Anomalous Prefrontal-Subcortical Activation in Familial Pediatric Bipolar Disorder

A Functional Magnetic Resonance Imaging Investigation

Kiki Chang, MD; Nancy E. Adleman, BA; Kimberly Dienes, MA; Diana I. Simeonova, MS; Vinod Menon, PhD; Allan Reiss, MD

Background: The neurobiological features of pediatric bipolar disorder (BD) are largely unknown. Children and adolescents with BD may be important to study with functional neuroimaging techniques because of their unique status of early-onset BD and high familial loading for the disorder. Neuroimaging studies of adults with BD have implicated the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in the development of this disorder.

Objectives: To study children and adolescents with BD via functional magnetic resonance imaging using cognitive and affective tasks and to examine possible abnormalities in the DLPFC and ACC, as well as selected subcortical areas, in pediatric familial BD.

Design: We evaluated 12 male subjects aged 9 to 18 years with BD who had at least 1 parent with BD as well as 10 age- and IQ-matched healthy male controls. Stimulants were discontinued for at least 24 hours; other medications were continued. Subjects underwent functional magnetic resonance imaging at 3 T while performing a 2-back visuospatial working memory task and an affective task involving the visualization of positively, neutrally, or negatively valenced pictures.

Setting: An academic referral setting, drawing from the Bay Area of San Francisco, Calif.

Results: Compared with controls, for the visuospatial working memory task, subjects with BD had greater activation in several areas including the bilateral ACC, left putamen, left thalamus, left DLPFC, and right inferior frontal gyrus. Controls had greater activation in the cerebellar vermis. In viewing negatively valenced pictures, subjects with BD had greater activation in the bilateral DLPFC, inferior frontal gyrus, and right insula. Controls had greater activation in the right posterior cingulate gyrus. For positively valenced pictures, subjects with BD had greater activation in the bilateral caudate and thalamus, left middle/superior frontal gyrus, and left ACC, whereas controls had no areas of greater activation.

Conclusions: Children and adolescents with BD may have underlying abnormalities in the regulation of prefrontal-subcortical circuits. Further functional magnetic resonance imaging studies of attention and mood with greater sample sizes are needed.

Arch Gen Psychiatry. 2004;61:781-792

Pediatric bipolar disorder (BD) carries high morbidity and psychosocial dysfunction because of its chronic and frequently rapid-cycling symptoms, high comorbidity with disruptive behavioral disorders, and relative treatment resistance. However, little is known about the neuropathophysiologic features of pediatric BD. Neuroimaging studies of children and adolescents with BD may be of particular interest to pursue because these patients often have not had as many years of substance use or medication exposure, which may confound similar studies in adults.

Neuroimaging studies of adults with BD and a few in children with BD have supported the involvement of prefrontal brain regions in this disorder. Positron emission tomographic studies have found that adults in manic states, compared with depressed states may have increased overall brain activity, particularly in the inferior frontal areas. Increased activity in the anterior cingulate cortex (ACC) has also been reported in bipolar manic states vs euthymic states. Compared with healthy controls, adults with BD reportedly have hypometabolism in the dorsolateral prefrontal cortex (DLPFC) according to fluorodeoxyglucose F 18–positron emission tomographic studies. A functional magnetic resonance imaging (fMRI) study also reported increased left amygdalar and decreased right DLPFC activation in adults with BD viewing fearful faces. Spectroscopic studies have reported decreased...
DLPFC N-acetylaspartate levels, a marker of neuronal density, in adults\(^2\) and children\(^2\) with BD. Additionally, children with BD during a manic episode were reported to have increased myo-inositol levels in the ACC.\(^10\) In light of these findings, it is likely that these prefrontal areas are involved in BD.

A hypothesis implicating dysfunction of the DLPFC and ACC in BD appears appropriate because both regions are involved in normal mood regulation, as supported by studies of healthy volunteers. Increased activity in the right ACC, bilateral frontal and prefrontal cortices,\(^11\) and DLPFC\(^12\) has been observed during transient induced sadness in healthy volunteers. Other investigators have found reductions in blood flow of the right dorsal and ventral prefrontal lobes and dorsal ACC during more sustained sadness inductions in healthy volunteers.\(^13\)

The DLPFC and ACC also have crucial roles in attention processing, relevant when considering that 60% to 94% of children with BD have comorbid attention-deficit/hyperactivity disorder (ADHD).\(^14\) The DLPFC is activated during the implementation of control in cognition, necessary in color-naming Stroop tasks\(^15\) and spatial working memory.\(^16\) Abnormalities in the DLPFC, as reflected by decreased levels of N-acetylaspartate, have been found in adults with ADHD.\(^17\) The ACC has been similarly implicated in the control of attention,\(^18,19\) specifically in error recognition and overriding a prepotent response bias.\(^20\) Thus, Stroop tasks have caused activation during the implementation of control in cortical control areas that regulate both mood and attention. These experiments consisted of a cognitive task involving visuospatial working memory and an affective task involving the viewing of emotionally valenced pictures from the International Affective Picture System (IAPS).\(^21\) Because of research suggesting sex differences in emotional reactivity in children\(^22\) and because of the higher incidence of pediatric BD in boys,\(^23\) we limited this initial study to males only. Furthermore, because we were interested in the involvement of prefrontal-subcortical circuits, we conducted whole-brain analyses of the fMRI data.

METHODS

SUBJECTS

Subject families were recruited from the Stanford Adult and Pediatric Bipolar Disorders Clinics (Stanford, Calif) and from the surrounding community. Written and oral informed consent were obtained from at least 1 parent, and assent was obtained from the subject after explaining possible adverse effects and alternatives to study participation. The study met all requirements of the institutional review board at Stanford University. Parents were diagnosed using the Structured Clinical Interview for DSM-IV Axis 1 Disorders–Patient Edition (SCID-I/P).\(^26\) Family history was obtained using the Family History–Research Diagnostic Criteria.\(^27\) Children were assessed with the affective module of the Washington University in St Louis Kiddie Schedule for Affective Disorders and Schizophrenia\(^28,29\) and the Schedule for Affective Disorders and Schizophrenia for School-Age Children–Present and Lifetime Version.\(^30\) Subjects were evaluated either by a child psychiatrist (K.C.) or trained masters-level research assistants (K.D. or D.I.S.) who were aware of the parental diagnosis. Current and lifetime DSM-IV diagnoses were ultimately made by a board-certified child psychiatrist (K.C.) based on personal interview, discussion with the research assistant, and written notes of interview responses.

Healthy controls did not have a DSM-IV diagnosis, were not taking psychotropic medications, had both parents without any psychiatric diagnosis according to the SCID-I/P, and did not have a first- or second-degree relative with BD as determined using the Family History–Research Diagnostic Criteria.

Subjects were all outpatients at the time of scanning. Subjects with BD were administered the Young Mania Rating Scale\(^31,32\) and completed the Childhood Depression Inventory.\(^33\) Stimulants were discontinued for at least 24 hours prior to imaging; other medications were continued. The IQ was assessed with the Wechsler Abbreviated Scale of Intelligence.\(^34\) The pool of subjects with BD was the same for both tasks. However, those who had movement greater than 3 mm (translation) or greater than 3° (rotation) during imaging were disqualified from further analysis owing to spatial data inaccuracy. Therefore, 11 subjects with BD were analyzed for the visuospatial working memory task (mean±SD age, 15.3±2.5 years; range, 9.7-18.6 years), and 11 were analyzed for the affective task (mean±SD age, 14.5±3.0 years; range, 9.2-18.6 years). Ten subjects were included in both groups. Ten healthy controls (mean±SD age, 14.4±3.2 years; range, 10.0-17.7 years) completed both the visuospatial working memory and affective tasks.

TASKS

Visuospatial Working Memory Task

The visuospatial working memory task consisted of 6 alternating experimental and control epochs (Figure 1). Each experimental and control epoch consisted of 16 stimuli presented for 500 milliseconds each, with a 1500-millisecond interstimulus interval. The stimulus was the letter O presented in 1 of 9 spatial locations in a 3×3 matrix. In the experimental epoch, subjects were instructed to press a button if the stimulus was in the same location as it was 2 trials previously. In the control epoch, subjects were instructed to respond if the stimulus was in the center position. Correct response rate, incorrect response rate, and reaction times were recorded. Further details of the task have been described elsewhere.\(^35,36\)

IAPS Task

The IAPS\(^21\) is a stimulus set that has been used in other functional imaging studies of affective stimulation.\(^37,38\) Specific negative (eg, a mutilated dog) and positive (eg, a hot fudge sundae) picture stimuli were selected that were deemed acceptable to a pediatric population. Neutral (eg, a plate) pictures were selected for the control condition. Valence was determined using previously published ratings of the specific pictures.\(^21\) The 4 types of
stimuli were organized into blocks, each with 6 stimuli, with each stimulus presented for 4500 milliseconds with a 500-millisecond interstimulus interval (ISI). Subjects were asked to indicate how each picture made them feel by pressing 1 of 3 buttons corresponding to negatively, neutrally, and positively.

STIMULUS PRESENTATION

The tasks were programmed using Psycope software (http://psychscope.psy.cmu.edu) on an Apple G3 notebook computer (Cupertino, Calif). Stimuli were projected onto a screen using a custom-built magnet-compatible projection system (Sanyo, San Diego, Calif). A custom-built button box was used to measure behavioral responses.

FMRI DATA ACQUISITION

Images were acquired with a 3-T GE Signa scanner using a standard whole-head coil (General Electric, Milwaukee, Wis). The following spiral pulse sequence parameters were used: time to repeat, 2000 milliseconds; echo time, 30 milliseconds; flip angle, 80°; and 1 interleave. To reduce field inhomogeneities, an automated high-order shimming method based on spiral acquisitions was used before acquiring fMRI data.39 To aid in localization of the functional data, we used high-resolution, T1-weighted, spoiled gradient-recalled acquisition in the steady state (GRASS) 3-dimensional magnetic resonance imaging sequences with the following parameters: time to repeat, 35 milliseconds; echo time, 6 milliseconds; flip angle, 45°; field of view, 24 cm; 124 slices in the coronal plane; and a 256 × 192 matrix.

IMAGE PREPROCESSING

Images were reconstructed for each time point using inverse Fourier transform. The fMRI data were preprocessed using SPM99 software (http://www.fil.ion.ucl.ac.uk/spm). Images were corrected for movement using least squares minimization without higher-order corrections for spin history and were normalized to Montreal Neurological Institute (Montreal, Quebec) coordinates.40 Images were then resampled every 2 mm using sinc interpolation and smoothed with a 4-mm gaussian kernel to decrease spatial noise. The Montreal Neurological Institute coordinates were transformed into stereotactic Talairach coordinates using nonlinear transformation.41

IMRI DATA ANALYSIS

Statistical analysis was performed for individual and group data using the general linear model and the theory of gaussian random fields as implemented in the SPM99 program.42 Activation foci were superimposed on high-resolution T1-weighted images, and their locations were interpreted using the Talairach atlas43 and known neuroanatomical landmarks.44 A within-subjects procedure was used to model all effects of interest for each subject. Individual subject models were identical across subjects (ie, a balanced design was used). Confounding effects of fluctuations in the global mean were removed using proportional scaling with the global mean at each time point. Low-frequency noise was removed with a high-pass filter (0.5 Hz) applied to the fMRI time series at each voxel. Group analysis was performed using a random-effects model that incorporated a 2-stage hierarchical procedure. This model estimates the error variance for each condition of interest across subjects rather than across images and therefore provides a stronger generalization to the population studied. Individual contrast images were computed for experimental minus control conditions in the visuospatial working memory task and for negative minus neutral and positive minus neutral conditions in the affective task. These contrast images were analyzed using a general linear model to determine voxelwise t statistics. Appropriate t tests were then used to determine group activation and between-group differences for each contrast of interest. Finally, the t statistics were normalized to z scores, and significant clusters of activation were determined using the joint expected probability distribution of height and extent of z scores, with height (z > 1.67; P < .05) and extent thresholds (P < .05).45

RESULTS

Overall, the pool of subjects with BD (all males) had a mean±SD age of 14.7±3.0 years, whereas controls had a mean±SD age of 14.4±3.2 years (Table 1). The mean socioeconomic status, as determined with the Hollingshead 2-factor method, was 3.9 for subjects with BD and 4.7 for controls. Subjects with BD did not significantly differ from controls in age, sex, IQ, handedness, or socioeconomic status (Table 1). Of the parents with BD,
58.3% had bipolar I disorder, 41.7% had bipolar II disorder, and 83% were women.

For the subjects with BD, mean duration of illness was 3.1 years. Of the patients, 92% had at least 1 comorbid psychiatric diagnosis; 92% had ADHD, 58% had oppositional defiant disorder, and 33% had an anxiety disorder. Two subjects (16.7%) had experienced psychotic symptoms in the past. One subject (8.3%) was not taking medication at the time of MRI. The mean ± SD number of medications at the time of imaging was 4.6 ± 2.0 (Table 1). The mean ± SD Young Mania Rating Scale score was 11.8 ± 7.8, and the mean ± SD Childhood Depression Inventory score was 14.1 ± 8.2.

VISUOSPATIAL WORKING MEMORY TASK ANALYSIS

Behavioral

Subjects with BD were slightly less accurate on the visuospatial working memory task than controls, although this difference did not reach statistical significance (86% vs 93% correct; \(P = .08 \)). Reaction times were not significantly different between subjects with BD and controls (mean ± SD, 628 ± 138 milliseconds vs 534 ± 141 milliseconds, respectively; \(P = .12 \)).

Brain Activation

For the 2-back task minus control condition contrast, within-group analyses showed that subjects with BD activated the bilateral DLPFC among other prefrontal areas as well as the left caudate, left inferior parietal lobule, right precuneus, and right thalamus (Table 2). Controls activated the right DLPFC and other prefrontal areas, the right precuneus, and the right superior parietal lobule. Subjects with BD had significantly greater (\(P < .05 \)) activation than controls in the following regions: the bilateral anterior cingulate, left putamen, left thalamus, left DLPFC, left middle frontal gyrus, left superior frontal gyrus, left superior temporal gyrus, and right inferior frontal gyrus (Figure 3). Within the left superior temporal gyrus, greater left insular activation was also seen in subjects with BD (Table 2). Controls showed greater activation than subjects with BD in areas within the cerebellum, predominantly the vermis (Figure 3).

IAPS TASK ANALYSIS

Behavioral

Each individual’s ratings were averaged across pictures of the same valence, as classified by the IAPS, to give a subject’s mean rating for each valence of the pictures. Across both groups, there was a significant effect (Hunyh-Feldt statistic; \(P < .001 \)) of valence, indicating significant differences between subjects’ ratings for differently valenced IAPS pictures. Follow-up paired \(t \) tests revealed that subjects with BD had significantly different ratings for positively and neutrally valenced pictures (\(P = .01 \)) and for negatively and neutrally valenced pictures (\(P = .003 \)). Within the control group, ratings for both positively vs neutrally valenced pictures and neutrally vs negatively valenced pictures were significantly different (\(P < .001 \)). There was no interaction effect between subjects’ ratings of valenced pictures and diagnosis (Hunyh-Feldt statistic; \(P = .12 \)).

Brain Activation

Negative-Neutral Contrast. Subjects with BD who were exposed to negative visual stimuli activated the bilateral DLPFC, left inferior frontal gyrus, and inferior/middle temporal gyrus, among other areas (Table 3). Control group activation in response to negative stimuli included the bilateral DLPFC, left ACC, and inferior temporal gyrus. Compared with healthy controls, subjects with BD showed significantly greater activation in the bilateral DLPFC, left superior/middle temporal gyrus, left inferior frontal gyrus, and right insula (Figure 4). Controls showed greater activation than subjects with BD in response to negative stimuli in the right posterior cingulate gyrus (Figure 4).
In response to positive stimuli, subjects with BD activated the bilateral middle occipital gyrus, left medial frontal gyrus, left ACC, and right cerebellum (Table 4). Controls activated the right cuneus and middle occipital gyrus. Subjects with BD showed significantly more activation than controls in response to positive stimuli in the bilateral caudate and thalamus and left middle/superior frontal gyrus, ACC, precentral gyrus, paracentral lobule, and precuneus (Figure 5). Controls did not show greater activation than subjects with BD in any region when viewing positive stimuli.

Table 2. Brain Regional Activations in the Visuospatial Working Memory Task

<table>
<thead>
<tr>
<th>Activated Region</th>
<th>BA</th>
<th>No. of Voxels</th>
<th>Cluster P Value</th>
<th>Maximum Primary Peak</th>
<th>Location (x, y, z)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD−controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left putamen</td>
<td></td>
<td>8808</td>
<td><.001</td>
<td>4.65</td>
<td>−28, −8, −6</td>
</tr>
<tr>
<td>Left STG†</td>
<td></td>
<td>22/21</td>
<td></td>
<td>4.15</td>
<td>−50, 2, −4</td>
</tr>
<tr>
<td>Left thalamus‡</td>
<td></td>
<td>11</td>
<td><.001</td>
<td>3.95</td>
<td>−6, −8, 14</td>
</tr>
<tr>
<td>Right IFG</td>
<td></td>
<td>813</td>
<td><.001</td>
<td>3.58</td>
<td>24, 30, −4</td>
</tr>
<tr>
<td>Right ACC†</td>
<td></td>
<td>32/24</td>
<td></td>
<td>3.27</td>
<td>18, 40, 6</td>
</tr>
<tr>
<td>Left DLPFC (MFG)</td>
<td></td>
<td>9</td>
<td><.001</td>
<td>3.44</td>
<td>−38, 16, 28</td>
</tr>
<tr>
<td>Left precuneus</td>
<td>30/31</td>
<td>572</td>
<td><.002</td>
<td>3.32</td>
<td>−12, −66, 26</td>
</tr>
<tr>
<td>Left cingulate gyrus</td>
<td>32</td>
<td>435</td>
<td>.02</td>
<td>2.88</td>
<td>−16, 38, 0</td>
</tr>
<tr>
<td>Left SFG†</td>
<td></td>
<td>10</td>
<td></td>
<td>2.70</td>
<td>−16, 58, 20</td>
</tr>
<tr>
<td>Left ACC</td>
<td></td>
<td>32</td>
<td></td>
<td>2.67</td>
<td>−6, 32, −2</td>
</tr>
<tr>
<td>Controls−BD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right cerebellum</td>
<td></td>
<td>364</td>
<td>.05</td>
<td>3.51</td>
<td>−72, −26</td>
</tr>
<tr>
<td>Left cerebellum†</td>
<td></td>
<td></td>
<td></td>
<td>3.23</td>
<td>−56, −26</td>
</tr>
<tr>
<td>BD individual group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right precuneus</td>
<td>6/45</td>
<td>6101</td>
<td><.001</td>
<td>4.87</td>
<td>0, −56, 48</td>
</tr>
<tr>
<td>Left inferior parietal lobule‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right MFG</td>
<td>9/45/46</td>
<td>5919</td>
<td><.001</td>
<td>4.54</td>
<td>−50, −40, 52</td>
</tr>
<tr>
<td>Right DLPFC (IFG)</td>
<td>47</td>
<td>881</td>
<td><.001</td>
<td>4.38</td>
<td>36, 20, −10</td>
</tr>
<tr>
<td>Left IFG</td>
<td>10</td>
<td>671</td>
<td><.001</td>
<td>4.16</td>
<td>−36, 24, −4</td>
</tr>
<tr>
<td>Left SFG</td>
<td>9</td>
<td>3038</td>
<td><.001</td>
<td>3.91</td>
<td>−30, 54, −2</td>
</tr>
<tr>
<td>Right DLPFC (MFG)</td>
<td>9</td>
<td>583</td>
<td><.001</td>
<td>3.87</td>
<td>−36, 30, 28</td>
</tr>
<tr>
<td>Right thalamus</td>
<td></td>
<td>388</td>
<td></td>
<td>3.59</td>
<td>12, −10, 2</td>
</tr>
<tr>
<td>Left caudate body</td>
<td></td>
<td></td>
<td>0.008</td>
<td>3.59</td>
<td>−12, 6, 12</td>
</tr>
<tr>
<td>Control individual group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right SPL</td>
<td>7</td>
<td>6004</td>
<td><.001</td>
<td>4.53</td>
<td>36, −70, 44</td>
</tr>
<tr>
<td>Right precuneus†</td>
<td>7</td>
<td></td>
<td></td>
<td>4.33</td>
<td>−64, 48</td>
</tr>
<tr>
<td>Right MFG</td>
<td>8</td>
<td>5285</td>
<td><.001</td>
<td>4.37</td>
<td>42, 24, 44</td>
</tr>
<tr>
<td>Right DLPFC‡ (MFG)</td>
<td>9/46</td>
<td>5285</td>
<td><.001</td>
<td>4.32</td>
<td>42, 30, 22</td>
</tr>
<tr>
<td>Left IFG</td>
<td>47</td>
<td>463</td>
<td>.01</td>
<td>4.15</td>
<td>−32, 30, −4</td>
</tr>
<tr>
<td>Left MFG</td>
<td>6/8</td>
<td>850</td>
<td><.001</td>
<td>3.68</td>
<td>−24, 2, 52</td>
</tr>
</tbody>
</table>

Abbreviations: ACC, anterior cingulate cortex; BA, Brodmann area; BD, bipolar disorder; DLPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; SFG, superior frontal gyrus; SPL, superior parietal lobe; STG, superior temporal gyrus.

* x, y, z, indicate axis coordinates in Talairach spaces.
† Secondary peak.
‡ Tertiary peak.

Positive-Neutral Contrast. In response to positive stimuli, subjects with BD activated the bilateral middle occipital gyrus, left medial frontal gyrus, left ACC, and right cerebellum (Table 4). Controls activated the right cuneus and middle occipital gyrus. Subjects with BD showed significantly more activation than controls in response to positive stimuli in the bilateral caudate and thalamus and left middle/superior frontal gyrus, ACC, precentral gyrus, paracentral lobule, and precuneus (Figure 5). Controls did not show greater activation than subjects with BD in any region when viewing positive stimuli.

COMMENT

Consistent with our hypothesis, children and adolescents with BD demonstrate significant differences in brain activation patterns in prefrontal areas compared with controls when performing both cognitive and affective tasks. The differences we detected were mostly increases in cerebral activation in subjects with BD, regardless of task. Brain areas differing in activation patterns included the DLPFC and ACC as well as other prefrontal areas and extended to the limbic structures (insula), striatum (caudate and putamen), and thalamus. These areas have all been implicated in the pathophysiologic mechanisms of BD.47 There are several possible explanations for why we detected overall increased task-related brain activation in subjects with BD. First, pediatric BD may be associated with a hyperreactive brain state, particularly in response to affective stimulation or any performance demand, even during euthymic periods. Positron emission tomographic studies of patients with mania have shown increased cerebral blood flow at rest.4 Because our subjects were euthymic, overactivation observed in fMRI experiments may be a trait marker of this disorder. However, it is also possible that these findings reflect a developmental stage of BD so that activation patterns begin to decrease, even to lower than normal, after years of sustained illness. For example, it has been shown that the ACC is activated by transient induced sadness11 but deactivated in response to more sustained sadness13 in healthy volunteers and patients with depression.48 Therefore, with extended duration of an emotional state or illness, overall activation patterns may progress from overactivation to underactivation in BD. Our findings should be gauged with these possible developmental considerations in mind.
Visuospatial working memory tasks have been reported to activate the right DLPFC in healthy adults and children, and studies using the IAPS in healthy adults have also demonstrated DLPFC activation. In our study, DLPFC activation was greater for subjects with BD than for controls, on the left (Brodmann area [BA] 9) in the visuospatial working memory task and bilaterally (BA 9 and BA 45) in the negative-stimulus condition of the IAPS task. Previous studies in adults and children support the involvement of the DLPFC in the neuropathophysiologic underpinnings of BD. In an fMRI study, adults with BD watching fearful faces had less activation in the right DLPFC than healthy controls. Neuronal and glial DLPFC density may be reduced in adults with BD. In our study, most of the ACC overactivation in subjects with BD was in the ventral portions, but we did not find differences in activation of the subgenual ACC (a portion of BA 24). Abnormalities of the subgenual cingulate have been reported in familial BD and in unipolar depression in adults and children. The IAPS task might have been expected to elicit functional differences in this area owing to its affective component; however, it is possible that the task was not sufficient to probe for subgenual ACC activation or that our subjects simply did not have functional abnormalities in this region.

Other prefrontal structures were activated to a greater extent in subjects with BD, most notably the orbitofrontal cortex (OFC). In the visuospatial working memory task, subjects with BD had greater activation in the right inferior OFC (BA 11). Subjects with BD also had greater activation in the left inferior OFC (BA 47) during the negative-stimulus condition of the IAPS task and greater activation in the left medial OFC (BA 10) during the positive-stimuli condition. The OFC has reciprocal connections with limbic structures, including the insula, amygdala, and subgenual cingulate, and OFC lesions may result in behavioral disinhibition and emotional lability. In a positron emission tomographic study, decreased orbitofrontal blood flow was noted in adults with BD and mania compared with euthymia, both during rest and during a word generation task. Our finding of increased orbitofrontal activity during the visuospatial working memory and IAPS tasks could represent compensatory overactivation to modulate overactive limbic areas in our subjects with BD.

In subjects with BD, we found increased left thalamic activation during the visuospatial working memory task and increased bilateral thalamic activation during the positive-stimuli condition of the IAPS task. The thalamus, which has multiple functions, also has significant connections to the prefrontal cortex and may be a crucial component of limbic circuits, including the DLPFC and OFC circuits. Thalamic abnormalities have been reported in BD, including increased and decreased thalamic volume or density and increased thalamic N-acetylaspartate levels.

Subjects with BD also had greater activation of the bilateral caudate during the positive-stimuli condition of the IAPS task. Increased caudate volumes have been reported in men with BD and in monozygotic twins discordant for BD. In a positron emission tomographic study, adults with mania had increased blood flow in the left caudate while at rest. Our findings further support these previous suggestions of striatal abnormalities in BD.

Increased activation of the left insula (BA 21 and BA 22) during the visuospatial working memory task and the right insula (BA 21) during the negative-stimuli condition of the IAPS task were seen in subjects with BD.

Figure 3. Activation in subjects with bipolar disorder (BD) compared with controls (con) for the visuospatial working memory task. A indicates increased activation in the left dorsolateral prefrontal cortex; B, decreased activation in the cerebellar vermis.
Left insular activation has been noted in positron emission tomographic studies of transient induced sadness, whereas left insular hypermetabolism in adults with BD may predict the response to carbamazepine. The role of the insula in autonomic arousal suggests that future studies could indirectly assess insular overactivation via psychophysiological measures.

It is notable that we did not find differences in amygdalar activation in either between-groups or within-groups comparisons. Activation of this mesial temporal structure may occur by using strong emotional stimuli. Increased amygdalar activation has been reported in adults with BD performing affect-related tasks. However, it is unclear if children activate the amygdala to the same extent in these tasks. Also, amygdalar dysfunction could occur later in the course of BD, only after sustained disrupted prefrontal modulation of amygdalar input. Alternately, the IAPS task may not be as suited to elicit amygdalar activation as, for example, a task involving facial expressions of fear or disgust. Finally, the amygdala may reportedly habituate after repeated affective stimuli.

The only areas in which controls showed greater activation were the cerebellar vermis, in the visuospatial working memory task, and the posterior cingulate, when viewing negative IAPS pictures. The vermis is a neocerebellar structure that has multiple higher cognitive functions, including executive function and working memory. It was also found to be relatively atrophied in adults with familial BD and to have decreased N-acetylaspartate levels in offspring of parents with BD. Therefore, the cerebellar vermis may represent an area in which patients with BD do not (or are not able to) preferentially activate compared with healthy individuals when performing a visuospatial working memory task. Possible reasons for decreased posterior cingulate activation in subjects with BD are less clear. This region receives major input from the DLPFC and OFC and may promote the evaluative function of emotional memory. A relationship has also been found between the right retrosplenial cortex and unpleasant pictorial stimuli in healthy subjects, so patients with pediatric BD may not have this association to the same degree.
COMORBID ADHD

Of our subjects with BD, 92% also met the criteria for ADHD. Owing to the additional role of many of the discussed brain structures in the regulation of attention, it could be argued that increased activation of these areas reflects the underlying pathophysiologic mechanisms of ADHD rather than BD. It is difficult to separate the contributions of these 2 disorders to our findings. However, given the high comorbidity of ADHD in pediatric BD, it is likely that pediatric BD is a single underlying disorder that adversely affects both mood and attention.

Figure 4. Activation differences between subjects with bipolar disorder (BD) and controls (con) for the negative condition of the International Affective Picture System task. Red areas indicate increased activation and blue areas indicate decreased activation when compared with controls. Numbers in the lower left corners indicate z-axis coordinates in the Talairach space. A indicates right posterior cingulate; B, left dorsolateral prefrontal cortex (DLPFC); C, right DLPFC; and D, right insula.
regulation and that our fMRI data reflect the underlying disorder of pediatric BD as a whole.

A PROPOSED INTERACTIVE MODEL

A model of brain circuitry dysfunction in BD consistent with our results centers around a prefrontal-subcortical theory of mood regulation.59,76,77 Subcortical structures such as the amygdala and hippocampus have long been thought to interact with cortical areas (eg, the cingulate, OFC, and insula) to create and process emotions.78-80 Whereas some subcortical structures bypass higher cortical input in circumstances requiring a quick reaction, they are also significantly interconnected with the prefrontal cortex, striatum, and thalamus.59 Thus, prefrontal areas such as the DLPFC, ACC, and OFC have been postulated to reciprocally modulate limbic areas to exert cognitive control of affective responses.59 Disruptions in the normal balance of activity in these 2 broad areas (ventral-limbic and dorsal-cortical) may lead to the disruption of mood regulation. For example, adults with major depressive disorder may have increased ventral activity and decreased dorsal activity during depressed states,81 a finding that reverses during remission.48,81

Although it is not possible to discern temporal sequences of activation within the tasks in our blocked design, increased prefrontal activation in our subjects with BD during both cognitive and affective tasks may be in response to increased activation in the ventral-limbic areas. Children with BD may require increased activation of prefrontal areas during euthymic periods to oppose or cortically control a hyperactive limbic system (Figure 6). Limbic areas may be overactivated by the emotional demands of a difficult task (visuospatial working memory task) or by direct affective stimuli (IAPS task). However, our subjects with BD did not display consistent limbic overactivity across both tasks, perhaps because of their euthymic state or the success of prefrontal structures in suppressing limbic hyperreactivity. Additionally, patients with BD may have relative deficiencies in more ef-

<table>
<thead>
<tr>
<th>Activated Region</th>
<th>BA</th>
<th>No. of Voxels</th>
<th>Cluster P Value</th>
<th>z Score, Maximum Primary Peak</th>
<th>Primary Peak Location (x, y, z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD−controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left MFG</td>
<td>10</td>
<td>704</td>
<td><.001</td>
<td>3.81</td>
<td>−6, 60, 2</td>
</tr>
<tr>
<td>Left paracentral lobule</td>
<td>5/4</td>
<td>590</td>
<td><.001</td>
<td>3.68</td>
<td>−18, −38, 48</td>
</tr>
<tr>
<td>Left caudate/thalamus</td>
<td>273</td>
<td></td>
<td>.04</td>
<td>3.65</td>
<td>−16, −28, 20</td>
</tr>
<tr>
<td>Right caudate/thalamus</td>
<td>3292</td>
<td></td>
<td><.001</td>
<td>3.64</td>
<td>20, −32, 18</td>
</tr>
<tr>
<td>Left caudate head</td>
<td>327</td>
<td></td>
<td>.01</td>
<td>3.42</td>
<td>−4, 14, 0</td>
</tr>
<tr>
<td>Left MFG</td>
<td>571</td>
<td></td>
<td><.001</td>
<td>3.31</td>
<td>−24, −10, 44</td>
</tr>
<tr>
<td>Left ACC†</td>
<td>24</td>
<td></td>
<td>.01</td>
<td>2.96</td>
<td>−14, −14, 34</td>
</tr>
<tr>
<td>Left precuneus</td>
<td>7</td>
<td>331</td>
<td>.01</td>
<td>3.26</td>
<td>0, −46, 54</td>
</tr>
<tr>
<td>Left SFG</td>
<td>392</td>
<td></td>
<td>.003</td>
<td>2.95</td>
<td>−20, 14, 42</td>
</tr>
<tr>
<td>Left MFG†</td>
<td>6</td>
<td></td>
<td></td>
<td>2.71</td>
<td>−36, 6, 34</td>
</tr>
<tr>
<td>BD individual group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right MOG</td>
<td>37</td>
<td>735</td>
<td><.001</td>
<td>3.49</td>
<td>46, −70, 4</td>
</tr>
<tr>
<td>Right cerebellum‡</td>
<td></td>
<td></td>
<td></td>
<td>3.30</td>
<td>40, −62, −18</td>
</tr>
<tr>
<td>Left MFG</td>
<td>10</td>
<td>482</td>
<td><.001</td>
<td>3.49</td>
<td>−8, 60, 4</td>
</tr>
<tr>
<td>Left ACC‡</td>
<td>32</td>
<td>723</td>
<td><.001</td>
<td>3.44</td>
<td>−2, 46, −4</td>
</tr>
<tr>
<td>Left MOG</td>
<td>18</td>
<td>830</td>
<td><.001</td>
<td>3.47</td>
<td>−28, −88, 4</td>
</tr>
<tr>
<td>Control individual group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right cuneus</td>
<td>18</td>
<td>830</td>
<td><.001</td>
<td>3.56</td>
<td>14, −98, 2</td>
</tr>
<tr>
<td>Right MOG†</td>
<td>19</td>
<td></td>
<td></td>
<td>3.25</td>
<td>48, −74, −4</td>
</tr>
</tbody>
</table>

Abbreviations: ACC, anterior cingulate cortex; BA, Brodmann area; BD, bipolar disorder; MFG, middle frontal gyrus; MOG, middle occipital gyrus; SFG, superior frontal gyrus.

*For controls minus BD, no clusters reached significance at P < .05.
†Tertiary peak.
‡Secondary peak.

Figure 5. Areas of greater activation in subjects with bipolar disorder (BD) compared with controls (con) for the positive condition of the International Affective Picture System23 task. A indicates left anterior cingulate; B, bilateral caudate and thalamus.

Table 4. Brain Regional Activations for the IAPS Task: Positive Stimuli

©2004 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 06/10/2021
have been reports of increased caudate activity and decreased ventral ACC activity associated with antipsychotic medications, of which the effects on BD across different mood and developmental states. Although the sample size was small, the success of illness progression in BD. Further study of patients with BD during different mood and developmental states is needed to test these hypotheses.

LIMITATIONS AND STRENGTHS

All subjects with BD in our study were taking concomitant psychotropic medications, of which the effects on cerebral activation patterns are unknown. Stimulants, however, were withheld for 24 to 48 hours before fMRI to minimize their behavioral and cerebral effects. There have been reports of increased caudate activity and decreased ACC activity associated with antipsychotic medications as well as decreased ventral ACC activity associated with antidepressants. Although between-group caudate differences may have been related to this phenomenon, it is unlikely to explain the findings of increased ACC activity in subjects with BD. Unfortunately, we were not able to divide the subjects into groups based on medication types that would be meaningful for statistical analyses owing to the wide variety of medications (Table 1).

Because there was a trend for subjects with BD having less accuracy in the 2-back task, it is possible that these subjects were using more effort to perform the task. Additional effort could result in patterns of increased activation. Although the sample size was small, the successful completion of an fMRI study in 12 children with a serious neuropsychiatric disorder such as BD is an accomplishment given pragmatic issues such as subject compliance. All of our subjects were male, primarily white, so these findings may not be generalizable to girls or boys of other ethnicities who have BD. Finally, we did not formally assess pubertal status, which may have affected the analyses considering the substantial hormonal and potential neurobiological changes associated with puberty.

The strengths of the study included a relatively homogeneous subject group, with both subjects and parents diagnosed using semistructured interviews. Our controls were also screened with high scrutiny; other studies often have not considered extended family history. This is essential in studies of children because they retain the potential to develop affective disorders; historically the most common age at onset of BD has ranged from 15 to 19 years. Furthermore, this study was performed using a high-field magnet (3 T), which provides a significantly higher signal-to-noise ratio compared with 1.5-T studies, increasing the specificity of the findings and decreasing type II error.

Finally, our study design is also unique because we used a dual approach of cognitive and affective tasks to probe the brain regions relevant to pediatric BD. Temporal analysis of results from future event-related tasks may help to prove or disprove theories of disrupted prefrontal-subcortical reciprocal modulation in BD, as suggested by our results. Longitudinal fMRI studies of the brain, with greater numbers of subjects and of patients with early forms of BD, would aid in discerning the role of these brain areas in the pathophysiological mechanisms of BD and in bridging the gap between studies of children and studies of adults with this disorder.

Submitted for publication November 12, 2003; final revision received January 30, 2004; accepted February 16, 2004.

This study was supported in part by grants MH01142, MH19908, MH050047, and HD31715 (Dr Reiss) and grant MH64460-01 (Dr Chang) from the National Institutes of Health, Bethesda, Md; a Young Investigators Award from the National Alliance for Research on Schizophrenia and Depression, Great Neck, NY; and a fellowship from the Klingenstein Third Generation Foundation, New York, NY.

This study was presented in part at the 49th Annual Meeting of the American Academy of Child and Adolescent Psychiatry; October 22-27, 2002; San Francisco, Calif.

We thank Christine Blasey, PhD, for statistical assistance.

Correspondence: Kiki Chang, MD, Stanford University School of Medicine, Division of Child and Adolescent Psychiatry, 401 Quarry Rd, Stanford, CA 94305-5540 (kchang88@stanford.edu).

REFERENCES

©2004 American Medical Association. All rights reserved.
15. MacDonald AW III, Cohen JD, Stenger VA, Carter CS. Dissociating the role of
13. Mayberg HS. The functional neuroanatomy of mood: clues from imaging stud-
17. Hesslinger B, Thiel T, Adalsteinsson E, Spielman D, Ketter TA. De-
increased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol
19. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to
18. Vogt BA, Finch DM, Olson CR. Functional heterogeneity in cingulate cortex: the an-
16. Thomas KM, King SW, Franzen PL, Welsh BF, Berkowitz AL, Noll DC, Birmaher
V, Casey BJ. A developmental functional MRI study of spatial working memory.
14. Faraone SV, Biederman J, Wozniak J, Mundy E, Mennin D, D’Oleandis D. Is co-
norbidity with ADHD a marker for juvenile-onset mania? J Am Acad Child Ado-
13. Mayberg HS. The functional neuroanatomy of mood: clues from imaging stud-
ies of depression and normal sadness. Paper presented at: Sixth Annual Con-
8:249-261.
32. Friston KJ, Holmes AP, Worsley KJ, Evans AC, Frith CD, Frackowiak RSJ. Sta-
1999;45:1542-1552.
33. Nelson CA, Monk CS, Lin J, Carver LJ, Thomas KM, Trussell CL. Functional neuro-
39. Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density
13341.
1999;45:1542-1552.
3-Dimensional Proportional System: An Approach to Cerebral Imaging.
1997;36:980-988.
12. Pardo JV, Pardo PJ, Raichle ME. The functional neuroanatomy of mood: clues from imaging stud-
ies of depression and normal sadness. Paper presented at: Sixth Annual Con-
53. Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density
13. Mayberg HS. The functional neuroanatomy of mood: clues from imaging stud-
ies of depression and normal sadness. Paper presented at: Sixth Annual Con-
8:249-261.
32. Friston KJ, Holmes AP, Worsley KJ, Evans AC, Frith CD, Frackowiak RSJ. Sta-
1999;45:1542-1552.
33. Nelson CA, Monk CS, Lin J, Carver LJ, Thomas KM, Trussell CL. Functional neuro-
39. Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density
13. Mayberg HS. The functional neuroanatomy of mood: clues from imaging stud-
ies of depression and normal sadness. Paper presented at: Sixth Annual Con-
8:249-261.
32. Friston KJ, Holmes AP, Worsley KJ, Evans AC, Frith CD, Frackowiak RSJ. Sta-
1999;45:1542-1552.
33. Nelson CA, Monk CS, Lin J, Carver LJ, Thomas KM, Trussell CL. Functional neuro-
39. Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density
13. Mayberg HS. The functional neuroanatomy of mood: clues from imaging stud-
ies of depression and normal sadness. Paper presented at: Sixth Annual Con-