 1 had a definite high elevation of IOP, while patient 2 had a borderline elevation of pressure. Patient 2 had a small right eyelid fissure and anophthalmia, neither of which was present in patient 1. Microcornea was present in patient 1, but the corneal diameter of the nonanophthalmic left eye of patient 2 was normal. These phenotypic differences found in identical twin boys with identical karyotypes lend further support to the current hypothesis that the variations found in MIDAS syndrome may be due to different patterns of X inactivation, or lyonization, rather than due to subtle differences in genotypes. Further research should be done to understand more completely how the Xp22.3 deletion is expressed because this research may lead to a better understanding of the role of this chromosomal locus in ocular development.

The clinical definition of MIDAS syndrome continues to be modified as more phenotypic variability is reported. The present study represents one of the largest case studies detailing the ocular findings in patients with an Xp22.3 deletion and serves to expand the current phenotypes associated with this syndrome. Providing additional descriptions of the phenotype should aid clinicians in identifying patients with this genetic syndrome and prompt early genetic testing in appropriate patients. It is apparent that the monikers “MIDAS syndrome” and “MLS syndrome” do not fully describe this disease. Therefore, consideration should be given to more accurately and genomically referring to the syndrome as the “Xp22.3 microdeletion syndrome.”

A “Negative” Temporal Artery Biopsy, Positive for Arteritis

Ophthalmologists often participate in the diagnosis and treatment of patients with giant cell arteritis (GCA), typically when the diagnosis is heralded by a central retinal artery occlusion or ischemic optic neuropathy. However, even in the absence of eye symptoms or signs, ophthalmologists may be asked to examine the patient and perform a biopsy of the temporal artery. The microscopic findings in the patient described herein bear on the technique of temporal artery biopsy.
When a temporal artery biopsy is performed, the surgeon should refrain from removing the periarterial tissues except to the extent necessary to ensure accurate identification and secure ligation of the vessel. Nor should the pathologist strip the artery before embedding.

Cynthia S. Chiu, MD
Thaddeus P. Dryja, MD
Simmons Lessell, MD

Correspondence: Dr Lessell, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, 243 Charles St, Ninth Floor, Boston, MA 02114 (simmons_lessell@meei.harvard.edu).


The Role of Midface Lift and Lateral Canthal Repositioning in the Management of Euryblepharon

Euryblepharon is a congenital eyelid anomaly characterized by horizontal enlargement of the palpebral fissure. The eyelid is shortened vertically compared with the horizontal dimension, with associated lateral canthal malpositioning and lateral ectropion. It may be an isolated finding or associated with ocular anomalies such as lateral displacement of the proximal lacrimal drainage system, a double row of meibomian gland orifices, telecanthus, and strabismus. In severe cases, it may result in lagophthalmos and exposure keratopathy and may require surgical treatment. We report the results of 2 patients with hereditary disorders and euryblepharon treated successfully with midface lift and lateral canthal repositioning surgery. The surgical technique is described.

Report of Cases. Case 1. A 17-year-old girl with Noonan syndrome (Online Mendelian Inheritance in Man 163950) and bilateral lower eyelid euryblepharon since birth was seen with eye irritation and nocturnal lagophthalmos. The parents were also concerned about the aesthetic appearance of their child. An examination revealed upper eyelid ptosis, bilateral inferolateral displacement of the lateral canthi, lateral ectropion (Figure 1), and lagophthalmos with mild punctuate keratitis.

She was treated with bilateral midface lift via a swinging eyelid