nearly 2 years after the initial orbital symptoms. Our experience shows that clinicians must be persistent when orbital disorders exhibit unusual examination findings or paradoxical clinical behavior. Anecdotal case reports describe clinical scenarios involving orbital T-cell lymphomas that were initially diagnosed as idiopathic orbital inflammation or orbital cellulitis.14,15

Kim A. Janatpour, MD
Philip H. Choo, MD
William C. Lloyd III, MD

Correspondence: Dr Lloyd, 2600 American River Dr, Sacramento, CA 95864 (email2lloyd@msn.com).

Financial Disclosure: None reported.

Funding/Support: This study was supported by an unrestricted grant from Research to Prevent Blindness to the Department of Ophthalmology and Vision Science, University of California, Davis.


Postoperative Vancomycin-Resistant Enterococcus faecium Endophthalmitis

Enterococci are normal flora in the human gastrointestinal tract. They are intrinsically resistant to many antibiotic agents and may acquire resistance to almost all available antibiotics, including vancomycin. Vancomycin-resistant enterococci (VRE) have emerged as serious nosocomial pathogens. More than 28% of enterococcal infections in US intensive care units are resistant to vancomycin and many more patients become colonized than infected with these organisms. Despite the increasing incidence of infection with this organism, ophthalmic infections are rare. We report the first case, to our knowledge, of postoperative VRE endophthalmitis. The infection occurred as a result of colonized donor corneal tissue.

Report of a Case. A 73-year-old woman with a history of Fuchs dystrophy underwent penetrating keratoplasty. On the first postoperative morning, she reported eye pain. Visual acuity was light perception. There was moderate conjunctival hyperemia. Fibrin and a small hypopyon were present in the anterior chamber. The patient underwent immediate pars plana vitrectomy and intravitreal injections of 1 mg of vancomycin hydrochloride and 400 µg of amikacin sulfate. Frequent topical fortified vancomycin and gentamicin sulfate, as well as topical and oral steroid agents, were used during the early postoperative period. Cultures of the aqueous, the vitreous, and the donor corneal rim yielded vancomycin-resistant (minimum inhibitory concentration >64 µg/mL) Enterococcus faecium. Restriction endonuclease analysis of genomic DNA confirmed that the isolates from the 3 sources were genetically identical. The organism was susceptible to linezolid (minimum inhibitory concentration 1 µg/mL), and 600 mg of linezolid was administered intravenously twice daily. Additional intravitreal injections of 1 mg of vancomycin and 500 µg of ampicillin sodium were given. Signs and symptoms of infection improved steadily. The patient received a 2-week course of oral linezolid after discharge from the hospital. Two years after surgery, visual acuity was 20/80. The graft was thin and clear. There was pellor of the optic nerve and attenuation of the retinal vessels.

Comment. A case of endogenous endophthalmitis caused by VRE in an immunocompromised patient has been reported; the outcome was poor, resulting in enucleation. Postoperative enterococcal endophthalmitis is relatively rare but associated with a poor prognosis. In 2 large series of postcataract endophthalmitis, only 2% to 4% of positive isolates yielded enterococcal organisms; all were susceptible to vancomycin. In addition, vancomycin-resistant enterococcal endophthalmitis has been reported after penetrating keratoplasty. A MEDLINE search of the literature from January 1966 to October 2005 revealed no cases of postoperative VRE endophthalmitis. Genetic analysis of specimens identified the corneal donor tissue as the source of infection.

The organism was resistant to vancomycin and to all other antibiotics on the panel with known intraocular safety. The patient was reinjected with intravitreal vancomycin in an attempt to achieve levels in excess of the minimum inhibitory concentration. Systemic treatment with linezolid, an oxazolidinone with potent activity against VRE, was added to intravitreal and topical antibiotic therapy. At the time we treated our patient, the ocular penetration of linezolid was unknown. Subsequent investigation has...
shown effective intraocular concentrations after oral dosing. The infection was successfully eradicated with preservation of ambulatory vision.

This first case of postoperative VRE endophthalmitis is an unfortunate milestone in ophthalmic surgery. Future cases are probably inevitable given the trends in the epidemiology of VRE infection and colonization, especially in patients with compromised immunity. Colonized donor corneal tissue is a potential source. While optional treatment of this infection is unknown, the favorable outcome in our patient may have been the result of early intervention and the use of linezolid.

Harshvinderjit S. Bains, MD, PhD
David V. Weinberg, MD
Robert S. Feder, MD
Gary A. Noskin, MD

Correspondence: Dr Weinberg, Department of Ophthalmology, Medical College of Wisconsin, 925 N 87th St, Milwaukee, WI 53226 (dweinber@mcw.edu).

Financial Disclosure: None reported.

Funding/Support: This study was supported in part by an unrestricted grant from Research to Prevent Blindness Inc.


Improved Binocularity After Laser In Situ Keratomileusis

Refractive surgery can improve uncorrected vision over a wide range of refractive errors. However, impaired binocularity has been reported after refractive surgery. Decompensated strabismus and loss of stereopsis can be disturbing, even when visual acuity outcome is excellent. Improved stereopsis after refractive surgery is rarely reported and is usually found in the pediatric population. We present a case of improved stereopsis after laser in situ keratomileusis (LASIK) treatment of anisometropia in an adult.

Report of a Case. A 32-year-old woman was first seen for LASIK evaluation, complaining that her eyes did not “work well together.” She had been prescribed glasses at age 6 years, but she did not wear them. She denied therapy for amblyopia or strabismus. She had no significant medical history and her medication included only birth control.

Uncorrected visual acuity was 20/150 OD and 20/30 OS. Preoperative best-corrected visual acuity was 20/25 OD and 20/20 OS. Cycloplastic refraction was ±2.75 –4.50 × 116 OD and ±0.75 –0.25 × 80 OS. Titmus stereocuity testing without correction yielded 5 of 9 dots (100 seconds of arc). Pupil, extracocular motility, slitlamp, intraocular pressure, and dilated retinal examination results were all normal. No contact lens trial was performed.

The patient underwent LASIK surgery with the Moria CB manual microkeratome (Moria USA, Doylestown, Pennsylvania) and the VISX STAR S4 Laser (VISX USA Inc, Santa Clara, California). At postoperative week 1, the patient stated that her eyes were working better together. Uncorrected visual acuity was 20/25 OD and 20/20 OS. Stereocuity testing results were now 8 of 9 dots (30 seconds of arc). At 1 month after the operation, the patient felt her depth perception was “perfect.” Her vision was unchanged and manifest refraction was plano –0.50 × 146 OD and plano –0.25 × 13 OS. Stereocuity had improved to 9 of 9 dots (40 seconds of arc). At 7 months, she maintained Titmus stereocuity (40 seconds of arc) and stated that the dots had become even easier to see.

Comment. Refractive surgery effectively improves visual acuity and reduces refractive error. However, it can adversely affect binocular function. Reports describe decompensation of strabismus following refractive surgery, with resultant esotropia, exotropia, or hypertropia. The strabismus can lead to asthenopia or even diplopia. In cases of monovision refractive surgery, some patients will lose subjective depth perception. Stereocuity may be difficult to recover, even when monovision is reversed with correction.

This case presents improved stereopsis in an adult with longstanding anisometropia. Despite minimal amblyopia in the right eye (best-corrected visual acuity, 20/25), her subjective and objective binocularity improved within 1 week after LASIK. She further improved to 40 seconds of arc at 1 month after the operation, which was maintained at 7 months. She did have some optical correction as a child, which may have yielded her some increased stereocuity potential. Her preoperative decreased stereocuity may have been related to her not wearing corrective devices and may have improved with contact lens trial. However, she had a subjective and objective improvement with time after LASIK resolved her anisometropia. In a MEDLINE search, we were unable to find cases in which an adult patient had improved stereocuity after refractive surgery.

Patients with a history of strabismus or undergoing monovision refractive surgery should be warned of decreased binocularity. However, some patients with anisometropia may experience an improvement in binocularity after refractive surgery.

Barry N. Wasserman, MD
Correspondence: Dr Wasserman, Department of Pediatric Ophthalmology, Wills Eye Hospital, 840 Walnut St, Philadelphia, PA 19107 (bwasserman@americansurgisite.com).