The Story of Louis Braille

John D. Bullock, MD, MPH, MSc; Jay M. Galst, MD

...[W]e, the blind, are as indebted to Louis Braille as mankind is to Gutenberg.
Helen Keller, The Sorbonne, Paris, France, June 21, 1952

Louis Braille was born in the village of Coupvray, France, on January 4, 1809.1 His father was a harness maker, and Louis loved to visit his shop and handle the mysterious and attractive tools of his father’s trade.2 At the age of 3 years, while playing with a long-bladed, razor-edged tool, Louis slipped, and the tool punctured his right eye. A few months later, the left eye became inflamed, presumably because of sympathetic ophthalmia. Louis was totally blind by the time he was 5 years old.3

Despite his blindness, his parents were insistent that Louis get an education. His father helped him learn to read by hammering upholstery nails, in the shapes of letters, into blocks of wood. By feeling the round, raised heads of the nails, Louis learned the alphabet. At the age of 10, Louis enrolled at the Royal Institute for Blind Youth in Paris,4 where he was taught a rudimentary and awkward form of raised-letter reading developed by the school’s founder, Valentin Haüy.

Several years later, Charles Barbier, a retired artillery captain from Napoleon’s army, came to the institute to demonstrate his invention of night reading, a code used by soldiers to send messages to one another in complete darkness by means of a system of raised dots that represented the sounds that comprise words. By the age of 12, Louis had become a convert to Barbier’s method. He worked tirelessly, trying to improve this new system.

By the age of 13, Louis had developed his own codes, which he thought were even better than Barbier’s. By October 1824, when Louis was only 15 years old, he had improved his system so that it worked effectively. His method used a combination of raised dots that represented actual letters of the alphabet instead of sounds. Using Braille’s method, blind people could learn to spell and read the same alphabet as sighted people. Braille’s code used fewer dots, making it easier to learn, and in a pattern small enough to fit under a single fingertip, making the dots faster to read. Each grouping of 6 dots, called a cell, is 3 dots high and 2 dots wide and allows for 64 different characters, including letters, numbers, spaces, punctuation and accent marks, and, later, mathematical symbols and musical notation.

Braille’s system was immediately accepted by many of the other blind students at the school, who discerned that he had greatly improved on Barbier’s method. However, most of the teachers, who were sighted, refused to learn Braille’s form of writing, which they found too difficult to learn. The other students then contacted the French government, asking it to recognize Braille’s raised-dot alphabet as the official system for the blind. However, neither the institute nor the national government was particularly enthusiastic about Braille’s innovation. Even though Braille demonstrated his raised-dot system to King Louis-Philippe I of France in 1834, he still struggled to convince the government to accept his system. It remained a continuous source of frustration for Braille that his method had not been formally recognized.

Author Affiliations: Departments of Community Health and Ophthalmology, Boonshoft School of Medicine, Wright State University, Kettering, Ohio, and Department of Mathematics and Statistics, Wright State University, Dayton, Ohio (Dr Bullock); and Department of Ophthalmology, New York Medical College, New York (Dr Galst).
Braille later developed tuberculosis and ultimately died on January 6, 1852. No one had appreciated the potential worldwide application of his work except his small circle of friends. In 1854, two years after Braille's death, the French government finally approved the raised-dot system, which became known simply as Braille. By 1858, when representatives of most European countries met at the World Congress for the Blind, they voted to make Braille the standard system of reading and writing throughout the world. In 1952, the centennial of his death, his contribution to the world finally was officially recognized by France. Braille's remains were disinterred from the modest cemetery in Coupvray for reburial at the Panthéon in Paris. Braille's hands, however, were removed from his wrists and reburied in a marble box, which rests on his original tomb in Coupvray. These were the hands that had developed the method that would teach the blind all over the world to read. On the day of his reburial, all the church bells in Paris were ringing as the coffin was carried through the streets. Behind the coffin marched the president of France, Jules Vincent Auriol, beside Helen Keller, followed by row after row of blind people tapping their white canes to say thank you to Louis Braille. Since that time, among many tributes worldwide, his image has appeared on a $1 coin in the United States (Figure 1), and on a $5 coin in the Pacific island nation of Palau (Figure 2).

Braille's home in Coupvray is now a museum and monument to him. A marble tablet is affixed to the outside wall, which modestly states, in French and English, “In this house on January 4, 1809, was born Louis Braille, the inventor of the system of writing in raised dots for use by the blind. He opened the doors of knowledge to all those who cannot see.”

Submitted for Publication: May 10, 2009; final revision received June 17, 2009; accepted June 18, 2009.

Correspondence: John D. Bullock, MD, MPH, MSc, Boonshoft School of Medicine, Wright State University, 1475 Ridge Gate Rd, Unit B, Kettering, OH 45429-1254 (johndbullock@aol.com).

Financial Disclosure: None reported.

Additional Contributions: We thank Gretchen H. Bullock, MLS, who co-authored and provided research for this article.

REFERENCES

