[Skip to Content]
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
Purchase Options:
[Skip to Content Landing]
Figure 1. Patients With Oligoarthritis and With Systemic Arthritis
Image description not available.

A, Three-year-old girl with oligoarthritis involving the left knee. Swelling, flexion contracture, muscle wasting, and a longer leg on the affected side. B, Patient with systemic arthritis demonstrating characteristic erythematous macular rash on forearm with Koebner phenomena (exacerbation of rash by minor trauma).

Figure 2. Twelve-Year-Old Girl With Polyarthritis
Image description not available.

A, Severe growth deformities involving fingers. B, Same patient demonstrating severe growth deformities involving toes.

Figure 3. Ankle Showing Adverse Effect of Corticosteroid Injection
Image description not available.

Right ankle demonstrating atrophy and hypopigmentation secondary to corticosteroid injection.

Figure 4. Algorithm for Medical Treatment of Oligoarthritis in Juvenile Idiopathic Arthritis (JIA)
Image description not available.

*Prefer early intra-articular triamcinolone hexacetonide if patient has local complications: contractures, leg length discrepancy, significant muscle atrophy.

Figure 5. Algorithm for Medical Treatment of Polyarthritis in Juvenile Idiopathic Arthritis (JIA)
Image description not available.
Figure 6. Algorithm for Medical Treatment of Systemic Arthritis in Juvenile Idiopathic Arthritis (JIA)
Image description not available.

*Methotrexate, intra-articular corticosteroids, antitumor necrosis factor drugs are less effective in systemic arthritis.

Table 1. Subtypes of Juvenile Idiopathic Arthritis*
Image description not available.
Table 2. Controlled Clinical Trials of NSAIDs in Juvenile Idiopathic Arthritis
Image description not available.
Table 3. Controlled Clinical Trials of Disease-Modifying Antirheumatic Medications, Systemic-Corticosteroids and Other Medications in Juvenile Idiopathic Arthritis
Image description not available.
Table 4. Controlled Clinical Trials of Intra-articular Corticosteroid Injections in Juvenile Idiopathic Arthritis
Image description not available.
Table 5. Controlled Clinical Trials of Biologic-Modifying Medications in Juvenile Idiopathic Arthritis
Image description not available.
Table 6. Efficacy of Common Medication Used to Treat Juvenile Idiopathic Arthritis*†
Image description not available.
1.
Manners PJ, Bowers C. Worldwide prevalence of juvenile arthritis: why does it vary so much?  J Rheumatol. 2002;29:1520-153012136914Google Scholar
2.
Petty RE, Southwood TR, Manners P.  et al.  International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001.  J Rheumatol. 2004;31:390-39214760812Google Scholar
3.
Wallace CA, Sherry DD. Rudolph’s Pediatrics. Juvenile rheumatoid arthritis. In: 21st ed. New York, NY: McGraw-Hill; 2003:836-837
4.
Wallace CA, Levinson JE. Juvenile rheumatoid arthritis: outcome and treatment for the 1990s.  Rheum Dis Clin North Am. 1991;17:891-9051767079Google Scholar
5.
Gare BA, Fasth A. The natural history of juvenile chronic arthritis: a population based cohort study II: outcome.  J Rheumatol. 1995;22:308-3197738955Google Scholar
6.
Peterson LS, Mason T, Nelson AM, O’Fallon WM, Gabriel SE. Psychosocial outcomes and health status of adults who have had juvenile rheumatoid arthritis: a controlled, population-based study.  Arthritis Rheum. 1997;40:2235-22409416862Google ScholarCrossref
7.
Zak M, Pedersen FK. Juvenile chronic arthritis into adulthood: a long-term follow-up study.  Rheumatology. 2000;39:198-20410725073Google ScholarCrossref
8.
Guillaume S, Prieur AM, Coste J, Job-Deslandre C. Long-term outcome and prognosis in oligoarticular-onset juvenile idiopathic arthritis.  Arthritis Rheum. 2000;43:1858-186510943877Google ScholarCrossref
9.
Lomater C, Gerloni V, Gattinara M, Mazzotti J, Cimaz R, Fantini F. Systemic onset juvenile rheumatoid arthritis: a retrospective study of 80 consecutive patients followed for 10 years.  J Rheumatol. 2000;27:491-49610685819Google Scholar
10.
Minden K, Niewerth M, Listing J.  et al.  Long-term outcome in patients with juvenile rheumatoid arthritis.  Arthritis Rheum. 2002;46:2392-240112355487Google ScholarCrossref
11.
Oen K, Malleson PN, Cabral DA, Rosenberg AM, Petty RE, Cheang M. Disease course and outcome of juvenile rheumatoid arthritis in a multicenter cohort.  J Rheumatol. 2002;29:1989-199912233897Google Scholar
12.
Fantini F, Gerloni V, Gattinara M, Cimaz R, Arnoldi C, Lupi E. Remission in juvenile chronic arthritis: a cohort study of 683 consecutive cases with a mean follow-up of 10 years.  J Rheumatol. 2003;30:579-58412610820Google Scholar
13.
Packham JC, Hall MA. Long-term follow-up of 246 adults with juvenile idiopathic arthritis: functional outcome.  Rheumatology. 2002;41:1428-143512468825Google ScholarCrossref
14.
Foster HE, Marshall N, Myers A, Dunklet P, Griffiths ID. Outcome in adults with juvenile idiopathic arthritis: a quality of life study.  Arthritis Rheum. 2003;48:767-77512632431Google ScholarCrossref
15.
Mayer ML, Sandborg CI, Mellins ED. Role of pediatric and internist rheumatologists in treating children with rheumatic diseases.  Pediatrics. 2004;113:e173-e18114993573Google ScholarCrossref
16.
Levinson JE, Baum J, Brewer E Jr, Fink C, Hanson V, Schaller J. Comparison of tolmetin sodium and aspirin in the treatment of juvenile rheumatoid arthritis.  J Pediatr. 1977;91:799-804333079Google ScholarCrossref
17.
Makela AL. Naproxen in the treatment of juvenile rheumatoid arthritis: metabolism, safety and efficacy.  Scand J Rheumatol. 1977;6:193-205343231Google ScholarCrossref
18.
Bhettay E, Thomson AJ. Double-blind study of ketoprofen and indomethacin in juvenile chronic arthritis.  S Afr Med J. 1978;54:276-278362571Google Scholar
19.
Brewer EJ, Giannini EH, Baum J.  et al.  Aspirin and fenoprofen (Nalfon) in the treatment of juvenile rheumatoid arthritis results of the double blind-trial: a segment II study.  J Rheumatol. 1982;9:123-1287045360Google Scholar
20.
Haapasaari J, Wuolijoki E, Ylijoki H. Treatment of juvenile rheumatoid arthritis with diclofenac sodium.  Scand J Rheumatol. 1983;12:325-3306361986Google ScholarCrossref
21.
Kvien TK, Hoyeraal HM, Sandstad B. Naproxen and acetylsalicylic acid in the treatment of pauciarticular and polyarticular juvenile rheumatoid arthritis: assessment of tolerance and efficacy in a single-center 24-week double-blind parallel study.  Scand J Rheumatol. 1984;13:342-3506395321Google ScholarCrossref
22.
Bhettay E. Double-blind study of sulindac and aspirin in juvenile chronic arthritis.  S Afr Med J. 1986;70:724-7263538450Google Scholar
23.
Williams PL, Ansell BM, Bell A.  et al.  Multicenter study of piroxicam versus naproxen in juvenile chronic arthritis, with special reference to problem areas in clinical trials of nonsteroidal anti-inflammatory drugs in childhood.  Br J Rheumatol. 1986;25:67-713510686Google ScholarCrossref
24.
Garcia-Morteo O, Maldonado-Cocco JA, Cuttica R, Garay SM. Piroxicam in juvenile rheumatoid arthritis.  Eur J Rheumatol Inflamm. 1987;8:49-532957205Google Scholar
25.
Leak AM, Richter MR, Clemens LE, Hall MA, Ansell BM. A crossover study of naproxen, diclofenac and tolmetin in seronegative juvenile chronic arthritis.  Clin Exp Rheumatol. 1988;6:157-1603052965Google Scholar
26.
Giannini EH, Brewer EJ, Miller ML.  et al.  Ibuprofen suspension in the treatment of juvenile rheumatoid arthritis.  J Pediatr. 1990;117:645-6522213396Google ScholarCrossref
27.
Kiss MH, Reiff AA, Reicin AS.  et al.  J. Rofecoxib demonstrates efficacy and tolerability in children and adolescents (ages 2-17 years) with juvenile rheumatoid arthritis (JRA) in a 12-week randomized study [abstract].  Arthritis Rheum. 2003;48:(suppl)  S650Google Scholar
28.
Gedalia A, Espada G, Johnson P, Kovacs B, Wood C, Padula S.Meloxicam in JRA Study Group.  Efficacy and safety of meloxicam oral suspension in the treatment of juvenile rheumatoid arthritis (JRA): results from a twelve-week active-controlled (naproxen oral suspension), multinational trial [abstract].  Arthritis Rheum. 2004;50:(suppl)  S95Google Scholar
29.
Ruperto N, Nikishina I, Pachanov ED.  et al.  A randomized double-blind clinical trial of two doses of meloxicam compared with naproxen in children with juvenile idiopathic arthritis: short- and long-term efficacy and safety results.  Arthritis Rheum. 2005;52:563-57215692986Google ScholarCrossref
30.
Kvien TK, Hoyeraal HM, Sandstad B. Gold sodium thiomalate and D-penicillamine: a controlled, comparative study in patients with pauciarticular and polyarticular juvenile rheumatoid arthritis.  Scand J Rheumatol. 1985;14:346-3543936167Google ScholarCrossref
31.
Kvien TK, Hoyeraal HM, Sandstad B. Slow acting antirheumatic drugs in patients with juvenile rheumatoid arthritis evaluated in a randomized, parallel 50-week clinical trial.  J Rheumatol. 1985;12:533-5393930720Google Scholar
32.
Prieur AM, Piussan C, Manigne P, Bordigoni P, Griscelli C. Evaluation of D-penicillamine in juvenile chronic arthritis: a double-blind, multicenter study.  Arthritis Rheum. 1985;28:376-3823885958Google ScholarCrossref
33.
Brewer EJ, Giannini EH, Kuzmina N, Alekseev L. Penicillamine and hydroxychloroquine in the treatment of severe juvenile rheumatoid arthritis: results of the U.S.A.-U.S.S.R. double-blind placebo-controlled trial.  N Engl J Med. 1986;314:1269-12763517643Google ScholarCrossref
34.
Kvien TK, Hoyeraal HM, Sandstad B. Azathioprine versus placebo in patients with juvenile rheumatoid arthritis: a single center double blind comparative study.  J Rheumatol. 1986;13:118-1233517321Google Scholar
35.
Giannini EH, Brewer EJ Jr, Kuzmina N, Shaikov A, Wallin B. Auranofin in the treatment of juvenile rheumatoid arthritis: results of the USA-USSR double-blind, placebo-controlled trial.  Arthritis Rheum. 1990;33:466-4762183804Google ScholarCrossref
36.
Hoza J, Kadlecova T, Nemcova D, Havelka S. Sulfasalazine and Delagil: a comparative study in patients with juvenile chronic arthritis.  Acta Univ Carol [Med]. 1991;37:80-831688268Google Scholar
37.
Giannini EH, Brewer EJ, Kuzmina N.  et al.  Methotrexate in resistant juvenile rheumatoid arthritis: results of the U.S.A.- U.S.S.R. double-blind, placebo-controlled trial.  N Engl J Med. 1992;326:1043-10491549149Google ScholarCrossref
38.
Picco P, Gattorno M, Buoncompagni A.  et al.  6-Methylprednisolone “mini-pulses”: a new modality of chronic glucocorticoid treatment in systemic onset juvenile chronic arthritis.  Scand J Rheumatol. 1996;25:24-278774551Google ScholarCrossref
39.
Van Rossum MA, Fiselier TJ, Franssen MJ.  et al.  Sulfasalazine in the treatment of juvenile chronic arthritis: a randomized double-blind, placebo-controlled, multicenter study: Dutch Juvenile Chronic Arthritis Study Group.  Arthritis Rheum. 1998;41:808-8169588731Google ScholarCrossref
40.
Woo P, Southwood TR, Prieur AM.  et al.  Randomized, placebo-controlled, crossover trial of low-dose oral methotrexate in children with extended oligoarticular or systemic arthritis.  Arthritis Rheum. 2000;43:1849-185710943876Google ScholarCrossref
41.
Ruperto N, Murray KJ, Gerloni V.  et al.  A randomized trial of parenteral methotrexate comparing an intermediate dose with a higher dose in children with juvenile idiopathic arthritis who failed to respond to standard doses of methotrexate.  Arthritis Rheum. 2004;50:2191-220115248217Google ScholarCrossref
42.
Silverman E, Mouy R, Spiegel L.  et al.  Leflunomide or methotrexate for juvenile rheumatoid arthritis.  N Engl J Med. 2005;352:1655-166615843668Google ScholarCrossref
43.
Balogh Z, Ruzsonyi E. Triamcinolone hexacetonide versus betamethasone: a double-blind comparative study of the long-term effects of intra-articular steroids in patients with juvenile chronic arthritis.  Scand J Rheumatol Suppl. 1987;67:80-823330864Google Scholar
44.
Zulian F, Martini G, Gobber D, Agosto C, Gigante C, Zacchello F. Comparison of intra-articular triamcinolone hexacetonide and triamcinolone acetonide in oligoarticular juvenile idiopathic arthritis.  Rheumatology. 2003;42:1254-125912810938Google ScholarCrossref
45.
Zulian F, Martini G, Gobber D, Plebani M, Zacchello F, Manners P. Triamcinolone acetonide and hexacetonide intra-articular treatment of symmetrical joints in juvenile idiopathic arthritis: a double-blind trial.  Rheumatology. 2004;43:1288-129115252213Google ScholarCrossref
46.
Silverman ED, Cawkwell GD, Lovell DJ.  et al.  Intravenous immunoglobulin in the treatment of systemic juvenile rheumatoid arthritis: a randomized placebo controlled trial.  J Rheumatol. 1994;21:2353-23587699642Google Scholar
47.
Giannini EH, Lovell DJ, Silverman ED, Sundel RP, Tague BL, Ruperto N. Intravenous immunoglobulin in the treatment of polyarticular juvenile rheumatoid arthritis: a phase I/II study.  J Rheumatol. 1996;23:919-9248724309Google Scholar
48.
Lovell DJ, Giannini EH, Reiff A.  et al.  Etanercept in children with polyarticular juvenile rheumatoid arthritis.  N Engl J Med. 2000;342:763-76910717011Google ScholarCrossref
49.
Giannini EH, Ruperto N, Ravelli A, Lovell DJ, Felson DT, Martini A. Preliminary definition of improvement in juvenile arthritis.  Arthritis Rheum. 1997;40:1202-12099214419Google Scholar
50.
Levinson JE, Wallace CA. Dismantling the pyramid.  J Rheumatol. 1992;19:(suppl 33)  6-101593604Google Scholar
51.
Gylys-Morin VM, Graham TB, Blebea JS.  et al.  Knee in early juvenile rheumatoid arthritis: MR imaging findings.  Radiology. 2001;220:696-70611526269Google ScholarCrossref
52.
Sherry DD, Stein LD, Reed AM, Schanberg LE, Kredich DW. Prevention of leg length discrepancy in young children with pauciarticular juvenile rheumatoid arthritis by treatment with intraarticular steroids.  Arthritis Rheum. 1999;42:2330-233410555028Google ScholarCrossref
53.
Savolainen HA, Isomaki HA. Decrease in the number of deaths from secondary amyloidosis in patients with juvenile rheumatoid arthritis.  J Rheumatol. 1993;20:1201-12038371218Google Scholar
54.
French AR, Mason T, Nelson AM, O’Fallon WM, Gabriel SE. Increased mortality in adults with a history of juvenile rheumatoid arthritis: a population based study.  Arthritis Rheum. 2001;44:523-52711263765Google ScholarCrossref
55.
Thomas E, Symmonds DP, Brewster DH, Black RJ, Macfarland GJ. National study of cause-specific mortality in rheumatoid arthritis, juvenile chronic arthritis, and other rheumatic conditions: a 20 year followup study.  J Rheumatol. 2003;30:958-96512734889Google Scholar
56.
Stephan JL, Kone-Paut I, Galambrun C, Mouy R, Bader-Meunier B, Prieur AM. Reactive haemophagocytic syndrome in children with inflammatory disorders: a retrospective study of 24 patients.  Rheumatology. 2001;40:1285-1292Google ScholarCrossref
57.
Ferucci ED, Majka DS, Parrish LA.  et al.  Antibodies against cyclic citrullinated peptide are associated with HLA-DR4 in simplex and multiplex polyarticular-onset juvenile rheumatoid arthritis.  Arthritis Rheum. 2005;52:239-24615641089Google ScholarCrossref
58.
Spiegel LR, Schneider R, Lang BA.  et al.  Early predictors of poor functional outcome in systemic-onset juvenile rheumatoid arthritis: a multicenter cohort study.  Arthritis Rheum. 2000;43:2402-240911083261Google ScholarCrossref
59.
De Benedetti F, Meazza C, Vivarelli M.  et al.  Functional and prognostic relevance of the -173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis.  Arthritis Rheum. 2003;48:1398-140712746913Google ScholarCrossref
60.
Koren G, Pastusak A. Medical research in infants and children in the eighties: analysis of rejected protocols.  Pediatr Res. 1990;27:432-4352345668Google ScholarCrossref
61.
Giannini EH, Cawkwell GD. Drug treatment in children with juvenile rheumatoid arthritis.  Pediatr Clin North Am. 1995;42:1099-11257567188Google Scholar
62.
Lovell DJ, Giannini EH, Brewer EJ Jr. Time course of response to nonsteroidal anti-inflammatory drugs in juvenile rheumatoid arthritis.  Arthritis Rheum. 1984;27:1433-14376508863Google ScholarCrossref
63.
Goodman S, Howard P, Haig A, Flavin S, Macdonald B. An open label study to establish dosing recommendations for nabumetone in juvenile rheumatoid arthritis.  J Rheumatol. 2003;30:829-83112672207Google Scholar
64.
Laxer RM, Silverman ED, St-Cyr C, Tran MT, Lingam G. A six-month open safety assessment of a naproxen suspension formulation in the therapy of juvenile rheumatoid arthritis.  Clin Ther. 1988;10:381-3873079006Google Scholar
65.
Keenan GF, Giannini EH, Athreya BH. Clinically significant gastropathy associated with nonsteroidal antiinflammatory drug use in children with juvenile rheumatoid arthritis.  J Rheumatol. 1995;22:1149-11517674245Google Scholar
66.
Dowd JE, Cimaz R, Fink CW. Nonsteroidal antiinflammatory drug-induced gastroduodenal injury in children.  Arthritis Rheum. 1995;38:1225-12317575716Google ScholarCrossref
67.
Mulberg AE, Linz C, Bern E.  et al.  Identification of nonsteroidal antiinflammatory drug-induced gastroduodenal injury in children with juvenile rheumatoid arthritis.  J Pediatr. 1993;122:647-6498463919Google ScholarCrossref
68.
Mehta S, Lang B. Long-term followup of naproxen-induced pseudoporphyria in juvenile rheumatoid arthritis.  Arthritis Rheum. 1999;42:2252-225410524703Google ScholarCrossref
69.
De Silva B, Banney L, Uttley W.  et al.  Pseudoporphyria and nonsteroidal antiinflammatory agents in children with juvenile idiopathic arthritis.  Pediatr Dermatol. 2000;17:480-48311123786Google ScholarCrossref
70.
Szer IS, Goldenstein-Schainberg C, Kurtin PS. Paucity of renal complications associated with nonsteroidal antiinflammatory drugs in children with chronic arthritis.  J Pediatr. 1991;119:815-8171941392Google ScholarCrossref
71.
Malleson PN, Lockitch G, Mackinnon M, Mahy M, Petty RE. Renal disease in chronic arthritis of childhood a study of urinary N-acetyl-beta-glucosaminidase and beta 2-microglobulin excretion.  Arthritis Rheum. 1990;33:1560-15662222536Google ScholarCrossref
72.
Klein-Gitelman MS, Pachman LM. Intravenous corticosteroids: adverse reactions are more variable than expected in children.  J Rheumatol. 1998;25:1995-20029779857Google Scholar
73.
Kimura Y, Fieldston E, Devries-Vandervlugt B.  et al.  High dose, alternate day corticosteroids for systemic-onset juvenile rheumatoid arthritis.  J Rheumatol. 2000;27:2018-202410955346Google Scholar
74.
Padeh S, Passwell JH. Intraarticular corticosteroid injections in the management of children with chronic arthritis.  Arthritis Rheum. 1998;41:1210-12149663477Google ScholarCrossref
75.
Huppertz HI, Tschammler A, Horwitz AE, Schwab KO. Intraarticular corticosteroids for chronic arthritis in children: efficacy and effects on cartilage and growth.  J Pediatr. 1995;127:317-3217636665Google ScholarCrossref
76.
Breit W, Frosch M, Meyer U, Heinecke A, Ganser G. A subgroup-specific evaluation of the efficacy of intraarticular triamcinolone hexacetonide in juvenile chronic arthritis.  J Rheumatol. 2000;27:2696-270211093456Google Scholar
77.
Ravelli A, Manzoni SM, Viola S, Pistorio A, Ruperto N, Martini A. Factors affecting the efficacy of intraarticular corticosteroid injection of knees in juvenile idiopathic arthritis.  J Rheumatol. 2001;28:2100-210211550981Google Scholar
78.
Neidel J, Boehnke M, Kuster RM. The efficacy and safety of intraarticular corticosteroid therapy for coxitis in juvenile rheumatoid arthritis.  Arthritis Rheum. 2002;46:1620-162812115194Google ScholarCrossref
79.
Cleary AG, Murphy HD, Davidson JE. Intra-articular corticosteroid injections in juvenile idiopathic arthritis.  Arch Dis Child. 2003;88:192-19612598375Google ScholarCrossref
80.
Eberhard BA, Sison MC, Gottlieb BS, Ilowite NT. Comparison of the intraarticular effectiveness of triamcinolone hexacetonide and triamcinolone acetonide in treatment of juvenile rheumatoid arthritis.  J Rheumatol. 2004;31:2507-251215570659Google Scholar
81.
Hagelberg S, Magnusson B, Jenner G, Andersson U. Do frequent corticosteroid injections in the knee cause cartilage damage in juvenile chronic arthritis? long-term follow-up with MRI.  J Rheumatol. 2000;27:(suppl 58)  95Google Scholar
82.
Takken T, Van Der Net J, Helders PJ. Methotrexate for treating juvenile idiopathic arthritis.  Cochrane Database Syst Rev. 2001;3:CD00312911687037Google Scholar
83.
Halle F, Prieur AM. Evaluation of methotrexate in the treatment of juvenile chronic arthritis according to the subtype.  Clin Exp Rheumatol. 1991;3:297-3021879091Google Scholar
84.
Ravelli A, Ramenghi B, Di Fuccia G.  et al.  Factors associated with response to methotrexate in systemic-onset juvenile chronic arthritis.  Acta Paediatr. 1994;83:428-4328025404Google ScholarCrossref
85.
Ravelli A, Viola S, Migliavacca D, Ruperto N, Pistorio A, Martini A. The extended oligoarticular subtype is the best predictor of methotrexate efficacy in juvenile idiopathic arthritis.  J Pediatr. 1999;135:316-32010484796Google ScholarCrossref
86.
Harel L, Wagner-Weiner L, Poznanski AK, Spencer CH, Ekwo E, Magilavy DB. Effects of methotrexate on radiologic progression in juvenile rheumatoid arthritis.  Arthritis Rheum. 1993;36:1370-13748216396Google ScholarCrossref
87.
Ravelli A, Viola S, Ramenghi B, Beluffi G, Zonta LA, Martini A. Radiologic progression in patients with juvenile chronic arthritis treated with methotrexate.  J Pediatr. 1998;133:262-2659709717Google ScholarCrossref
88.
Gottlieb BS, Keenan GF, Lu T, Ilowite NT. Discontinuation of methotrexate treatment in juvenile rheumatoid arthritis.  Pediatrics. 1997;100:994-9979374571Google ScholarCrossref
89.
Foell D, Frosch M, Schulze zur Wiesch A, Vogl T, Sorg C, Roth J. Methotrexate treatment in juvenile idiopathic arthritis: when is the right time to stop?  Ann Rheum Dis. 2004;63:206-20814722212Google ScholarCrossref
90.
Ravelli A, Viola S, Ramenghi B, Aramini L, Ruperto N, Martini A. Frequency of relapse after discontinuation of methotrexate therapy for clinical remission in juvenile rheumatoid arthritis.  J Rheumatol. 1995;22:1574-15767473486Google Scholar
91.
Dupuis LL, Koren G, Silverman ED, Laxer RM. Influence of food on the bioavailability of oral methotrexate in children.  J Rheumatol. 1995;22:1570-15737473485Google Scholar
92.
Ravelli A, Gerloni V, Corona F.  et al.  Oral versus intramuscular methotrexate in juvenile chronic arthritis.  Clin Exp Rheumatol. 1998;16:181-1839536397Google Scholar
93.
Alsufyani K, Ortiz-Alvarez O, Cabral DA, Tucker LB, Petty RE, Malleson PN. The role of subcutaneous administration of methotrexate in children with juvenile idiopathic arthritis who have failed oral methotrexate.  J Rheumatol. 2004;31:179-18214705239Google Scholar
94.
Balis FM, Savitch JL, Bleyer WA. Pharmacokinetics of oral methotrexate in children.  Cancer Res. 1983;43:2342-23456572562Google Scholar
95.
Hunt PG, Rose CD, McIlvain-Simpson G, Tejani S. The effects of daily intake of folic acid on the efficacy of methotrexate therapy in children with juvenile rheumatoid arthritis: a controlled study.  J Rheumatol. 1997;24:2230-22329375889Google Scholar
96.
Ravelli A, Migliavacca D, Viola S, Ruperto N, Pistorio A, Martini A. Efficacy of folinic acid in reducing methotrexate toxicity in juvenile idiopathic arthritis.  Clin Exp Rheumatol. 1999;17:625-62710544851Google Scholar
97.
Passo MH, Hashkes PJ. Use of methotrexate in children.  Bull Rheum Dis. 1998;47:1-59735507Google Scholar
98.
Ortiz-Alvarez O, Morishita K, Avery G.  et al.  Guidelines for blood test monitoring of methotrexate toxicity in juvenile idiopathic arthritis.  J Rheumatol. 2004;31:2501-250615570658Google Scholar
99.
Hashkes PJ, Balistreri WF, Bove KE.  et al.  The long-term effect of methotrexate therapy on the liver in patients with juvenile rheumatoid arthritis.  Arthritis Rheum. 1997;40:2226-22349416861Google ScholarCrossref
100.
Wallace CA. The use of methotrexate in childhood rheumatic diseases.  Arthritis Rheum. 1998;41:381-3919506564Google ScholarCrossref
101.
Hashkes PJ, Balistreri WF, Bove KE.  et al.  The relationship of hepatotoxic risk factors and liver histology in methotrexate therapy for juvenile rheumatoid arthritis.  J Pediatr. 1999;134:47-529880448Google ScholarCrossref
102.
Cron RQ, Sherry DD, Wallace CA. Methotrexate-induced hypersensitivity pneumonitis in a child with juvenile rheumatoid arthritis.  J Pediatr. 1998;132:901-9029602213Google ScholarCrossref
103.
Schmeling H, Stephan V, Burdach S, Horneff G. Pulmonary function in children with juvenile idiopathic arthritis and effects of methotrexate therapy.  Z Rheumatol. 2002;61:168-17212056294Google ScholarCrossref
104.
Muzaffer MA, Schneider R, Cameron B.  et al.  Accelerated nodulosis during methotrexate therapy for juvenile rheumatoid arthritis.  J Pediatr. 1996;128:698-7008627446Google ScholarCrossref
105.
Falcini F, Taccetti G, Ermini M.  et al.  Methotrexate-associated appearance and rapid progression of rheumatoid nodules in systemic-onset juvenile rheumatoid arthritis.  Arthritis Rheum. 1997;40:175-1789008613Google ScholarCrossref
106.
Padeh S, Sharon N, Schiby G.  et al.  Hodgkin's lymphoma in systemic onset juvenile rheumatoid arthritis after treatment with low dose methotrexate.  J Rheumatol. 1997;24:2035-20379330950Google Scholar
107.
Londino AV Jr, Blatt J, Knisely AS. Hodgkin's disease in a patient with juvenile rheumatoid arthritis taking weekly low dose methotrexate.  J Rheumatol. 1998;25:1245-12469632099Google Scholar
108.
Krugmann J, Sailer-Hock M, Muller T, Gruber J, Allerberger F, Offner FA. Epstein-Barr virus-associated Hodgkin's lymphoma and legionella pneumophila infection complicating treatment of juvenile rheumatoid arthritis with methotrexate and cyclosporine A.  Hum Pathol. 2000;31:253-25510685644Google ScholarCrossref
109.
Cleary AG, McDowell H, Sills JA. Polyarticular juvenile idiopathic arthritis treated with methotrexate complicated by the development of non-Hodgkin's lymphoma.  Arch Dis Child. 2002;86:47-4911806884Google ScholarCrossref
110.
Giannini EH, Cassidy JT, Brewer EJ, Shaikov A, Maximov A, Kuzmina N. Comparative efficacy and safety of advanced drug therapy in children with juvenile rheumatoid arthritis.  Semin Arthritis Rheum. 1993;23:34-468235664Google ScholarCrossref
111.
Moroldo MB, Giannini EH. Estimates of the discriminant ability of definitions of improvement for juvenile rheumatoid arthritis.  J Rheumatol. 1998;25:986-9899598903Google Scholar
112.
Giannini EH, Brewer EJ, Kuzmina N, Alekseev L, Shokh BP. Characteristics of responders and nonresponders to slow-acting antirheumatic drugs in juvenile rheumatoid arthritis.  Arthritis Rheum. 1988;31:15-203257872Google ScholarCrossref
113.
Brooks CD. Sulfasalazine for the management of juvenile rheumatoid arthritis.  J Rheumatol. 2001;28:845-85311327261Google Scholar
114.
Burgos-Vargas R, Vazquez-Mellado J, Pacheco-Tena C, Hernandez-Garduno A, Goycochea-Robles MV. A 26 week randomized double-blind placebo controlled exploratory study of sulfasalazine in juvenile onset spondyloarthropathies [letter].  Ann Rheum Dis. 2002;61:941-94212228171Google ScholarCrossref
115.
Silverman E, Spiegel L, Hawkins D.  et al.  Long-term open-label preliminary study of the safety and efficacy of leflunomide in patients with polyarticular-course juvenile rheumatoid arthritis.  Arthritis Rheum. 2005;52:554-56215693001Google ScholarCrossref
116.
Reiff A, Rawlings DJ, Shaham B.  et al.  Preliminary evidence for cyclosporin A as an alternative in the treatment of recalcitrant juvenile rheumatoid arthritis and juvenile dermatomyositis.  J Rheumatol. 1997;24:2436-24439415655Google Scholar
117.
Gerloni V, Cimaz R, Gattinara M, Arnoldi C, Pontikaki I, Fantini F. Efficacy and safety profile of cyclosporin A in the treatment of juvenile chronic (idiopathic) arthritis: results of a 10-year prospective study.  Rheumatology (Oxford). 2001;40:907-91311511760Google ScholarCrossref
118.
Mouy R, Stephan JL, Pillet P, Haddad E, Hubert P, Prieur AM. Efficacy of cyclosporine A in the treatment of macrophage activation syndrome in juvenile arthritis: report of five cases.  J Pediatr. 1996;129:750-7548917244Google ScholarCrossref
119.
Savolainen HA. Chlorambucil in severe juvenile chronic arthritis: longterm followup with special reference to amyloidosis.  J Rheumatol. 1999;26:898-90310229413Google Scholar
120.
Buriot D, Prieur AM, Lebranchu Y.  et al.  Acute leukemia in 3 children with chronic juvenile arthritis treated with chlorambucil.  Arch Fr Pediatr. 1979;36:592-598526114Google Scholar
121.
Lehman TJ, Schechter SJ, Sundel RP, Oliveira SK, Huttenlocher A, Onel KB. Thalidomide for severe systemic onset juvenile rheumatoid arthritis.  J Pediatr. 2004;145:856-85715580219Google ScholarCrossref
122.
Ravelli A, Moretti C, Temporini F.  et al.  Combination therapy with methotrexate and cyclosporine A in juvenile idiopathic arthritis.  Clin Exp Rheumatol. 2002;20:569-57212175118Google Scholar
123.
Shaikov AV, Maximov AA, Speransky AI, Lovell DJ, Giannini EH, Solovyev SK. Repetitive use of pulse therapy with methylprednisolone and cyclophosphamide in addition to oral methotrexate in children with systemic juvenile rheumatoid arthritis: preliminary results of a longterm study.  J Rheumatol. 1992;19:612-6161593584Google Scholar
124.
Lovell DJ, Giannini EH, Reiff A.  et al.  Long-term efficacy and safety of etanercept in children with polyarticular-course juvenile rheumatoid arthritis: interim results from an ongoing, multicenter, open-label, extended-treatment trial.  Arthritis Rheum. 2003;48:218-22612528122Google ScholarCrossref
125.
Lovell D, Reiff A, Jones OY, Schneider R, Giannini EH.Pediatric Rheumatology Collaborative Study Group.  Long-term safety and efficacy experience with etanercept (Enbrel) in children with polyarticular juvenile rheumatoid arthritis [abstract].  Arthritis Rheum. 2004;50:(suppl)  S436Google Scholar
126.
Horneff G, Schmeling H, Biedermann T.  et al.  The German etanercept registry for treatment of juvenile idiopathic arthritis.  Ann Rheum Dis. 2004;63:1638-164415115709Google ScholarCrossref
127.
Russo RAG, Katsicas MM, Zelazko M. Etanercept in systemic juvenile idiopathic arthritis.  Clin Exp Rheumatol. 2002;20:723-72612412209Google Scholar
128.
Quartier P, Taupin P, Bourdeaut F.  et al.  Efficacy of etanercept for the treatment of juvenile idiopathic arthritis according to the onset type.  Arthritis Rheum. 2003;48:1093-110112687553Google ScholarCrossref
129.
Kimura Y, Li S, Ebner-Lyon L, Imundo L. Treatment of systemic JIA (JRA) with etanercept: results of a survey [abstract].  Arthritis Rheum. 2000;43:(suppl)  S257Google Scholar
130.
Kimura Y, Pinho P, Higgins G.  et al.  Treatment of systemic onset juvenile rheumatoid arthritis (SOJRA) with etanercept – a follow-up study [abstract].  Arthritis Rheum. 2002;46:(suppl)  S481Google Scholar
131.
Horneff G, Schmeling H, Moebius D, Foeldvari I. Efficacy of etanercept in active refractory juvenile spondyloarthropathy: prospective open study of 40 patients [abstract].  Arthritis Rheum. 2004;50:(suppl)  S91Google Scholar
132.
Tse SM, Burgos-Vargas R, Laxer RM. Anti-tumor necrosis factor alpha blockade in the treatment of juvenile spondyloarthropathy.  Arthritis Rheum. 2005;52:2103-210815986366Google ScholarCrossref
133.
Takei S, Groh D, Bernstein B, Shaham B, Gallagher K, Reiff A. Safety and efficacy of high dose etanercept in treatment of juvenile rheumatoid arthritis.  J Rheumatol. 2001;28:1677-168011469478Google Scholar
134.
Horneff G, Girschick H, Michels H, Rogalski B, Schmeling H. Factors associated with failure of etanercept therapy in systemic onset juvenile idiopathic arthritis [abstract].  Arthritis Rheum. 2004;50:(suppl)  S93Google Scholar
135.
Smolen JS, Han C, Bala M.  et al.  Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study.  Arthritis Rheum. 2005;52:1020-103015818697Google ScholarCrossref
136.
Armbrust W, Kamphuis SS, Wolfs TW.  et al.  Tuberculosis in a nine-year-old girl treated with infliximab for systemic juvenile idiopathic arthritis.  Rheumatology (Oxford). 2004;43:527-52915024141Google ScholarCrossref
137.
Lee JH, Slifman NR, Gershon SK.  et al.  Life-threatening histoplasmosis complicating immunotherapy with tumor necrosis factor alpha antagonists infliximab and etanercept.  Arthritis Rheum. 2002;46:2565-257012384912Google ScholarCrossref
138.
Livermore PA, Murray KJ. Anti-tumor necrosis factor therapy associated with cutaneous vasculitis.  Rheumatology (Oxford). 2002;41:1450-145212468829Google ScholarCrossref
139.
Lepore L, Marchetti F, Facchini S, Leone V, Ventura A. Drug-induced systemic lupus erythematosus associated with etanercept therapy in a child with juvenile idiopathic arthritis.  Clin Exp Rheumatol. 2003;21:276-27712747299Google Scholar
140.
Bloom BJ. Development of diabetes mellitus during etanercept therapy in a child with systemic-onset juvenile rheumatoid arthritis.  Arthritis Rheum. 2000;43:2606-260811083287Google ScholarCrossref
141.
Mohan N, Edwards ET, Cupps TR.  et al.  Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides.  Arthritis Rheum. 2001;44:2862-286911762947Google ScholarCrossref
142.
Hashkes PJ, Shajrawi I. Sarcoid-related uveitis occurring during etanercept therapy.  Clin Exp Rheumatol. 2003;21:645-64614611117Google Scholar
143.
Vinje O, Obiora E, Forre O. Juvenile chronic polyarthritis treated with infliximab [abstract].  Ann Rheum Dis. 2000;59:25Google Scholar
144.
Vougiouka O, Rizou S, Grafakou O. Infliximab or etanercept in the treatment of juvenile idiopathic arthritis: the Athens experience [abstract].  Ann Rheum Dis. 2001;60:17611203720Google Scholar
145.
Masatlioglu S, Gogus F, Cevirgen D.  et al.  Infliximab in the treatment of refractory juvenile idiopathic arthritis [abstract].  Arthritis Rheum. 2002;46:S481Google Scholar
146.
Lahdenne P, Vahasalo P, Honkanen V. Infliximab or etanercept in the treatment of children with refractory juvenile idiopathic arthritis: on open label study.  Ann Rheum Dis. 2003;62:245-24712594111Google ScholarCrossref
147.
Gerloni V, Pontikaki I, Gattinara M.  et al.  Efficacy of repeated intravenous infusions of an anti-tumor necrosis factor alpha monoclonal antibody, infliximab, in persistent active, refractory juvenile idiopathic arthritis: results of an open-label prospective study.  Arthritis Rheum. 2005;52:548-55315693004Google ScholarCrossref
148.
Crandall WV, Mackner LM. Infusion reactions to infliximab in children and adolescents: frequency, outcome and predictive model.  Aliment Pharmacol Ther. 2003;17:75-8412492735Google ScholarCrossref
149.
Lovell DJ, Ruperto N, Goodman S.  et al.  Preliminary data from the study of adalimumab in children with juvenile idiopathic arthritis (JIA) [abstract].  Arthritis Rheum. 2004;50:(suppl)  S436Google Scholar
150.
Ilowite NT, Porras O, Reiff A.  et al.  A twelve-week open label safety and efficacy study of anakinra (Kineret) in juvenile rheumatoid arthritis [abstract].  Ann Rheum Dis. 2003;62:(suppl 1)  87Google Scholar
151.
Irigoyen PI, Olson J, Hom C, Ilowite NT. Treatment of systemic onset juvenile rheumatoid arthritis with anakinra [abstract].  Arthritis Rheum. 2004;50:(suppl)  S437Google Scholar
152.
Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade.  J Exp Med. 2005;201:1479-148615851489Google ScholarCrossref
153.
Uziel Y, Laxer RM, Schneider R, Silverman ED. Intravenous immunoglobulin therapy in systemic onset juvenile rheumatoid arthritis: a followup study.  J Rheumatol. 1996;23:910-9188724308Google Scholar
154.
Barnett ML, Combitchi D, Trentham DE. A pilot trial of oral type II collagen in the treatment of juvenile rheumatoid arthritis.  Arthritis Rheum. 1996;39:623-6288630112Google ScholarCrossref
155.
Pignatti P, Vivarelli M, Meazze C, Rizzolo MG, Martini A, de Benedetti F. Abnormal regulation of interleukin 6 in systemic juvenile idiopathic arthritis.  J Rheumatol. 2001;28:1670-167611469477Google Scholar
156.
Ogilvie EM, Fife MS, Thompson SD.  et al.  The –174G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families.  Arthritis Rheum. 2003;48:3202-320614613283Google ScholarCrossref
157.
Yokota S, Miyamae T, Imagawa T.  et al.  Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis.  Arthritis Rheum. 2005;52:818-82515751095Google ScholarCrossref
158.
Wulffraat N, van Royen A, Bierings M, Vossen J, Kuis W. Autologous haemopoietic stem-cell transplantation in four patients with refractory juvenile chronic arthritis.  Lancet. 1999;353:550-55310028984Google ScholarCrossref
159.
De Kleer IM, Brinkman DM, Ferster A.  et al.  Autologous stem cell transplantation for refractory juvenile idiopathic arthritis: analysis of clinical effects, mortality, and transplant related morbidity.  Ann Rheum Dis. 2004;63:1318-132615361393Google ScholarCrossref
Clinical Review
Clinician's Corner
October 5, 2005

Medical Treatment of Juvenile Idiopathic Arthritis

Author Affiliations
 

Clinical Review Section Editor: Michael S. Lauer, MD. We encourage authors to submit papers for consideration as a “Clinical Review.” Please contact Michael S. Lauer, MD, at

 

Author Affiliations: Section of Pediatric Rheumatology, Department of Rheumatic Diseases, Cleveland Clinic Foundation, Cleveland, Ohio (Dr Hashkes); Department of Clinical and Academic Affairs, The Hospital for Sick Children and Department of Pediatrics and Medicine, The University of Toronto, Toronto, Ontario (Dr Laxer).

JAMA. 2005;294(13):1671-1684. doi:10.1001/jama.294.13.1671
Abstract

Context The treatment of juvenile idiopathic arthritis (JIA) has changed markedly in the last 15 years. Many children with JIA are not treated by pediatric rheumatologists.

Objective To review the best evidence for the treatment of JIA.

Data Sources English-language trials of JIA between 1966 and 2005 were searched using MEDLINE, EMBASE, the Cochrane database, and abstracts from recent rheumatology and pediatric scientific meetings.

Study Selection Randomized controlled trials and open studies including at least 10 patients for medications without controlled trials.

Data Extraction For studies after 1997, the American College of Rheumatology Pediatric 30 outcome measure was used to define patients as responders. For older studies, the primary response outcome measure defined by the authors was used.

Data Synthesis Thirty-four controlled studies were identified. Nonsteroidal anti-inflammatory drugs are effective only for a minority of patients, mainly those with oligoarthritis. Intra-articular corticosteroid injections are very effective for oligoarthritis. Methotrexate is effective for the treatment of extended oligoarthritis and polyarthritis and less effective for systemic arthritis. Sulfasalazine and leflunomide may be alternatives to methotrexate. Antitumor necrosis factor medications are highly effective for polyarticular course JIA not responsive to methotrexate but are less effective in systemic arthritis. There is a lack of evidence for the optimal treatment of systemic and enthesitis-related arthritis.

Conclusions Despite many advances in the treatment of JIA, there is still a lack of evidence for treatment of several disease subtypes. The treatment plan needs to be individualized based on the JIA subtype.

Juvenile idiopathic arthritis (JIA), previously called juvenile rheumatoid arthritis until recent reclassification, is the most common rheumatic disease of childhood.1 JIA is defined as persistent arthritis for more than 6 weeks with an onset at less than 16 years of age, after excluding other causes. JIA consists of several subtypes (Table 1, Figure 1).2,3Quiz Ref IDRecent data show that most children never achieve a long-term remission, thus the burden of disease to the patient, family, and ultimately society is large.4-14 It is important to recognize the disease and to treat early, before soft-tissue deformities and joint damage become irreversible (Figure 2).

The treatment of JIA combines anti-inflammatory and immunomodulatory medications with physical and occupational therapy, an occasional need for surgery, nutritional support, and psychosocial and educational partnership with patients and parents. The treatment of JIA has changed markedly in the last 15 years, yet many children are not treated by pediatric rheumatologists.15 This review summarizes the current evidence-based medical therapy for JIA (not including uveitis) and offers a rational approach for the treatment of the various subtypes of disease.

Methods
Data Sources

A literature search was performed for English-language clinical trials in JIA, with an emphasis on randomized trials. We used MEDLINE, EMBASE, and Cochrane and systematic reviews to identify trials from 1966 to 2005 and reviewed abstracts from the 2003 to 2004 major rheumatology and pediatric meetings. Besides JIA, we used other terms of chronic arthritidies of childhood and searched all drugs used to treat inflammatory arthritidies (list available on request). A total of 279 studies were identified including 34 randomized and 28 double-blinded trials. Fourteen controlled trials were for nonsteroidal anti-inflammatory drugs (NSAIDs), 14 for disease-modifying antirheumatic drugs (DMARDs) or immunosuppressive medications or systemic corticosteroids, 3 for intra-articular corticosteroid injections, and 3 for biologic-modifying agents (Table 2, Table 3, Table 4, Table 5). For medications without controlled studies, open trials or series with at least 10 patients were reviewed. Meta-analysis was not performed since for most medications except NSAIDs, only 1 controlled trial was done for a specific JIA subtype. Furthermore, for medications with more than 1 study, the comparison group was usually an active control, the study designed as an equivalence study, and the outcomes varied significantly.

Outcome Measures

We used the validated consensus outcome measures of the American College of Rheumatology (ACR) Pediatric 30 defining patients as responders or nonresponders, which were developed in 1997 (Box).49 For older trials, we used the responder measure defined by the authors. There was a large variance in those outcome definitions.

Box Section Ref IDBox. Validated Outcome Measures for Juvenile Idiopathic Arthritis Trials

  • Active joint count (joints with swelling or with limitation of motion and tenderness/pain on motion)

  • Joints with limited range of motion

  • Parent/Patient global assessment (measured on 0-10 visual analog scale)

  • Physician global assessment (measured on 0-10 visual analog scale)

  • Laboratory measure of inflammation (erythrocyte sedimentation rate, C-reactive protein)

  • Functional assessment (Childhood Health Assessment Questionnaire)

A patient is considered to have responded if there has been an improvement in at least 3 variables by at least 30% and worsening in not more than one variable by more than 30%.

Treatments

Rationale for the Current Treatment Approach. Until 1990, treatment was based on the pyramid approach initially using various NSAIDs and corticosteroids and gradually advancing to other medications. Studies, however, have indicated that previous assumptions on the course and outcome of JIA were incorrect. Radiologic joint damage, thought to occur late in the disease course, occurs in most patients with systemic arthritis and polyarthritis within 2 years and in oligoarthritis within 5 years.4,50 Earlier cartilage damage was demonstrated using magnetic resonance imaging.51

Quiz Ref IDThe assumption that JIA will usually resolve by adulthood is incorrect. Between 50% and 70% of patients with systemic arthritis or polyarthritis and 40% to 50% of patients with oligoarthritis continue to have active disease in adulthood.4-14 Between 30% and 40% of patients have significant long-term disabilities including unemployment, and between 25% and 50% need major surgery, including joint replacement.6,11-14 Patients with oligoarthritis frequently develop leg length inequality and periarticular muscle atrophy.52 JIA is associated with a mortality rate of 0.4% to 2% occurring mainly in patients with systemic arthritis, with amyloidosis and the macrophage activation syndrome being the main causes.4,53-56

Poor outcome predictors can help determine patients requiring early aggressive therapy. Patients with polyarthritis and positive rheumatoid factor, antibodies to cyclic citrullinated peptides, the presence of HLA-DR4, nodules, and early onset symmetric small joint involvement have a poor prognosis.57 Patients with systemic arthritis who are corticosteroid dependent for control of systemic symptoms and have a platelet count of more than 600×103/μL after 6 months of disease, or who have a G-C macrophage migration inhibitory factor gene polymorphism have a poor outcome.58,59

Nonsteroidal Anti-inflammatory Drugs. None of the studies of aspirin or other NSAIDs were placebo controlled, since it is ethically difficult to perform placebo controlled studies in children, particularly for drugs benefiting adults (Table 2).60 In a summary of studies, only about 25% to 33% of the patients, mainly those with oligoarthritis, showed a significant response to NSAIDs.61 A 4- to 6-week trial of an individual NSAID is necessary to assess its efficacy.62Since NSAIDs are not disease modifying, they are used more to treat pain, stiffness, and the fever associated with systemic arthritis. No individual NSAID has been shown to have a clear advantage over others in treating arthritis or the fever associated with systemic arthritis. The need to administer aspirin 3 times per day, to monitor serum levels, the greater frequency of liver enzyme abnormalities, and the possible association of Reye syndrome with salicylates have largely resulted in other NSAIDs replacing aspirin.19-21,26

NSAIDs approved by the US Food and Drug Administration for use in JIA include tolmetin, naproxen, ibuprofen, and rofecoxib (rofecoxib has since been removed from the market due to cardiovascular adverse effects in adults).16,17,21,25-27 Liquid preparations of naproxen and ibuprofen are also available. Other NSAIDs that have undergone controlled studies include diclofenac, ketoprofen, indomethacin, piroxicam, fenoprofen, sulindac, and meloxicam (Table 2). 18-20,22-25,28,29 Comparative efficacy of nabumetone was reported in an open study.63

Serious gastrointestinal adverse effects are rare, 64,65 although as many as 28% of children develop gastrointestinal symptoms.66 Of these, 34% to 75% were found to have gastritis and/or duodenitis.66,67 Another important adverse effect is the development of pseudoporphyria, most often associated with naproxen use in whites with fair hair.68,69 Central nervous system adverse effects may occur including headaches and disorientation, especially from indomethacin. Renal adverse effects, particularly papillary necrosis or tubular function abnormalities, are uncommon but are more frequent during concurrent use of more than 1 NSAID.70,71 Cardiovascular adverse effects were not addressed and there are no case reports of these events in JIA. Only 2 NSAID studies (for naproxen and meloxicam) prospectively followed JIA patients for at least 6 months.29,64

Corticosteroids. Due to many deleterious effects, especially on bone and growth, pediatric rheumatologists try to minimize systemic use of corticosteroids for JIA. There is no evidence that systemic corticosteroids are disease modifying. The main indications are severe fever, serositis, and the macrophage activation syndrome in systemic arthritis or as a bridging medication until other medications become effective. In some patients, periodic intravenous pulses of corticosteroids (30 mg/kg per dose, maximal 1 g) are used instead of high-dose daily oral corticosteroids, although there are no controlled studies showing fewer adverse effects in children.72 A retrospective series of 20 patients with systemic arthritis reported on the use of high-dose alternate-day corticosteroids as an alternative to daily corticosteroids with equal efficacy and fewer adverse reactions.73 One controlled study showed that the use of intravenous mini-pulses of corticosteroids in the first week of treating systemic arthritis resulted in lower daily and cumulative doses at 6 months, when compared with initial oral doses of corticosteroids (Table 3).38

There is better evidence for the efficacy of intra-articular injections of corticosteroids, particularly in patients with oligoarthritis (Table 4).Quiz Ref IDStudies have shown that as many as 70% of patients with oligoarthritis do not have reactivation of disease in the injected joint for at least 1 year and 40% for more than 2 years.43-45,74-80 Radiographic and magnetic resonance imaging studies have shown a marked decrease in synovial volume after injection without deleterious effects on the cartilage.75 There were significantly fewer patients with leg length discrepancies in a practice advocating repeated early intra-articular corticosteroid injections when compared with a practice rarely employing intra-articular injections.52 The efficacy is less in other JIA subtypes, especially systemic arthritis patients with the G-C macrophage migration inhibitory factor gene polymorphism.59,76,77

Adverse effects are few and most often are the development of periarticular subcutaneous atrophy (Figure 3). This can often be prevented by injecting small amounts of saline into the joint and applying pressure following the injection.74 Repeated injections to an individual joint were not found to be associated with joint or cartilage damage.81 Asymptomatic calcifications are occasionally found after injections. In one series examining the outcome of hip injections, aseptic necrosis did not occur.78 The long-acting triamcinolone hexacetonide is more effective and has a longer effect than other forms of injectable corticosteroids (Table 4).43-45 Younger children or children needing multiple joint injections usually require sedation.

Methotrexate. Methotrexate is the treatment cornerstone for most patients with polyarthritis (Table 3).37,82 An open randomized study showed that increasing the dose of methotrexate to 15 mg/m2 per week and giving methotrexate parenterally was effective for most patients not responsive to 10 mg/m2 per week. There was no additional advantage in giving higher doses up to 30 mg/m2 per week.41

The greatest efficacy of methotrexate was seen in patients with extended oligoarthritis, while in a randomized study no significant effect was found in patients with systemic arthritis.40,83-85 Methotrexate may exhibit a disease-modifying effect as the radiologic damage progression rate was decreased in 2 small uncontrolled series.86,87

It is not clear when a patient can stop taking methotrexate because the disease will flare in as many as 60% of the patients after discontinuing methotrexate.88-90 One study found that continuing methotrexate for more than 1 year of inactive disease was associated with a lower rate of flare,88 while another did not find differences between patients who discontinued methotrexate 3 months after disease inactivity vs 1 year.89 The level of myeloid-basic protein 14 when methotrexate was discontinued was a better predictor of flare.89 Nearly 90% of patients respond when methotrexate is restarted.88,90

Since food decreases the bioavailability of methotrexate, it is advised to give methotrexate on an empty stomach.91 At doses of 10 mg/m2 per week, there is no difference in the efficacy of methotrexate whether administered orally or parenterally, although parenteral methotrexate may be better tolerated.92,93 Methotrexate at greater doses is usually given by subcutaneous or intramuscular injection, since oral methotrexate is not absorbed well at doses equal to or above 12 mg/m2.94

Quiz Ref IDMethotrexate should be administered with folic acid 1 mg per day, or folinic acid, 25% to 50% of the methotrexate dose, given once weekly the day after methotrexate. A controlled study of folic acid and a retrospective study of folinic acid found decreased occurrences of nausea, oral ulcerations, and perhaps liver enzyme abnormalities without decreasing the efficacy of methotrexate.95,96

Nausea and other gastrointestinal symptoms are frequent. Management strategies include taking methotrexate before bed, switching the administration from oral to parenteral, and using antiemetics.97 Some children develop a psychologic aversion to methotrexate that can be alleviated by teaching relaxation or self-hypnosis techniques.

Tests to monitor complete blood cell counts, liver enzymes, and renal function are recommended, although the optimal frequency of testing is unclear. A recent study reported that tests at 3-month intervals at doses up to 15 mg/m2 per week detected significant hematologic and liver enzyme abnormalities as often as testing at monthly intervals.98 While mild elevations of liver enzymes occur frequently, no cases of severe, irreversible liver fibrosis have been reported in JIA.99,100 Routine liver biopsies are not recommended. Persistent liver enzyme abnormalities and obesity are associated with more significant histology changes, including mild fibrosis, and liver biopsies should be considered in those patients.101 Pulmonary toxicity is very rare in children and pulmonary function was normal in patients with JIA on long-term methotrexate.102,103 Nodulosis has rarely been reported.104,105 Very few severe infections have been reported in children. Children should avoid live vaccinations while using methotrexate and annual influenza vaccine is recommended. If possible, children should receive varicella vaccine prior to starting methotrexate. Rare cases of Hodgkin and non-Hodgkin lymphomas have been reported in children treated with methotrexate.106-109 However, current data do not suggest that the rate of malignancies is greater than in the general child population.

Other Disease-Modifying Antirheumatic Drugs and Immunosuppressive Medications

Most controlled studies in children did not find hydroxychloroquine, oral gold, or D-penicillamine to be significantly effective in the treatment of JIA, although one study using less rigorous outcome measures found that D-penicillamine was more effective than placebo in the treatment of oligoarthritis and polyarthritis.30-33,35,110-112 One study did not find parenteral gold to be more effective than D-penicillamine or hydroxycholoquine.31

Most studies of sulfasalazine were not controlled.113 One controlled study showed that sulfasalazine is effective in the treatment of oligoarthritis and polyarthritis.39 However, in a small placebo-controlled study of juvenile spondyloarthropathy,114 and a study comparing sulfasalazine with chloroquine in oligoarthritis and polyarthritis,36 no significant differences were found. In many of the open studies, sulfasalazine was most effective in boys older than age 9 years and adolescents aged 13 to 17 years with oligoarthritis113 representing, perhaps, children with enthesitis-related arthritis. Adverse reactions were frequently reported, especially rashes, gastrointestinal symptoms, and leukopenia, and sulfasalazine was discontinued in nearly one third of the patients.39,113 Adverse effects may be especially severe in patients with systemic arthritis.113

In a controlled study comparing leflunomide with methotrexate for patients with polyarthritis, significantly more responders were found in the methotrexate group, although high response rates were also found with leflunomide.42 Most of the patients responsive to leflunomide maintained their response in a 2-year open label extension study.115 No significant differences in adverse effects were found. A controlled study of azathioprine did not find a significantly greater efficacy than placebo.34 There are no studies of minocycline use in JIA.

There are no controlled studies of cyclosporin A in JIA. Small series have shown cyclosporin A to be efficacious in some patients refractory to methotrexate.116,117 Cyclosporin A may be more beneficial for fever control and corticosteroid dose reduction than for the treatment of arthritis in systemic arthritis and may be especially effective in patients with the macrophage activation syndrome.117,118 There were many adverse effects, especially renal, associated with cyclosporine.

One large open series showed chlorambucil to be beneficial in patients with refractory JIA, especially those with amyloidosis, but the high mortality rate (6%), including the development of leukemia, precludes using the drug other than as a last resort.119,120

An open series of 13 patients found that thalidomide was effective in the treatment of refractory systemic arthritis, both for systemic features and arthritis.121 No significant adverse-effects were noted. Besides the teratogenic effect, careful observation for the development of peripheral neuropathy is necessary.

There are no controlled studies of combination DMARD therapy in JIA. In a series of 17 patients with polyarthritis refractory to methotrexate, treated with methotrexate and cyclosporin A, 8 patients (47%) met the ACR Pediatric 30 criteria for improvement.122 In a study of 18 patients with systemic arthritis, an excellent response was found in all patients treated with a combination of intravenous pulse corticosteroids and cyclophosphamide 400 mg/m2 given every 3 months with methotrexate 10 mg/m2 per week when treated early in the disease course for 1 year.123

Biologic-Modifying Medications

Anti–Tumor Necrosis Factor Medications. Etanercept, a soluble tumor necrosis factor (TNF) receptor, was found to be effective in a 2-phase withdrawal study (Table 5).48 Etanercept demonstrated sustained benefit in the majority of patients after 2 and 4 years, although methotrexate was added for many of the patients and prednisone in some.124,125 These findings were confirmed in the large German etanercept registry.126 More than 50% of patients have a response greater than the ACR Pediatric 70 level.124-126

Several uncontrolled studies have suggested that etanercept is less effective in patients with systemic arthritis and that the initial response is often not sustained.48,127-130 An excellent response to etanercept and infliximab was found in 2 open studies of 50 patients with juvenile spondyloarthropathy.131,132 Higher doses of etanercept do not appear to increase efficacy among the approximately 25% of these children who do not respond to etanercept.133 No controlled studies were published on the combination of etanercept with methotrexate vs etanercept or methotrexate alone, although in the German registry data there was a higher ACR Pediatric 70 response in patients with systemic arthritis receiving a methotrexate-etanercept combination as opposed to etanercept monotherapy.134 There are no reports on the radiologic effects of etanercept or other anti-TNF medications in JIA, although marked decreases in the radiologic progression were found in adults with rheumatoid arthritis.135

Adverse effects of etanercept are generally mild, mainly injection site reactions, upper respiratory tract infections, and headaches. However, in a series of 61 patients with polyarthritis and systemic arthritis, 12 (20%) discontinued etanercept due to adverse effects, including neurologic, psychiatric, severe infections, cutaneous vasculitis, and pancytopenia.128 One case of aseptic meningitis-complicating varicella and other bacterial infections needing hospitalization have been reported.48,124-128 One case each of tuberculosis and histoplasmosis were reported in JIA (both to infliximab).136,137 No cases of malignancy have been reported in children. Autoimmune phenomena have been reported in several children or young adults with JIA.126,138-141 Several cases of a uveitis flare or the new development of uveitis were reported during use of etanercept.126,128,142 Adult screening guidelines for tuberculosis, at a minimum using purified protein derivative skin testing prior to anti-TNF therapy, are generally adopted in pediatric practice.

Controlled studies of the anti-TNF antibodies infliximab and adalimumab are under way for polyarthritis. Several uncontrolled studies have shown that infliximab has an efficacy similar to etanercept, including young adults with JIA.143-147 Patients receiving infliximab often develop adverse reactions during infusion, including anaphylaxis, since infliximab is based on a murine protein.148 Premedication with acetaminophen, diphenhydramine, and occasionally hydrocortisone usually prevents or minimizes these reactions. The open phase of a large adalimumab trial found a 78% ACR Pediatric 30 response when given at a dose of 24 mg/m2 subcutaneously every other week (maximum 40 mg).149 Patients receiving concurrent methotrexate had a higher response rate than those treated only with adalimumab, although the study power was not adequate to detect a significant difference.

Interleukin 1 Receptor Antagonists. There are no controlled studies of anakinra, an interleukin (IL) 1 receptor antagonist, in JIA. An open 12-week study of 82 patients with a polyarthritis course who were given subcutaneous injections of anakinra at 1 mg/kg per day showed an ACR Pediatric 30 response in 46 (58%) of the patients, less than the open phase of anti-TNF studies. No differences were seen in children with or without concurrent methotrexate. The need for daily injections may also increase the difficulty of giving anakinra.150

Initial promising results using anakinra for systemic arthritis have been reported for both the systemic and articular components, including patients not responsive to anti-TNF medications.151 In the study of polyarthritis, patients with systemic-onset disease showed a more favorable response than those with polyarthritis or oligoarthritis-onset.150 Sera from patients with systemic arthritis stimulated IL-1 gene expression and production in mononuclear blood cells from healthy individuals, providing rationale for this approach.152

Intravenous Immunoglobulin. Two controlled studies did not find intravenous immunoglobulin (IVIg) to be effective in the treatment of the arthritis component of systemic arthritis and polyarthritis JIA (Table 5).46,47 However, both studies had a low power to detect significant differences. There may be more benefit for IVIg in the first year of the disease and for the treatment of the systemic features of systemic arthritis,46,153 but this has not been examined in a controlled study.

Type II Collagen. An uncontrolled pilot trial of oral chicken type II collagen in 10 patients with various types of relatively mild JIA showed a significant reduction in active joints in 6 patients.154

Other Biologic-Modifying Drugs

An important cytokine in the pathogenesis of systemic arthritis is IL-6.155,156 An open series of 11 patients with systemic arthritis given anti–IL-6 receptor antibody intravenously at 8 mg/kg every 2 weeks reported an ACR Pediatric 70 response in 7 of the patients after the second dose.157

There are no studies in JIA of new medications found to be effective in rheumatoid arthritis, including rituximab (anti-CD20 B-cell antibodies) or abatacept (anti-CD28, T-cell costimulator antibodies).

There are no studies on the early use of biologic-modifying medications or the effect of early induction therapy including a combination of methotrexate and biologic medications with or without steroid use.

Autologous Stem Cell Transplantation

Wulffraat et al reported on 34 children with longstanding and unresponsive systemic and polyarthritis JIA who underwent autologous stem cell transplantation (ASCT) with nonautoreactive T-cell precursors, with a mean follow-up of 29 months (range, 12-60).158,159 Complete drug-free remission was reported in 18 (53%) patients, partial ACR Pediatric 30 response in 6 (18%), and no improvement in 7 (21%). There were 5 (15%) mortalities following ASCT, 3 from early post-ASCT infectious-associated macrophage activation syndrome and 2 nonresponsive patients 13 and 16 months following ASCT.

There are still many open issues regarding the ASCT protocol; therefore, ASCT must still be regarded as an experimental procedure for patients with severe and unremitting disease.

Summary of Treatment Evidence for JIA Subtypes

The summary and algorithms are based on our data interpretation. Internationally recognized guidelines have not been adopted in JIA.

Oligoarthritis. Approximately ¼ to ⅓ of patients will respond to NSAIDs (Figure 4) (Table 6). In patients not responsive to NSAIDs after 4 to 6 weeks, or patients presenting with flexion contractures or leg length discrepancies, intra-articular corticosteroid injections, especially triamcinolone hexacetonide, is effective for most. Patients not responsive to corticosteroid injections or with extended oligoarthritis or small joint involvement should be treated as patients with polyarthritis.

Polyarthritis, Rheumatoid Factor Negative. NSAIDs are mostly not effective as disease-modifying medications and should not be used as a sole medication if not effective after a trial of several weeks (Figure 5) (Table 6). The use of an NSAID is more for symptom control. Methotrexate should be started early, initially at 10 mg/m2 per week, and if not effective, increased to 15 mg/m2 per week and given parenterally. Alternatives include the use of sulfasalazine and leflunomide. If not effective, anti-TNF medications should be used, although there is still no evidence whether a combination of methotrexate and anti-TNF medications are more effective than only anti-TNF medications.

Intra-articular corticosteroid injections can be used as an adjunct for 1 or a few painful or swollen joints. Systemic corticosteroids may be necessary as a bridging medication or during flares.

Polyarthritis, Rheumatoid Factor Positive. These patients have a poor outcome and should be treated aggressively per algorithms for rheumatoid arthritis in adults, including the early use of methotrexate and addition of anti-TNF medications in patients with an inadequate response to methotrexate. Although not studied in children, other medications and combination therapy effective in rheumatoid arthritis may be effective.

Systemic Arthritis. There is a particular lack of treatment evidence for systemic arthritis (Figure 6). NSAIDs and systemic corticosteroids are often needed for symptomatic (fever, serositis) relief. There is no evidence on the preferred method of corticosteroid administration, although one controlled study found that patients who received early intravenous methylprednisolone needed fewer total systemic corticosteroids than patients starting corticosteroids orally.

Intra-articular corticosteroid injections, methotrexate, and anti-TNF medications appear to be less beneficial than in other subtypes of JIA, both for the systemic and arthritis components. While IVIg is not effective for the treatment of arthritis, there may be some benefit including a corticosteroid-sparing effect, on the systemic component.

Uncontrolled studies have shown promising results using anti–IL-6 receptor antibodies, anakinra, thalidomide, or early treatment with a combination of cyclophosphamide, methotrexate, and intravenous pulse corticosteroids. For patients with severe, unresponsive systemic or polyarthritis JIA, ASCT may used be as a last resort.

Treatment for the macrophage activation syndrome includes high-dose intravenous corticosteroid pulses and if not rapidly effective, cyclosporine should be added.

Enthesitis-Related Arthritis. There is little evidence-based medicine for this form of JIA. Open series studies have indicated that sulfasalazine may be beneficial, particularly for boys aged 9 years or older with peripheral arthritis, although in the one small controlled study, there was no significant benefit for sulfasalazine. There are no studies of methotrexate use. Open studies found that anti-TNF medications were highly effective.

Psoriatic Arthritis. There are no treatment studies of psoriatic arthritis in children. The presentation of psoriatic arthritis can be as oligoarthritis, polyarthritis and enthesitis-related arthritis and until other evidence is reported should be treated as the parallel JIA subset.

CONCLUSION and FUTURE DIRECTIONS

The development of new therapies has markedly increased the ability to effectively treat children with JIA and the future appears promising. However, there is still a lack of evidence-based medicine in the treatment of some JIA subtypes. Quiz Ref IDThe effect of early aggressive therapy on the disease course, including the potential use of combination induction therapy, has not been studied. The long-term disease-modifying effects of methotrexate and biologic medications on remission rates, radiologic changes, functional capabilities, the prevention of surgery, and the long-term adverse effects are unknown. Future multicenter controlled studies and postmarketing surveillance are necessary to address these issues.

Back to top
Article Information

Corresponding Author: Philip J. Hashkes, MD, MSc, Department of Rheumatic Diseases A50, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195 (hashkep@ccf.org).

Financial Disclosures: None reported.

References
1.
Manners PJ, Bowers C. Worldwide prevalence of juvenile arthritis: why does it vary so much?  J Rheumatol. 2002;29:1520-153012136914Google Scholar
2.
Petty RE, Southwood TR, Manners P.  et al.  International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001.  J Rheumatol. 2004;31:390-39214760812Google Scholar
3.
Wallace CA, Sherry DD. Rudolph’s Pediatrics. Juvenile rheumatoid arthritis. In: 21st ed. New York, NY: McGraw-Hill; 2003:836-837
4.
Wallace CA, Levinson JE. Juvenile rheumatoid arthritis: outcome and treatment for the 1990s.  Rheum Dis Clin North Am. 1991;17:891-9051767079Google Scholar
5.
Gare BA, Fasth A. The natural history of juvenile chronic arthritis: a population based cohort study II: outcome.  J Rheumatol. 1995;22:308-3197738955Google Scholar
6.
Peterson LS, Mason T, Nelson AM, O’Fallon WM, Gabriel SE. Psychosocial outcomes and health status of adults who have had juvenile rheumatoid arthritis: a controlled, population-based study.  Arthritis Rheum. 1997;40:2235-22409416862Google ScholarCrossref
7.
Zak M, Pedersen FK. Juvenile chronic arthritis into adulthood: a long-term follow-up study.  Rheumatology. 2000;39:198-20410725073Google ScholarCrossref
8.
Guillaume S, Prieur AM, Coste J, Job-Deslandre C. Long-term outcome and prognosis in oligoarticular-onset juvenile idiopathic arthritis.  Arthritis Rheum. 2000;43:1858-186510943877Google ScholarCrossref
9.
Lomater C, Gerloni V, Gattinara M, Mazzotti J, Cimaz R, Fantini F. Systemic onset juvenile rheumatoid arthritis: a retrospective study of 80 consecutive patients followed for 10 years.  J Rheumatol. 2000;27:491-49610685819Google Scholar
10.
Minden K, Niewerth M, Listing J.  et al.  Long-term outcome in patients with juvenile rheumatoid arthritis.  Arthritis Rheum. 2002;46:2392-240112355487Google ScholarCrossref
11.
Oen K, Malleson PN, Cabral DA, Rosenberg AM, Petty RE, Cheang M. Disease course and outcome of juvenile rheumatoid arthritis in a multicenter cohort.  J Rheumatol. 2002;29:1989-199912233897Google Scholar
12.
Fantini F, Gerloni V, Gattinara M, Cimaz R, Arnoldi C, Lupi E. Remission in juvenile chronic arthritis: a cohort study of 683 consecutive cases with a mean follow-up of 10 years.  J Rheumatol. 2003;30:579-58412610820Google Scholar
13.
Packham JC, Hall MA. Long-term follow-up of 246 adults with juvenile idiopathic arthritis: functional outcome.  Rheumatology. 2002;41:1428-143512468825Google ScholarCrossref
14.
Foster HE, Marshall N, Myers A, Dunklet P, Griffiths ID. Outcome in adults with juvenile idiopathic arthritis: a quality of life study.  Arthritis Rheum. 2003;48:767-77512632431Google ScholarCrossref
15.
Mayer ML, Sandborg CI, Mellins ED. Role of pediatric and internist rheumatologists in treating children with rheumatic diseases.  Pediatrics. 2004;113:e173-e18114993573Google ScholarCrossref
16.
Levinson JE, Baum J, Brewer E Jr, Fink C, Hanson V, Schaller J. Comparison of tolmetin sodium and aspirin in the treatment of juvenile rheumatoid arthritis.  J Pediatr. 1977;91:799-804333079Google ScholarCrossref
17.
Makela AL. Naproxen in the treatment of juvenile rheumatoid arthritis: metabolism, safety and efficacy.  Scand J Rheumatol. 1977;6:193-205343231Google ScholarCrossref
18.
Bhettay E, Thomson AJ. Double-blind study of ketoprofen and indomethacin in juvenile chronic arthritis.  S Afr Med J. 1978;54:276-278362571Google Scholar
19.
Brewer EJ, Giannini EH, Baum J.  et al.  Aspirin and fenoprofen (Nalfon) in the treatment of juvenile rheumatoid arthritis results of the double blind-trial: a segment II study.  J Rheumatol. 1982;9:123-1287045360Google Scholar
20.
Haapasaari J, Wuolijoki E, Ylijoki H. Treatment of juvenile rheumatoid arthritis with diclofenac sodium.  Scand J Rheumatol. 1983;12:325-3306361986Google ScholarCrossref
21.
Kvien TK, Hoyeraal HM, Sandstad B. Naproxen and acetylsalicylic acid in the treatment of pauciarticular and polyarticular juvenile rheumatoid arthritis: assessment of tolerance and efficacy in a single-center 24-week double-blind parallel study.  Scand J Rheumatol. 1984;13:342-3506395321Google ScholarCrossref
22.
Bhettay E. Double-blind study of sulindac and aspirin in juvenile chronic arthritis.  S Afr Med J. 1986;70:724-7263538450Google Scholar
23.
Williams PL, Ansell BM, Bell A.  et al.  Multicenter study of piroxicam versus naproxen in juvenile chronic arthritis, with special reference to problem areas in clinical trials of nonsteroidal anti-inflammatory drugs in childhood.  Br J Rheumatol. 1986;25:67-713510686Google ScholarCrossref
24.
Garcia-Morteo O, Maldonado-Cocco JA, Cuttica R, Garay SM. Piroxicam in juvenile rheumatoid arthritis.  Eur J Rheumatol Inflamm. 1987;8:49-532957205Google Scholar
25.
Leak AM, Richter MR, Clemens LE, Hall MA, Ansell BM. A crossover study of naproxen, diclofenac and tolmetin in seronegative juvenile chronic arthritis.  Clin Exp Rheumatol. 1988;6:157-1603052965Google Scholar
26.
Giannini EH, Brewer EJ, Miller ML.  et al.  Ibuprofen suspension in the treatment of juvenile rheumatoid arthritis.  J Pediatr. 1990;117:645-6522213396Google ScholarCrossref
27.
Kiss MH, Reiff AA, Reicin AS.  et al.  J. Rofecoxib demonstrates efficacy and tolerability in children and adolescents (ages 2-17 years) with juvenile rheumatoid arthritis (JRA) in a 12-week randomized study [abstract].  Arthritis Rheum. 2003;48:(suppl)  S650Google Scholar
28.
Gedalia A, Espada G, Johnson P, Kovacs B, Wood C, Padula S.Meloxicam in JRA Study Group.  Efficacy and safety of meloxicam oral suspension in the treatment of juvenile rheumatoid arthritis (JRA): results from a twelve-week active-controlled (naproxen oral suspension), multinational trial [abstract].  Arthritis Rheum. 2004;50:(suppl)  S95Google Scholar
29.
Ruperto N, Nikishina I, Pachanov ED.  et al.  A randomized double-blind clinical trial of two doses of meloxicam compared with naproxen in children with juvenile idiopathic arthritis: short- and long-term efficacy and safety results.  Arthritis Rheum. 2005;52:563-57215692986Google ScholarCrossref
30.
Kvien TK, Hoyeraal HM, Sandstad B. Gold sodium thiomalate and D-penicillamine: a controlled, comparative study in patients with pauciarticular and polyarticular juvenile rheumatoid arthritis.  Scand J Rheumatol. 1985;14:346-3543936167Google ScholarCrossref
31.
Kvien TK, Hoyeraal HM, Sandstad B. Slow acting antirheumatic drugs in patients with juvenile rheumatoid arthritis evaluated in a randomized, parallel 50-week clinical trial.  J Rheumatol. 1985;12:533-5393930720Google Scholar
32.
Prieur AM, Piussan C, Manigne P, Bordigoni P, Griscelli C. Evaluation of D-penicillamine in juvenile chronic arthritis: a double-blind, multicenter study.  Arthritis Rheum. 1985;28:376-3823885958Google ScholarCrossref
33.
Brewer EJ, Giannini EH, Kuzmina N, Alekseev L. Penicillamine and hydroxychloroquine in the treatment of severe juvenile rheumatoid arthritis: results of the U.S.A.-U.S.S.R. double-blind placebo-controlled trial.  N Engl J Med. 1986;314:1269-12763517643Google ScholarCrossref
34.
Kvien TK, Hoyeraal HM, Sandstad B. Azathioprine versus placebo in patients with juvenile rheumatoid arthritis: a single center double blind comparative study.  J Rheumatol. 1986;13:118-1233517321Google Scholar
35.
Giannini EH, Brewer EJ Jr, Kuzmina N, Shaikov A, Wallin B. Auranofin in the treatment of juvenile rheumatoid arthritis: results of the USA-USSR double-blind, placebo-controlled trial.  Arthritis Rheum. 1990;33:466-4762183804Google ScholarCrossref
36.
Hoza J, Kadlecova T, Nemcova D, Havelka S. Sulfasalazine and Delagil: a comparative study in patients with juvenile chronic arthritis.  Acta Univ Carol [Med]. 1991;37:80-831688268Google Scholar
37.
Giannini EH, Brewer EJ, Kuzmina N.  et al.  Methotrexate in resistant juvenile rheumatoid arthritis: results of the U.S.A.- U.S.S.R. double-blind, placebo-controlled trial.  N Engl J Med. 1992;326:1043-10491549149Google ScholarCrossref
38.
Picco P, Gattorno M, Buoncompagni A.  et al.  6-Methylprednisolone “mini-pulses”: a new modality of chronic glucocorticoid treatment in systemic onset juvenile chronic arthritis.  Scand J Rheumatol. 1996;25:24-278774551Google ScholarCrossref
39.
Van Rossum MA, Fiselier TJ, Franssen MJ.  et al.  Sulfasalazine in the treatment of juvenile chronic arthritis: a randomized double-blind, placebo-controlled, multicenter study: Dutch Juvenile Chronic Arthritis Study Group.  Arthritis Rheum. 1998;41:808-8169588731Google ScholarCrossref
40.
Woo P, Southwood TR, Prieur AM.  et al.  Randomized, placebo-controlled, crossover trial of low-dose oral methotrexate in children with extended oligoarticular or systemic arthritis.  Arthritis Rheum. 2000;43:1849-185710943876Google ScholarCrossref
41.
Ruperto N, Murray KJ, Gerloni V.  et al.  A randomized trial of parenteral methotrexate comparing an intermediate dose with a higher dose in children with juvenile idiopathic arthritis who failed to respond to standard doses of methotrexate.  Arthritis Rheum. 2004;50:2191-220115248217Google ScholarCrossref
42.
Silverman E, Mouy R, Spiegel L.  et al.  Leflunomide or methotrexate for juvenile rheumatoid arthritis.  N Engl J Med. 2005;352:1655-166615843668Google ScholarCrossref
43.
Balogh Z, Ruzsonyi E. Triamcinolone hexacetonide versus betamethasone: a double-blind comparative study of the long-term effects of intra-articular steroids in patients with juvenile chronic arthritis.  Scand J Rheumatol Suppl. 1987;67:80-823330864Google Scholar
44.
Zulian F, Martini G, Gobber D, Agosto C, Gigante C, Zacchello F. Comparison of intra-articular triamcinolone hexacetonide and triamcinolone acetonide in oligoarticular juvenile idiopathic arthritis.  Rheumatology. 2003;42:1254-125912810938Google ScholarCrossref
45.
Zulian F, Martini G, Gobber D, Plebani M, Zacchello F, Manners P. Triamcinolone acetonide and hexacetonide intra-articular treatment of symmetrical joints in juvenile idiopathic arthritis: a double-blind trial.  Rheumatology. 2004;43:1288-129115252213Google ScholarCrossref
46.
Silverman ED, Cawkwell GD, Lovell DJ.  et al.  Intravenous immunoglobulin in the treatment of systemic juvenile rheumatoid arthritis: a randomized placebo controlled trial.  J Rheumatol. 1994;21:2353-23587699642Google Scholar
47.
Giannini EH, Lovell DJ, Silverman ED, Sundel RP, Tague BL, Ruperto N. Intravenous immunoglobulin in the treatment of polyarticular juvenile rheumatoid arthritis: a phase I/II study.  J Rheumatol. 1996;23:919-9248724309Google Scholar
48.
Lovell DJ, Giannini EH, Reiff A.  et al.  Etanercept in children with polyarticular juvenile rheumatoid arthritis.  N Engl J Med. 2000;342:763-76910717011Google ScholarCrossref
49.
Giannini EH, Ruperto N, Ravelli A, Lovell DJ, Felson DT, Martini A. Preliminary definition of improvement in juvenile arthritis.  Arthritis Rheum. 1997;40:1202-12099214419Google Scholar
50.
Levinson JE, Wallace CA. Dismantling the pyramid.  J Rheumatol. 1992;19:(suppl 33)  6-101593604Google Scholar
51.
Gylys-Morin VM, Graham TB, Blebea JS.  et al.  Knee in early juvenile rheumatoid arthritis: MR imaging findings.  Radiology. 2001;220:696-70611526269Google ScholarCrossref
52.
Sherry DD, Stein LD, Reed AM, Schanberg LE, Kredich DW. Prevention of leg length discrepancy in young children with pauciarticular juvenile rheumatoid arthritis by treatment with intraarticular steroids.  Arthritis Rheum. 1999;42:2330-233410555028Google ScholarCrossref
53.
Savolainen HA, Isomaki HA. Decrease in the number of deaths from secondary amyloidosis in patients with juvenile rheumatoid arthritis.  J Rheumatol. 1993;20:1201-12038371218Google Scholar
54.
French AR, Mason T, Nelson AM, O’Fallon WM, Gabriel SE. Increased mortality in adults with a history of juvenile rheumatoid arthritis: a population based study.  Arthritis Rheum. 2001;44:523-52711263765Google ScholarCrossref
55.
Thomas E, Symmonds DP, Brewster DH, Black RJ, Macfarland GJ. National study of cause-specific mortality in rheumatoid arthritis, juvenile chronic arthritis, and other rheumatic conditions: a 20 year followup study.  J Rheumatol. 2003;30:958-96512734889Google Scholar
56.
Stephan JL, Kone-Paut I, Galambrun C, Mouy R, Bader-Meunier B, Prieur AM. Reactive haemophagocytic syndrome in children with inflammatory disorders: a retrospective study of 24 patients.  Rheumatology. 2001;40:1285-1292Google ScholarCrossref
57.
Ferucci ED, Majka DS, Parrish LA.  et al.  Antibodies against cyclic citrullinated peptide are associated with HLA-DR4 in simplex and multiplex polyarticular-onset juvenile rheumatoid arthritis.  Arthritis Rheum. 2005;52:239-24615641089Google ScholarCrossref
58.
Spiegel LR, Schneider R, Lang BA.  et al.  Early predictors of poor functional outcome in systemic-onset juvenile rheumatoid arthritis: a multicenter cohort study.  Arthritis Rheum. 2000;43:2402-240911083261Google ScholarCrossref
59.
De Benedetti F, Meazza C, Vivarelli M.  et al.  Functional and prognostic relevance of the -173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis.  Arthritis Rheum. 2003;48:1398-140712746913Google ScholarCrossref
60.
Koren G, Pastusak A. Medical research in infants and children in the eighties: analysis of rejected protocols.  Pediatr Res. 1990;27:432-4352345668Google ScholarCrossref
61.
Giannini EH, Cawkwell GD. Drug treatment in children with juvenile rheumatoid arthritis.  Pediatr Clin North Am. 1995;42:1099-11257567188Google Scholar
62.
Lovell DJ, Giannini EH, Brewer EJ Jr. Time course of response to nonsteroidal anti-inflammatory drugs in juvenile rheumatoid arthritis.  Arthritis Rheum. 1984;27:1433-14376508863Google ScholarCrossref
63.
Goodman S, Howard P, Haig A, Flavin S, Macdonald B. An open label study to establish dosing recommendations for nabumetone in juvenile rheumatoid arthritis.  J Rheumatol. 2003;30:829-83112672207Google Scholar
64.
Laxer RM, Silverman ED, St-Cyr C, Tran MT, Lingam G. A six-month open safety assessment of a naproxen suspension formulation in the therapy of juvenile rheumatoid arthritis.  Clin Ther. 1988;10:381-3873079006Google Scholar
65.
Keenan GF, Giannini EH, Athreya BH. Clinically significant gastropathy associated with nonsteroidal antiinflammatory drug use in children with juvenile rheumatoid arthritis.  J Rheumatol. 1995;22:1149-11517674245Google Scholar
66.
Dowd JE, Cimaz R, Fink CW. Nonsteroidal antiinflammatory drug-induced gastroduodenal injury in children.  Arthritis Rheum. 1995;38:1225-12317575716Google ScholarCrossref
67.
Mulberg AE, Linz C, Bern E.  et al.  Identification of nonsteroidal antiinflammatory drug-induced gastroduodenal injury in children with juvenile rheumatoid arthritis.  J Pediatr. 1993;122:647-6498463919Google ScholarCrossref
68.
Mehta S, Lang B. Long-term followup of naproxen-induced pseudoporphyria in juvenile rheumatoid arthritis.  Arthritis Rheum. 1999;42:2252-225410524703Google ScholarCrossref
69.
De Silva B, Banney L, Uttley W.  et al.  Pseudoporphyria and nonsteroidal antiinflammatory agents in children with juvenile idiopathic arthritis.  Pediatr Dermatol. 2000;17:480-48311123786Google ScholarCrossref
70.
Szer IS, Goldenstein-Schainberg C, Kurtin PS. Paucity of renal complications associated with nonsteroidal antiinflammatory drugs in children with chronic arthritis.  J Pediatr. 1991;119:815-8171941392Google ScholarCrossref
71.
Malleson PN, Lockitch G, Mackinnon M, Mahy M, Petty RE. Renal disease in chronic arthritis of childhood a study of urinary N-acetyl-beta-glucosaminidase and beta 2-microglobulin excretion.  Arthritis Rheum. 1990;33:1560-15662222536Google ScholarCrossref
72.
Klein-Gitelman MS, Pachman LM. Intravenous corticosteroids: adverse reactions are more variable than expected in children.  J Rheumatol. 1998;25:1995-20029779857Google Scholar
73.
Kimura Y, Fieldston E, Devries-Vandervlugt B.  et al.  High dose, alternate day corticosteroids for systemic-onset juvenile rheumatoid arthritis.  J Rheumatol. 2000;27:2018-202410955346Google Scholar
74.
Padeh S, Passwell JH. Intraarticular corticosteroid injections in the management of children with chronic arthritis.  Arthritis Rheum. 1998;41:1210-12149663477Google ScholarCrossref
75.
Huppertz HI, Tschammler A, Horwitz AE, Schwab KO. Intraarticular corticosteroids for chronic arthritis in children: efficacy and effects on cartilage and growth.  J Pediatr. 1995;127:317-3217636665Google ScholarCrossref
76.
Breit W, Frosch M, Meyer U, Heinecke A, Ganser G. A subgroup-specific evaluation of the efficacy of intraarticular triamcinolone hexacetonide in juvenile chronic arthritis.  J Rheumatol. 2000;27:2696-270211093456Google Scholar
77.
Ravelli A, Manzoni SM, Viola S, Pistorio A, Ruperto N, Martini A. Factors affecting the efficacy of intraarticular corticosteroid injection of knees in juvenile idiopathic arthritis.  J Rheumatol. 2001;28:2100-210211550981Google Scholar
78.
Neidel J, Boehnke M, Kuster RM. The efficacy and safety of intraarticular corticosteroid therapy for coxitis in juvenile rheumatoid arthritis.  Arthritis Rheum. 2002;46:1620-162812115194Google ScholarCrossref
79.
Cleary AG, Murphy HD, Davidson JE. Intra-articular corticosteroid injections in juvenile idiopathic arthritis.  Arch Dis Child. 2003;88:192-19612598375Google ScholarCrossref
80.
Eberhard BA, Sison MC, Gottlieb BS, Ilowite NT. Comparison of the intraarticular effectiveness of triamcinolone hexacetonide and triamcinolone acetonide in treatment of juvenile rheumatoid arthritis.  J Rheumatol. 2004;31:2507-251215570659Google Scholar
81.
Hagelberg S, Magnusson B, Jenner G, Andersson U. Do frequent corticosteroid injections in the knee cause cartilage damage in juvenile chronic arthritis? long-term follow-up with MRI.  J Rheumatol. 2000;27:(suppl 58)  95Google Scholar
82.
Takken T, Van Der Net J, Helders PJ. Methotrexate for treating juvenile idiopathic arthritis.  Cochrane Database Syst Rev. 2001;3:CD00312911687037Google Scholar
83.
Halle F, Prieur AM. Evaluation of methotrexate in the treatment of juvenile chronic arthritis according to the subtype.  Clin Exp Rheumatol. 1991;3:297-3021879091Google Scholar
84.
Ravelli A, Ramenghi B, Di Fuccia G.  et al.  Factors associated with response to methotrexate in systemic-onset juvenile chronic arthritis.  Acta Paediatr. 1994;83:428-4328025404Google ScholarCrossref
85.
Ravelli A, Viola S, Migliavacca D, Ruperto N, Pistorio A, Martini A. The extended oligoarticular subtype is the best predictor of methotrexate efficacy in juvenile idiopathic arthritis.  J Pediatr. 1999;135:316-32010484796Google ScholarCrossref
86.
Harel L, Wagner-Weiner L, Poznanski AK, Spencer CH, Ekwo E, Magilavy DB. Effects of methotrexate on radiologic progression in juvenile rheumatoid arthritis.  Arthritis Rheum. 1993;36:1370-13748216396Google ScholarCrossref
87.
Ravelli A, Viola S, Ramenghi B, Beluffi G, Zonta LA, Martini A. Radiologic progression in patients with juvenile chronic arthritis treated with methotrexate.  J Pediatr. 1998;133:262-2659709717Google ScholarCrossref
88.
Gottlieb BS, Keenan GF, Lu T, Ilowite NT. Discontinuation of methotrexate treatment in juvenile rheumatoid arthritis.  Pediatrics. 1997;100:994-9979374571Google ScholarCrossref
89.
Foell D, Frosch M, Schulze zur Wiesch A, Vogl T, Sorg C, Roth J. Methotrexate treatment in juvenile idiopathic arthritis: when is the right time to stop?  Ann Rheum Dis. 2004;63:206-20814722212Google ScholarCrossref
90.
Ravelli A, Viola S, Ramenghi B, Aramini L, Ruperto N, Martini A. Frequency of relapse after discontinuation of methotrexate therapy for clinical remission in juvenile rheumatoid arthritis.  J Rheumatol. 1995;22:1574-15767473486Google Scholar
91.
Dupuis LL, Koren G, Silverman ED, Laxer RM. Influence of food on the bioavailability of oral methotrexate in children.  J Rheumatol. 1995;22:1570-15737473485Google Scholar
92.
Ravelli A, Gerloni V, Corona F.  et al.  Oral versus intramuscular methotrexate in juvenile chronic arthritis.  Clin Exp Rheumatol. 1998;16:181-1839536397Google Scholar
93.
Alsufyani K, Ortiz-Alvarez O, Cabral DA, Tucker LB, Petty RE, Malleson PN. The role of subcutaneous administration of methotrexate in children with juvenile idiopathic arthritis who have failed oral methotrexate.  J Rheumatol. 2004;31:179-18214705239Google Scholar
94.
Balis FM, Savitch JL, Bleyer WA. Pharmacokinetics of oral methotrexate in children.  Cancer Res. 1983;43:2342-23456572562Google Scholar
95.
Hunt PG, Rose CD, McIlvain-Simpson G, Tejani S. The effects of daily intake of folic acid on the efficacy of methotrexate therapy in children with juvenile rheumatoid arthritis: a controlled study.  J Rheumatol. 1997;24:2230-22329375889Google Scholar
96.
Ravelli A, Migliavacca D, Viola S, Ruperto N, Pistorio A, Martini A. Efficacy of folinic acid in reducing methotrexate toxicity in juvenile idiopathic arthritis.  Clin Exp Rheumatol. 1999;17:625-62710544851Google Scholar
97.
Passo MH, Hashkes PJ. Use of methotrexate in children.  Bull Rheum Dis. 1998;47:1-59735507Google Scholar
98.
Ortiz-Alvarez O, Morishita K, Avery G.  et al.  Guidelines for blood test monitoring of methotrexate toxicity in juvenile idiopathic arthritis.  J Rheumatol. 2004;31:2501-250615570658Google Scholar
99.
Hashkes PJ, Balistreri WF, Bove KE.  et al.  The long-term effect of methotrexate therapy on the liver in patients with juvenile rheumatoid arthritis.  Arthritis Rheum. 1997;40:2226-22349416861Google ScholarCrossref
100.
Wallace CA. The use of methotrexate in childhood rheumatic diseases.  Arthritis Rheum. 1998;41:381-3919506564Google ScholarCrossref
101.
Hashkes PJ, Balistreri WF, Bove KE.  et al.  The relationship of hepatotoxic risk factors and liver histology in methotrexate therapy for juvenile rheumatoid arthritis.  J Pediatr. 1999;134:47-529880448Google ScholarCrossref
102.
Cron RQ, Sherry DD, Wallace CA. Methotrexate-induced hypersensitivity pneumonitis in a child with juvenile rheumatoid arthritis.  J Pediatr. 1998;132:901-9029602213Google ScholarCrossref
103.
Schmeling H, Stephan V, Burdach S, Horneff G. Pulmonary function in children with juvenile idiopathic arthritis and effects of methotrexate therapy.  Z Rheumatol. 2002;61:168-17212056294Google ScholarCrossref
104.
Muzaffer MA, Schneider R, Cameron B.  et al.  Accelerated nodulosis during methotrexate therapy for juvenile rheumatoid arthritis.  J Pediatr. 1996;128:698-7008627446Google ScholarCrossref
105.
Falcini F, Taccetti G, Ermini M.  et al.  Methotrexate-associated appearance and rapid progression of rheumatoid nodules in systemic-onset juvenile rheumatoid arthritis.  Arthritis Rheum. 1997;40:175-1789008613Google ScholarCrossref
106.
Padeh S, Sharon N, Schiby G.  et al.  Hodgkin's lymphoma in systemic onset juvenile rheumatoid arthritis after treatment with low dose methotrexate.  J Rheumatol. 1997;24:2035-20379330950Google Scholar
107.
Londino AV Jr, Blatt J, Knisely AS. Hodgkin's disease in a patient with juvenile rheumatoid arthritis taking weekly low dose methotrexate.  J Rheumatol. 1998;25:1245-12469632099Google Scholar
108.
Krugmann J, Sailer-Hock M, Muller T, Gruber J, Allerberger F, Offner FA. Epstein-Barr virus-associated Hodgkin's lymphoma and legionella pneumophila infection complicating treatment of juvenile rheumatoid arthritis with methotrexate and cyclosporine A.  Hum Pathol. 2000;31:253-25510685644Google ScholarCrossref
109.
Cleary AG, McDowell H, Sills JA. Polyarticular juvenile idiopathic arthritis treated with methotrexate complicated by the development of non-Hodgkin's lymphoma.  Arch Dis Child. 2002;86:47-4911806884Google ScholarCrossref
110.
Giannini EH, Cassidy JT, Brewer EJ, Shaikov A, Maximov A, Kuzmina N. Comparative efficacy and safety of advanced drug therapy in children with juvenile rheumatoid arthritis.  Semin Arthritis Rheum. 1993;23:34-468235664Google ScholarCrossref
111.
Moroldo MB, Giannini EH. Estimates of the discriminant ability of definitions of improvement for juvenile rheumatoid arthritis.  J Rheumatol. 1998;25:986-9899598903Google Scholar
112.
Giannini EH, Brewer EJ, Kuzmina N, Alekseev L, Shokh BP. Characteristics of responders and nonresponders to slow-acting antirheumatic drugs in juvenile rheumatoid arthritis.  Arthritis Rheum. 1988;31:15-203257872Google ScholarCrossref
113.
Brooks CD. Sulfasalazine for the management of juvenile rheumatoid arthritis.  J Rheumatol. 2001;28:845-85311327261Google Scholar
114.
Burgos-Vargas R, Vazquez-Mellado J, Pacheco-Tena C, Hernandez-Garduno A, Goycochea-Robles MV. A 26 week randomized double-blind placebo controlled exploratory study of sulfasalazine in juvenile onset spondyloarthropathies [letter].  Ann Rheum Dis. 2002;61:941-94212228171Google ScholarCrossref
115.
Silverman E, Spiegel L, Hawkins D.  et al.  Long-term open-label preliminary study of the safety and efficacy of leflunomide in patients with polyarticular-course juvenile rheumatoid arthritis.  Arthritis Rheum. 2005;52:554-56215693001Google ScholarCrossref
116.
Reiff A, Rawlings DJ, Shaham B.  et al.  Preliminary evidence for cyclosporin A as an alternative in the treatment of recalcitrant juvenile rheumatoid arthritis and juvenile dermatomyositis.  J Rheumatol. 1997;24:2436-24439415655Google Scholar
117.
Gerloni V, Cimaz R, Gattinara M, Arnoldi C, Pontikaki I, Fantini F. Efficacy and safety profile of cyclosporin A in the treatment of juvenile chronic (idiopathic) arthritis: results of a 10-year prospective study.  Rheumatology (Oxford). 2001;40:907-91311511760Google ScholarCrossref
118.
Mouy R, Stephan JL, Pillet P, Haddad E, Hubert P, Prieur AM. Efficacy of cyclosporine A in the treatment of macrophage activation syndrome in juvenile arthritis: report of five cases.  J Pediatr. 1996;129:750-7548917244Google ScholarCrossref
119.
Savolainen HA. Chlorambucil in severe juvenile chronic arthritis: longterm followup with special reference to amyloidosis.  J Rheumatol. 1999;26:898-90310229413Google Scholar
120.
Buriot D, Prieur AM, Lebranchu Y.  et al.  Acute leukemia in 3 children with chronic juvenile arthritis treated with chlorambucil.  Arch Fr Pediatr. 1979;36:592-598526114Google Scholar
121.
Lehman TJ, Schechter SJ, Sundel RP, Oliveira SK, Huttenlocher A, Onel KB. Thalidomide for severe systemic onset juvenile rheumatoid arthritis.  J Pediatr. 2004;145:856-85715580219Google ScholarCrossref
122.
Ravelli A, Moretti C, Temporini F.  et al.  Combination therapy with methotrexate and cyclosporine A in juvenile idiopathic arthritis.  Clin Exp Rheumatol. 2002;20:569-57212175118Google Scholar
123.
Shaikov AV, Maximov AA, Speransky AI, Lovell DJ, Giannini EH, Solovyev SK. Repetitive use of pulse therapy with methylprednisolone and cyclophosphamide in addition to oral methotrexate in children with systemic juvenile rheumatoid arthritis: preliminary results of a longterm study.  J Rheumatol. 1992;19:612-6161593584Google Scholar
124.
Lovell DJ, Giannini EH, Reiff A.  et al.  Long-term efficacy and safety of etanercept in children with polyarticular-course juvenile rheumatoid arthritis: interim results from an ongoing, multicenter, open-label, extended-treatment trial.  Arthritis Rheum. 2003;48:218-22612528122Google ScholarCrossref
125.
Lovell D, Reiff A, Jones OY, Schneider R, Giannini EH.Pediatric Rheumatology Collaborative Study Group.  Long-term safety and efficacy experience with etanercept (Enbrel) in children with polyarticular juvenile rheumatoid arthritis [abstract].  Arthritis Rheum. 2004;50:(suppl)  S436Google Scholar
126.
Horneff G, Schmeling H, Biedermann T.  et al.  The German etanercept registry for treatment of juvenile idiopathic arthritis.  Ann Rheum Dis. 2004;63:1638-164415115709Google ScholarCrossref
127.
Russo RAG, Katsicas MM, Zelazko M. Etanercept in systemic juvenile idiopathic arthritis.  Clin Exp Rheumatol. 2002;20:723-72612412209Google Scholar
128.
Quartier P, Taupin P, Bourdeaut F.  et al.  Efficacy of etanercept for the treatment of juvenile idiopathic arthritis according to the onset type.  Arthritis Rheum. 2003;48:1093-110112687553Google ScholarCrossref
129.
Kimura Y, Li S, Ebner-Lyon L, Imundo L. Treatment of systemic JIA (JRA) with etanercept: results of a survey [abstract].  Arthritis Rheum. 2000;43:(suppl)  S257Google Scholar
130.
Kimura Y, Pinho P, Higgins G.  et al.  Treatment of systemic onset juvenile rheumatoid arthritis (SOJRA) with etanercept – a follow-up study [abstract].  Arthritis Rheum. 2002;46:(suppl)  S481Google Scholar
131.
Horneff G, Schmeling H, Moebius D, Foeldvari I. Efficacy of etanercept in active refractory juvenile spondyloarthropathy: prospective open study of 40 patients [abstract].  Arthritis Rheum. 2004;50:(suppl)  S91Google Scholar
132.
Tse SM, Burgos-Vargas R, Laxer RM. Anti-tumor necrosis factor alpha blockade in the treatment of juvenile spondyloarthropathy.  Arthritis Rheum. 2005;52:2103-210815986366Google ScholarCrossref
133.
Takei S, Groh D, Bernstein B, Shaham B, Gallagher K, Reiff A. Safety and efficacy of high dose etanercept in treatment of juvenile rheumatoid arthritis.  J Rheumatol. 2001;28:1677-168011469478Google Scholar
134.
Horneff G, Girschick H, Michels H, Rogalski B, Schmeling H. Factors associated with failure of etanercept therapy in systemic onset juvenile idiopathic arthritis [abstract].  Arthritis Rheum. 2004;50:(suppl)  S93Google Scholar
135.
Smolen JS, Han C, Bala M.  et al.  Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study.  Arthritis Rheum. 2005;52:1020-103015818697Google ScholarCrossref
136.
Armbrust W, Kamphuis SS, Wolfs TW.  et al.  Tuberculosis in a nine-year-old girl treated with infliximab for systemic juvenile idiopathic arthritis.  Rheumatology (Oxford). 2004;43:527-52915024141Google ScholarCrossref
137.
Lee JH, Slifman NR, Gershon SK.  et al.  Life-threatening histoplasmosis complicating immunotherapy with tumor necrosis factor alpha antagonists infliximab and etanercept.  Arthritis Rheum. 2002;46:2565-257012384912Google ScholarCrossref
138.
Livermore PA, Murray KJ. Anti-tumor necrosis factor therapy associated with cutaneous vasculitis.  Rheumatology (Oxford). 2002;41:1450-145212468829Google ScholarCrossref
139.
Lepore L, Marchetti F, Facchini S, Leone V, Ventura A. Drug-induced systemic lupus erythematosus associated with etanercept therapy in a child with juvenile idiopathic arthritis.  Clin Exp Rheumatol. 2003;21:276-27712747299Google Scholar
140.
Bloom BJ. Development of diabetes mellitus during etanercept therapy in a child with systemic-onset juvenile rheumatoid arthritis.  Arthritis Rheum. 2000;43:2606-260811083287Google ScholarCrossref
141.
Mohan N, Edwards ET, Cupps TR.  et al.  Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides.  Arthritis Rheum. 2001;44:2862-286911762947Google ScholarCrossref
142.
Hashkes PJ, Shajrawi I. Sarcoid-related uveitis occurring during etanercept therapy.  Clin Exp Rheumatol. 2003;21:645-64614611117Google Scholar
143.
Vinje O, Obiora E, Forre O. Juvenile chronic polyarthritis treated with infliximab [abstract].  Ann Rheum Dis. 2000;59:25Google Scholar
144.
Vougiouka O, Rizou S, Grafakou O. Infliximab or etanercept in the treatment of juvenile idiopathic arthritis: the Athens experience [abstract].  Ann Rheum Dis. 2001;60:17611203720Google Scholar
145.
Masatlioglu S, Gogus F, Cevirgen D.  et al.  Infliximab in the treatment of refractory juvenile idiopathic arthritis [abstract].  Arthritis Rheum. 2002;46:S481Google Scholar
146.
Lahdenne P, Vahasalo P, Honkanen V. Infliximab or etanercept in the treatment of children with refractory juvenile idiopathic arthritis: on open label study.  Ann Rheum Dis. 2003;62:245-24712594111Google ScholarCrossref
147.
Gerloni V, Pontikaki I, Gattinara M.  et al.  Efficacy of repeated intravenous infusions of an anti-tumor necrosis factor alpha monoclonal antibody, infliximab, in persistent active, refractory juvenile idiopathic arthritis: results of an open-label prospective study.  Arthritis Rheum. 2005;52:548-55315693004Google ScholarCrossref
148.
Crandall WV, Mackner LM. Infusion reactions to infliximab in children and adolescents: frequency, outcome and predictive model.  Aliment Pharmacol Ther. 2003;17:75-8412492735Google ScholarCrossref
149.
Lovell DJ, Ruperto N, Goodman S.  et al.  Preliminary data from the study of adalimumab in children with juvenile idiopathic arthritis (JIA) [abstract].  Arthritis Rheum. 2004;50:(suppl)  S436Google Scholar
150.
Ilowite NT, Porras O, Reiff A.  et al.  A twelve-week open label safety and efficacy study of anakinra (Kineret) in juvenile rheumatoid arthritis [abstract].  Ann Rheum Dis. 2003;62:(suppl 1)  87Google Scholar
151.
Irigoyen PI, Olson J, Hom C, Ilowite NT. Treatment of systemic onset juvenile rheumatoid arthritis with anakinra [abstract].  Arthritis Rheum. 2004;50:(suppl)  S437Google Scholar
152.
Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade.  J Exp Med. 2005;201:1479-148615851489Google ScholarCrossref
153.
Uziel Y, Laxer RM, Schneider R, Silverman ED. Intravenous immunoglobulin therapy in systemic onset juvenile rheumatoid arthritis: a followup study.  J Rheumatol. 1996;23:910-9188724308Google Scholar
154.
Barnett ML, Combitchi D, Trentham DE. A pilot trial of oral type II collagen in the treatment of juvenile rheumatoid arthritis.  Arthritis Rheum. 1996;39:623-6288630112Google ScholarCrossref
155.
Pignatti P, Vivarelli M, Meazze C, Rizzolo MG, Martini A, de Benedetti F. Abnormal regulation of interleukin 6 in systemic juvenile idiopathic arthritis.  J Rheumatol. 2001;28:1670-167611469477Google Scholar
156.
Ogilvie EM, Fife MS, Thompson SD.  et al.  The –174G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families.  Arthritis Rheum. 2003;48:3202-320614613283Google ScholarCrossref
157.
Yokota S, Miyamae T, Imagawa T.  et al.  Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis.  Arthritis Rheum. 2005;52:818-82515751095Google ScholarCrossref
158.
Wulffraat N, van Royen A, Bierings M, Vossen J, Kuis W. Autologous haemopoietic stem-cell transplantation in four patients with refractory juvenile chronic arthritis.  Lancet. 1999;353:550-55310028984Google ScholarCrossref
159.
De Kleer IM, Brinkman DM, Ferster A.  et al.  Autologous stem cell transplantation for refractory juvenile idiopathic arthritis: analysis of clinical effects, mortality, and transplant related morbidity.  Ann Rheum Dis. 2004;63:1318-132615361393Google ScholarCrossref
×