[Skip to Content]
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
Purchase Options:
[Skip to Content Landing]
Figure 1.
USPSTF Grades and Levels of Evidence
USPSTF Grades and Levels of Evidence

USPSTF indicates US Preventive Services Task Force.

Figure 2.
Clinical Summary: Screening for Pancreatic Cancer
Clinical Summary: Screening for Pancreatic Cancer
1.
National Cancer Institute (NCI). Cancer Stat Facts: pancreatic cancer. NCI website. https://seer.cancer.gov/statfacts/html/pancreas.html. Accessed June 12, 2019.
2.
Rahib  L, Smith  BD, Aizenberg  R, Rosenzweig  AB, Fleshman  JM, Matrisian  LM.  Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.  Cancer Res. 2014;74(11):2913-2921. doi:10.1158/0008-5472.CAN-14-0155PubMedGoogle ScholarCrossref
3.
Hruban  RH, Canto  MI, Goggins  M, Schulick  R, Klein  AP.  Update on familial pancreatic cancer.  Adv Surg. 2010;44:293-311. doi:10.1016/j.yasu.2010.05.011PubMedGoogle ScholarCrossref
4.
Kamisawa  T, Wood  LD, Itoi  T, Takaori  K.  Pancreatic cancer.  Lancet. 2016;388(10039):73-85. doi:10.1016/S0140-6736(16)00141-0PubMedGoogle ScholarCrossref
5.
Klein  AP.  Genetic susceptibility to pancreatic cancer.  Mol Carcinog. 2012;51(1):14-24. doi:10.1002/mc.20855PubMedGoogle ScholarCrossref
6.
Chari  ST, Kelly  K, Hollingsworth  MA,  et al.  Early detection of sporadic pancreatic cancer: summative review.  Pancreas. 2015;44(5):693-712. doi:10.1097/MPA.0000000000000368PubMedGoogle ScholarCrossref
7.
Chang  JC, Kundranda  M.  Novel diagnostic and predictive biomarkers in pancreatic adenocarcinoma.  Int J Mol Sci. 2017;18(3):E667. doi:10.3390/ijms18030667PubMedGoogle ScholarCrossref
8.
Loosen  SH, Neumann  UP, Trautwein  C, Roderburg  C, Luedde  T.  Current and future biomarkers for pancreatic adenocarcinoma.  Tumour Biol. 2017;39(6):1010428317692231. doi:10.1177/1010428317692231PubMedGoogle ScholarCrossref
9.
Choe  JW, Kim  JS, Kim  HJ,  et al.  Value of early check-up of carbohydrate antigen 19-9 levels for pancreatic cancer screening in asymptomatic new-onset diabetic patients.  Pancreas. 2016;45(5):730-734. doi:10.1097/MPA.0000000000000538PubMedGoogle ScholarCrossref
10.
Dumstrei  K, Chen  H, Brenner  H.  A systematic review of serum autoantibodies as biomarkers for pancreatic cancer detection.  Oncotarget. 2016;7(10):11151-11164. doi:10.18632/oncotarget.7098PubMedGoogle ScholarCrossref
11.
Herreros-Villanueva  M, Bujanda  L.  Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have.  Ann Transl Med. 2016;4(7):134. doi:10.21037/atm.2016.03.44PubMedGoogle ScholarCrossref
12.
Henrikson  NB, Aiello Bowles  EJ, Blasi  PR,  et al.  Screening for Pancreatic Cancer: A Systematic Evidence Review for the US Preventive Services Task Force: Evidence Synthesis No. 181. Rockville, MD: Agency for Healthcare Research and Quality; 2019. AHRQ publication 19-05250-EF-1.
13.
Henrikson  NB, Aiello Bowles  EJ, Blasi  PR,  et al.  Screening for pancreatic cancer: updated evidence report and systematic review for the US Preventive Services Task Force  [published August 6, 2019].  JAMA. doi:10.1001/jama.2019.6190Google Scholar
14.
Joergensen  MT, Gerdes  AM, Sorensen  J, Schaffalitzky de Muckadell  O, Mortensen  MB.  Is screening for pancreatic cancer in high-risk groups cost-effective? experience from a Danish national screening program.  Pancreatology. 2016;16(4):584-592. doi:10.1016/j.pan.2016.03.013PubMedGoogle ScholarCrossref
15.
Harinck  F, Konings  IC, Kluijt  I,  et al; Dutch Research Group on Pancreatic Cancer Surveillance in High-Risk Individuals.  A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals.  Gut. 2016;65(9):1505-1513. doi:10.1136/gutjnl-2014-308008PubMedGoogle ScholarCrossref
16.
Al-Sukhni  W, Borgida  A, Rothenmund  H,  et al.  Screening for pancreatic cancer in a high-risk cohort: an eight-year experience.  J Gastrointest Surg. 2012;16(4):771-783. doi:10.1007/s11605-011-1781-6PubMedGoogle ScholarCrossref
17.
Schneider  R, Slater  EP, Sina  M,  et al.  German national case collection for familial pancreatic cancer (FaPaCa): ten years experience.  Fam Cancer. 2011;10(2):323-330. doi:10.1007/s10689-010-9414-xPubMedGoogle ScholarCrossref
18.
Verna  EC, Hwang  C, Stevens  PD,  et al.  Pancreatic cancer screening in a prospective cohort of high-risk patients: a comprehensive strategy of imaging and genetics.  Clin Cancer Res. 2010;16(20):5028-5037. doi:10.1158/1078-0432.CCR-09-3209PubMedGoogle ScholarCrossref
19.
Ludwig  E, Olson  SH, Bayuga  S,  et al.  Feasibility and yield of screening in relatives from familial pancreatic cancer families.  Am J Gastroenterol. 2011;106(5):946-954. doi:10.1038/ajg.2011.65PubMedGoogle ScholarCrossref
20.
Poley  JW, Kluijt  I, Gouma  DJ,  et al.  The yield of first-time endoscopic ultrasonography in screening individuals at a high risk of developing pancreatic cancer.  Am J Gastroenterol. 2009;104(9):2175-2181. doi:10.1038/ajg.2009.276PubMedGoogle ScholarCrossref
21.
Canto  MI, Goggins  M, Yeo  CJ,  et al.  Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach.  Clin Gastroenterol Hepatol. 2004;2(7):606-621. doi:10.1016/S1542-3565(04)00244-7PubMedGoogle ScholarCrossref
22.
Canto  MI, Goggins  M, Hruban  RH,  et al.  Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study.  Clin Gastroenterol Hepatol. 2006;4(6):766-781. doi:10.1016/j.cgh.2006.02.005PubMedGoogle ScholarCrossref
23.
Shin  EJ, Topazian  M, Goggins  MG,  et al.  Linear-array EUS improves detection of pancreatic lesions in high-risk individuals: a randomized tandem study.  Gastrointest Endosc. 2015;82(5):812-818. doi:10.1016/j.gie.2015.02.028PubMedGoogle ScholarCrossref
24.
Del Chiaro  M, Verbeke  CS, Kartalis  N,  et al.  Short-term results of a magnetic resonance imaging-based Swedish screening program for individuals at risk for pancreatic cancer.  JAMA Surg. 2015;150(6):512-518. doi:10.1001/jamasurg.2014.3852PubMedGoogle ScholarCrossref
25.
Barnes  CA, Krzywda  E, Lahiff  S,  et al.  Development of a high risk pancreatic screening clinic using 3.0 T MRI.  Fam Cancer. 2018;17(1):101-111. doi:10.1007/s10689-017-0057-zPubMedGoogle ScholarCrossref
26.
Gangi  A, Malafa  M, Klapman  J.  Endoscopic ultrasound-based pancreatic cancer screening of high-risk individuals: a prospective observational trial.  Pancreas. 2018;47(5):586-591.PubMedGoogle Scholar
27.
Andea  A, Sarkar  F, Adsay  VN.  Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma.  Mod Pathol. 2003;16(10):996-1006. doi:10.1097/01.MP.0000087422.24733.62PubMedGoogle ScholarCrossref
28.
Konstantinidis  IT, Vinuela  EF, Tang  LH,  et al.  Incidentally discovered pancreatic intraepithelial neoplasia: what is its clinical significance?  Ann Surg Oncol. 2013;20(11):3643-3647. doi:10.1245/s10434-013-3042-2PubMedGoogle ScholarCrossref
29.
Sharib  JM, Fonseca  AL, Swords  DS,  et al.  Surgical overtreatment of pancreatic intraductal papillary mucinous neoplasms: do the 2017 International Consensus Guidelines improve clinical decision making?  Surgery. 2018;164(6):1178-1184. doi:10.1016/j.surg.2018.07.014PubMedGoogle ScholarCrossref
30.
Tanaka  M, Fernández-Del Castillo  C, Kamisawa  T,  et al.  Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas.  Pancreatology. 2017;17(5):738-753. doi:10.1016/j.pan.2017.07.007PubMedGoogle ScholarCrossref
31.
Maheu  C, Vodermaier  A, Rothenmund  H,  et al.  Pancreatic cancer risk counselling and screening: impact on perceived risk and psychological functioning.  Fam Cancer. 2010;9(4):617-624. doi:10.1007/s10689-010-9354-5PubMedGoogle ScholarCrossref
32.
Konings  IC, Sidharta  GN, Harinck  F,  et al.  Repeated participation in pancreatic cancer surveillance by high-risk individuals imposes low psychological burden.  Psychooncology. 2016;25(8):971-978. doi:10.1002/pon.4047PubMedGoogle ScholarCrossref
33.
Canto  MI, Hruban  RH, Fishman  EK,  et al; American Cancer of the Pancreas Screening (CAPS) Consortium.  Frequent detection of pancreatic lesions in asymptomatic high-risk individuals.  Gastroenterology. 2012;142(4):796-804. doi:10.1053/j.gastro.2012.01.005PubMedGoogle ScholarCrossref
34.
Kamphues  C, Bova  R, Schricke  D,  et al.  Postoperative complications deteriorate long-term outcome in pancreatic cancer patients.  Ann Surg Oncol. 2012;19(3):856-863. doi:10.1245/s10434-011-2041-4PubMedGoogle ScholarCrossref
35.
McPhee  JT, Hill  JS, Whalen  GF,  et al.  Perioperative mortality for pancreatectomy: a national perspective.  Ann Surg. 2007;246(2):246-253. doi:10.1097/01.sla.0000259993.17350.3aPubMedGoogle ScholarCrossref
36.
Swanson  RS, Pezzi  CM, Mallin  K, Loomis  AM, Winchester  DP.  The 90-day mortality after pancreatectomy for cancer is double the 30-day mortality: more than 20,000 resections from the National Cancer Data Base.  Ann Surg Oncol. 2014;21(13):4059-4067. doi:10.1245/s10434-014-4036-4PubMedGoogle ScholarCrossref
37.
US Preventive Services Task Force.  Screening for Pancreatic Cancer: US Preventive Services Task Force Recommendation Statement. Rockville, MD: Agency for Healthcare Research and Quality; 2004.
38.
Syngal  S, Brand  RE, Church  JM, Giardiello  FM, Hampel  HL, Burt  RW; American College of Gastroenterology.  ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes.  Am J Gastroenterol. 2015;110(2):223-262. doi:10.1038/ajg.2014.435PubMedGoogle ScholarCrossref
Views 25,530
Citations 0
US Preventive Services Task Force
Recommendation Statement
August 6, 2019

Screening for Pancreatic Cancer: US Preventive Services Task Force Reaffirmation Recommendation Statement

US Preventive Services Task Force
JAMA. 2019;322(5):438-444. doi:10.1001/jama.2019.10232
Abstract

Importance  Pancreatic cancer is an uncommon cancer with an age-adjusted annual incidence of 12.9 cases per 100 000 person-years. However, the death rate is 11.0 deaths per 100 000 person-years because the prognosis of pancreatic cancer is poor. Although its incidence is low, pancreatic cancer is the third most common cause of cancer death in the United States. Because of the increasing incidence of pancreatic cancer, along with improvements in early detection and treatment of other types of cancer, it is estimated that pancreatic cancer may soon become the second-leading cause of cancer death in the United States.

Objective  To update the 2004 US Preventive Services Task Force (USPSTF) recommendation on screening for pancreatic cancer.

Evidence Review  The USPSTF reviewed the evidence on the benefits and harms of screening for pancreatic cancer, the diagnostic accuracy of screening tests for pancreatic cancer, and the benefits and harms of treatment of screen-detected or asymptomatic pancreatic cancer.

Findings  The USPSTF found no evidence that screening for pancreatic cancer or treatment of screen-detected pancreatic cancer improves disease-specific morbidity or mortality, or all-cause mortality. The USPSTF found adequate evidence that the magnitude of the benefits of screening for pancreatic cancer in asymptomatic adults can be bounded as no greater than small. The USPSTF found adequate evidence that the magnitude of the harms of screening for pancreatic cancer and treatment of screen-detected pancreatic cancer can be bounded as at least moderate. The USPSTF reaffirms its previous conclusion that the potential benefits of screening for pancreatic cancer in asymptomatic adults do not outweigh the potential harms.

Conclusions and Recommendation  The USPSTF recommends against screening for pancreatic cancer in asymptomatic adults. (D recommendation)

Introduction

The US Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without obvious related signs or symptoms.

It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment.

The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms.

Summary of Recommendation and Evidence

The USPSTF recommends against screening for pancreatic cancer in asymptomatic adults (D recommendation) (Figure 1).

Rationale
Importance

Quiz Ref IDPancreatic ductal adenocarcinoma (referred to hereafter as pancreatic cancer) is an uncommon cancer with an age-adjusted annual incidence of 12.9 cases per 100 000 person-years. However, the death rate is 11.0 deaths per 100 000 person-years because the prognosis of pancreatic cancer is poor.1 Although its incidence is low, pancreatic cancer is the third most common cause of cancer death in the United States. Based on data from the Surveillance, Epidemiology, and End Results Program from 2009 to 2015, the overall 5-year survival rate for pancreatic cancer is 9.3%, and survival rates vary depending on the stage at which it is diagnosed. The 5-year survival rate for localized pancreatic cancer is 37.4%; when regional disease is present, the 5-year survival rate is 12.4%, and when distant metastatic disease is present, the 5-year survival rate is 2.9%.1 Surgical intervention at an early stage is the treatment most likely to improve chances of survival; however, most cases of pancreatic cancer are detected at an advanced stage,1 when surgical resection is not likely to be beneficial. Because of the increasing incidence of pancreatic cancer, along with improvements in early detection and treatment of other types of cancer, it is estimated that pancreatic cancer may soon become the second-leading cause of cancer death in the United States.2

In 2019, an estimated 56 770 persons will be diagnosed with pancreatic cancer and 45 750 persons will die of the disease.1 About 85% to 90% of persons diagnosed with pancreatic cancer do not have known familial risk or genetic syndromes, 5% to 10% of persons have familial risk, and 3% to 5% of cases are due to inherited genetic cancer syndromes (such as Peutz-Jeghers syndrome). Familial pancreatic cancer is defined as a kindred with at least 2 affected first-degree relatives; a person’s degree of familial risk depends on the number of affected relatives.3-5

Reaffirmation Process

In 2004, the USPSTF reviewed the evidence on screening for pancreatic cancer in asymptomatic adults and issued a D recommendation. The USPSTF decided to use a reaffirmation deliberation process to update this recommendation. The USPSTF uses the reaffirmation process for existing A or D grade recommendations for which only a very high level of evidence would justify a change in the grade of the recommendation. In its deliberation of the evidence, the USPSTF considers whether the new evidence is of sufficient strength and quality to change its previous conclusions about the evidence.

Detection

The USPSTF found no evidence on the accuracy of imaging-based screening tests (computed tomography [CT] scan, magnetic resonance imaging [MRI], or endoscopic ultrasonography [EUS]) for detecting pancreatic cancer.

Benefits of Detection and Early Treatment

Quiz Ref IDThe USPSTF found no evidence that screening for pancreatic cancer or treatment of screen-detected pancreatic cancer improves disease-specific morbidity or mortality, or all-cause mortality. Based on the low incidence of pancreatic cancer in the general population, the uncertain accuracy of current candidate screening tests, and the poor prognosis for pancreatic cancer even when treated at an early stage, the USPSTF found adequate evidence to bound the benefits of screening for pancreatic cancer in asymptomatic adults as no greater than small. When direct evidence is limited, absent, or restricted to select populations or clinical scenarios, the USPSTF may place conceptual upper or lower bounds on the magnitude of benefit or harms.

Harms of Detection and Early Treatment

Quiz Ref IDThe USPSTF found adequate indirect evidence to bound the magnitude of the harms of screening for pancreatic cancer and treatment of screen-detected pancreatic cancer as at least moderate, based on potential harms from false-positive results and the harms of treatment.

USPSTF Assessment

Quiz Ref IDUsing a reaffirmation deliberation process, the USPSTF concludes that there is no new evidence that warrants a change in the prior D recommendation and reaffirms its previous conclusion that the potential benefits of screening for pancreatic cancer in asymptomatic adults do not outweigh the potential harms.

Clinical Considerations
Patient Population Under Consideration

Quiz Ref IDThis recommendation applies to asymptomatic adults not known to be at high risk of pancreatic cancer (Figure 2). Therefore, this recommendation does not apply to persons at high risk of pancreatic cancer due to an inherited genetic syndrome (eg, Peutz-Jeghers syndrome, hereditary pancreatitis) or due to a history of familial pancreatic cancer.

Assessment of Risk

Persons with certain inherited genetic syndromes or a history of familial pancreatic cancer are at high risk of pancreatic cancer. This recommendation does not apply to these high-risk populations.

Other factors such as new-onset diabetes, preexisting diabetes, older age, cigarette smoking, obesity, or a history of chronic pancreatitis increase risk to a lesser degree. The USPSTF considers asymptomatic persons who have these other risk factors part of the general population, and they are included in this recommendation.

Screening Tests

The USPSTF does not recommend screening for pancreatic cancer in the general population using any method. Imaging-based methods, such as the CT scan, MRI, and EUS, have been studied as screening tests in trials of screening persons at high risk of pancreatic cancer due to inherited genetic syndromes or familial pancreatic cancer. There currently are no accurate, validated biomarkers for early detection of pancreatic cancer.6-11

Treatment or Interventions

Surgery (pancreaticoduodenectomy [known as the Whipple procedure] or total or distal pancreatectomy) is the generally recommended treatment for pancreatic cancer deemed to be resectable at the time of diagnosis. Neoadjuvant or adjuvant chemotherapy may be recommended, depending on the stage of cancer and other factors.

Other Considerations
Research Needs and Gaps

Research is needed to develop effective screening tests with high sensitivity and high specificity for pancreatic cancer and, ideally, high-grade precursor lesions. Research is needed to better understand the prevalence and natural history of precursor lesions to pancreatic cancer, including the likelihood of progression of precursor lesions to pancreatic cancer.

Studies investigating the benefits and harms of screening for pancreatic cancer in persons at high risk because of a history of familial pancreatic cancer and inherited genetic syndromes are an active area of research. Continued research in this area is needed to identify effective screening strategies and to determine the benefits (ie, improved clinical outcomes) and harms of screening for pancreatic cancer in this population. If a net benefit of screening is found in high-risk persons, studies of screening in persons who may be at increased risk (eg, adults with new-onset diabetes) may be warranted. Research on improved risk stratification may also help advance the field of pancreatic cancer screening.

In addition, pancreatectomy carries a significant risk of morbidity and mortality, and the prognosis for more advanced pancreatic cancer, which is not amenable to surgery, is poor. Research on better treatments for all stages of pancreatic cancer to improve long-term survival and decrease the harms of treatment is needed.

Discussion
Burden of Disease

Pancreatic cancer is uncommon, with an estimated incidence of 12.9 cases per 100 000 person-years. It has a poor prognosis, with an overall 5-year survival rate of 9.3%.1 Surgical intervention at an early stage is the treatment most likely to improve chances of survival; however, most cases of pancreatic cancer are detected at an advanced stage,1 when surgery is not likely to improve the survival rate. In 2019, an estimated 56 770 persons will be diagnosed with pancreatic cancer, and 45 750 persons will die of it, making it the third most common cause of cancer death in the United States.1

Scope of Review

To update its 2004 recommendation on screening for pancreatic cancer, the USPSTF commissioned a systematic review on the benefits and harms of screening for pancreatic cancer, the diagnostic accuracy of screening tests for pancreatic cancer, and the benefits and harms of treatment of screen-detected or asymptomatic pancreatic cancer.12,13 The USPSTF considered studies of screening in persons at high risk of pancreatic cancer due to familial history to determine whether this evidence might help inform its recommendation on screening for pancreatic cancer in the general population.

Accuracy of Screening Tests

The USPSTF found no studies that reported on the sensitivity or specificity of CT scan, MRI, or EUS as screening tests for pancreatic cancer.

The USPSTF found 13 cohort studies of screening for pancreatic cancer, mostly in persons at high familial risk, using CT scan, MRI, or EUS (n = 1317) that reported on the yield of screening.14-26 One study also included screening in a group of 161 participants who did not have known familial or genetic risks and detected no cases of pancreatic cancer in this group.22 Among high-risk participants in all studies, a total of 18 cases of pancreatic cancer were found across all rounds of screening, for a yield of 15.6 cases per 1000 persons.12,13 The applicability of these data to persons not at high risk of pancreatic cancer is uncertain, and the yield of screening in a population with a lower incidence of pancreatic cancer is likely to be much lower. Another important consideration is that any screening test used in a population with a lower incidence of pancreatic cancer would potentially have a lower positive predictive value and a higher rate of false-positive results.

Effectiveness of Early Detection and Treatment

The USPSTF found no studies on the benefits of screening for pancreatic cancer or on the benefits of treatment of screen-detected or asymptomatic pancreatic cancer in the general population.

In the 13 cohort studies of screening in persons at high familial risk, a total of 57 screened patients underwent pancreatic surgery. Of the 57 patients undergoing surgery, 14 were found to have pancreatic cancer, 38 had precursor lesions (intraductal papillary mucinous neoplasm, pancreatic intraepithelial neoplasia, or both), and 5 had neuroendocrine tumors, liver hyperplasia, or a benign serous cystadenoma.12 Because the risk of progression of precursor lesions (particularly low-grade lesions) to invasive cancer is not clear, the balance of the potential benefits or harms of detecting and undergoing pancreatic surgery to remove such lesions is unknown. Pancreatic intraepithelial neoplasia is common, and most cases do not progress to cancer. In 2 studies, 26% to 54% of pancreata removed at surgery for reasons other than pancreatic cancer contained such lesions.27,28 Another retrospective study, describing the experience at 3 US cancer centers with surgical resection of intraductal papillary mucinous neoplasms,29 found that the International Consensus Guidelines criteria for the management of intraductal papillary mucinous neoplasms of the pancreas30 had high sensitivity (98.4%) but low specificity (14.8%) to predict high-grade dysplasia or invasive cancer. These data suggest the possibility that screening in the general population might lead to overdiagnosis and overtreatment.

In the screening studies of high-risk persons, a total of 18 cases of pancreatic cancer were detected. As noted above, 14 of these cases were confirmed by surgery. The remaining 4 cases were detected with advanced-stage nonresectable disease. Twelve of the cases (66.7%) were detected at stage I or II or were classified as “resectable.”12,13 Of the 18 detected cases of pancreatic cancer, longer-term follow-up was reported for only 10. Among those 10 cases, 5 persons were alive at 12 to 63 months of follow-up, 2 of whom were reported to have distant metastases.12 These data are limited by incomplete reporting of follow-up for detected cases and by the small number of cases. The USPSTF did not find studies that compared health outcomes for screened and unscreened populations to determine the effectiveness of screening. In addition, the applicability of these results to a population not at high risk is uncertain.

Potential Harms of Early Detection and Treatment

The USPSTF reviewed 10 cohort studies of screening for pancreatic cancer in high-risk persons to assess the potential harms of screening and treatment. In 2 studies (n = 271) that assessed the psychosocial harms of screening, the majority of participants reported normal levels of distress or worry at all time points.31,32 One study reported no change in levels of perceived pancreatic cancer risk, worry, and general distress at baseline and 3 months after screening,31 while a second study reported Cancer Worry Scale scores that decreased over time (compared with baseline scores).32

Eight studies reported on procedure-related harms of screening.14,15,17-22 In 1 study of 216 persons who underwent EUS, 55 (25.5%) reported mild postprocedure pain, and 13 (6.0%) reported adverse events related to anesthesia.22 Of 150 persons in 2 studies who underwent endoscopic retrograde cholangiopancreatography as a diagnostic test, 15 (10.0%) developed acute pancreatitis, 9 of whom required hospitalization.21,22 The remaining 6 studies identified no harms related to screening.14,15,17-20 The prevalence of incidental findings was not consistently reported in the available studies.

Six studies reported on the harms of surgery (n = 32 persons receiving surgery).14,17,18,20,22,33 One study reported a stricture to the hepaticojejunal anastomosis in 1 patient 11 months after surgery and unspecified postoperative complications in another patient.14 In another study, 2 cases of postoperative fistula and 3 cases of diabetes were reported.17 Four studies reported no harms.18,20,22,33

Pancreatectomy carries a significant risk of morbidity and mortality, and additional data on the harms of surgery are available from studies not specifically conducted in screen-detected persons. A German study of 428 patients undergoing pancreatectomy (primarily pancreaticoduodenectomy) reported a 33.6% rate of any complication.34 One 2003 US study reported a 4.6% rate of perioperative mortality after pancreatectomy for neoplastic disease,35 and another US study of 21 482 pancreatectomies performed between 2007 and 2010 found a 3.7% 30-day mortality rate.36

Estimate of Magnitude of Net Benefit

The USPSTF considered the evidence using a reaffirmation process and found no new evidence on the benefits of screening for pancreatic cancer. The USPSTF found adequate evidence that the magnitude of the harms of screening for pancreatic cancer and treatment of screen-detected pancreatic cancer can be bounded as at least moderate. Therefore, the USPSTF reaffirms its previous conclusion that the potential benefits of screening for pancreatic cancer in asymptomatic adults do not outweigh the potential harms.

Response to Public Comment

A draft version of this recommendation statement was posted for public comment on the USPSTF website from February 5 through March 4, 2019. In response to public comment, the USPSTF added information on survival rates for pancreatic cancer by stage. The USPSTF added information about the consensus guidelines for the management of intraductal papillary mucinous neoplasms of the pancreas, and the accuracy (ie, sensitivity and specificity) of those guidelines in predicting the presence of pancreatic cancer or high-grade dysplasia. The USPSTF also added data on longer-term follow-up of screening studies in persons at high familial risk of pancreatic cancer. A few comments requested that the USPSTF make a recommendation on screening in persons with a history of familial pancreatic cancer or persons with an inherited genetic syndrome known to be associated with high risk of pancreatic cancer. In response, the USPSTF wants to clarify that these groups are outside the scope of this recommendation and that this recommendation does not apply to these persons.

Reaffirmation of Previous USPSTF Recommendation

This recommendation is a reaffirmation of the USPSTF 2004 recommendation statement against screening for pancreatic cancer in asymptomatic adults.37 In 2004, the USPSTF reviewed the evidence on screening for pancreatic cancer and concluded that the harms of screening for pancreatic cancer exceed any potential benefits. For the current recommendation, the USPSTF commissioned a systematic review12,13 to look for new evidence on the benefits and harms of screening. The USPSTF found no new substantial evidence that would change its recommendation and therefore reaffirms its recommendation against screening for pancreatic cancer in asymptomatic adults.

Recommendation of Others

No organization currently recommends screening for pancreatic cancer in the general population of asymptomatic adults. The American College of Gastroenterology conditionally recommends surveillance for pancreatic cancer in certain high-risk persons (eg, those with known genetic syndromes associated with pancreatic cancer and those from familial pancreatic cancer kindreds who have an affected first-degree relative) and suggests that surveillance should be performed in experienced centers, ideally under research conditions.38

Back to top
Article Information

Corresponding Author: Douglas K. Owens, MD, MS, Stanford University, 616 Serra St, Encina Hall, Room C336, Stanford, CA 94305-6019 (chair@uspstf.net).

Accepted for Publication: June 26, 2019.

The US Preventive Services Task Force (USPSTF) members: Douglas K. Owens, MD, MS; Karina W. Davidson, PhD, MASc; Alex H. Krist, MD, MPH; Michael J. Barry, MD; Michael Cabana, MD, MA, MPH; Aaron B. Caughey, MD, PhD; Susan J. Curry, PhD; Chyke A. Doubeni, MD, MPH; John W. Epling Jr, MD, MSEd; Martha Kubik, PhD, RN; C. Seth Landefeld, MD; Carol M. Mangione, MD, MSPH; Lori Pbert, PhD; Michael Silverstein, MD, MPH; Melissa A. Simon, MD, MPH; Chien-Wen Tseng, MD, MPH, MSEE; John B. Wong, MD.

Affiliations of The US Preventive Services Task Force (USPSTF) members: Veterans Affairs Palo Alto Health Care System, Palo Alto, California (Owens); Stanford University, Stanford, California (Owens); Feinstein Institute for Medical Research at Northwell Health, Manhasset, New York (Davidson); Fairfax Family Practice Residency, Fairfax, Virginia (Krist); Virginia Commonwealth University, Richmond (Krist); Harvard Medical School, Boston, Massachusetts (Barry); University of California, San Francisco (Cabana); Oregon Health & Science University, Portland (Caughey); University of Iowa, Iowa City (Curry); Mayo Clinic, Rochester, New York (Doubeni); Virginia Tech Carilion School of Medicine, Roanoke (Epling Jr); Temple University, Philadelphia, Pennsylvania (Kubik); University of Alabama at Birmingham (Landefeld); University of California, Los Angeles (Mangione); University of Massachusetts Medical School, Worcester (Pbert); Boston University, Boston, Massachusetts (Silverstein); Northwestern University, Evanston, Illinois (Simon); University of Hawaii, Honolulu (Tseng); Pacific Health Research and Education Institute, Honolulu, Hawaii (Tseng); Tufts University School of Medicine, Boston, Massachusetts (Wong).

Author Contributions: Dr Owens had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The USPSTF members contributed equally to the recommendation statement.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Authors followed the policy regarding conflicts of interest described at https://www.uspreventiveservicestaskforce.org/Page/Name/conflict-of-interest-disclosures. All members of the USPSTF receive travel reimbursement and an honorarium for participating in USPSTF meetings.

Funding/Support: The USPSTF is an independent, voluntary body. The US Congress mandates that the Agency for Healthcare Research and Quality (AHRQ) support the operations of the USPSTF.

Role of the Funder/Sponsor: AHRQ staff assisted in the following: development and review of the research plan, commission of the systematic evidence review from an Evidence-based Practice Center, coordination of expert review and public comment of the draft evidence report and draft recommendation statement, and the writing and preparation of the final recommendation statement and its submission for publication. AHRQ staff had no role in the approval of the final recommendation statement or the decision to submit for publication.

Disclaimer: Recommendations made by the USPSTF are independent of the US government. They should not be construed as an official position of AHRQ or the US Department of Health and Human Services.

Additional Contributions: We thank Howard Tracer, MD (AHRQ), who contributed to the writing of the manuscript, and Lisa Nicolella, MA (AHRQ), who assisted with coordination and editing.

References
1.
National Cancer Institute (NCI). Cancer Stat Facts: pancreatic cancer. NCI website. https://seer.cancer.gov/statfacts/html/pancreas.html. Accessed June 12, 2019.
2.
Rahib  L, Smith  BD, Aizenberg  R, Rosenzweig  AB, Fleshman  JM, Matrisian  LM.  Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.  Cancer Res. 2014;74(11):2913-2921. doi:10.1158/0008-5472.CAN-14-0155PubMedGoogle ScholarCrossref
3.
Hruban  RH, Canto  MI, Goggins  M, Schulick  R, Klein  AP.  Update on familial pancreatic cancer.  Adv Surg. 2010;44:293-311. doi:10.1016/j.yasu.2010.05.011PubMedGoogle ScholarCrossref
4.
Kamisawa  T, Wood  LD, Itoi  T, Takaori  K.  Pancreatic cancer.  Lancet. 2016;388(10039):73-85. doi:10.1016/S0140-6736(16)00141-0PubMedGoogle ScholarCrossref
5.
Klein  AP.  Genetic susceptibility to pancreatic cancer.  Mol Carcinog. 2012;51(1):14-24. doi:10.1002/mc.20855PubMedGoogle ScholarCrossref
6.
Chari  ST, Kelly  K, Hollingsworth  MA,  et al.  Early detection of sporadic pancreatic cancer: summative review.  Pancreas. 2015;44(5):693-712. doi:10.1097/MPA.0000000000000368PubMedGoogle ScholarCrossref
7.
Chang  JC, Kundranda  M.  Novel diagnostic and predictive biomarkers in pancreatic adenocarcinoma.  Int J Mol Sci. 2017;18(3):E667. doi:10.3390/ijms18030667PubMedGoogle ScholarCrossref
8.
Loosen  SH, Neumann  UP, Trautwein  C, Roderburg  C, Luedde  T.  Current and future biomarkers for pancreatic adenocarcinoma.  Tumour Biol. 2017;39(6):1010428317692231. doi:10.1177/1010428317692231PubMedGoogle ScholarCrossref
9.
Choe  JW, Kim  JS, Kim  HJ,  et al.  Value of early check-up of carbohydrate antigen 19-9 levels for pancreatic cancer screening in asymptomatic new-onset diabetic patients.  Pancreas. 2016;45(5):730-734. doi:10.1097/MPA.0000000000000538PubMedGoogle ScholarCrossref
10.
Dumstrei  K, Chen  H, Brenner  H.  A systematic review of serum autoantibodies as biomarkers for pancreatic cancer detection.  Oncotarget. 2016;7(10):11151-11164. doi:10.18632/oncotarget.7098PubMedGoogle ScholarCrossref
11.
Herreros-Villanueva  M, Bujanda  L.  Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have.  Ann Transl Med. 2016;4(7):134. doi:10.21037/atm.2016.03.44PubMedGoogle ScholarCrossref
12.
Henrikson  NB, Aiello Bowles  EJ, Blasi  PR,  et al.  Screening for Pancreatic Cancer: A Systematic Evidence Review for the US Preventive Services Task Force: Evidence Synthesis No. 181. Rockville, MD: Agency for Healthcare Research and Quality; 2019. AHRQ publication 19-05250-EF-1.
13.
Henrikson  NB, Aiello Bowles  EJ, Blasi  PR,  et al.  Screening for pancreatic cancer: updated evidence report and systematic review for the US Preventive Services Task Force  [published August 6, 2019].  JAMA. doi:10.1001/jama.2019.6190Google Scholar
14.
Joergensen  MT, Gerdes  AM, Sorensen  J, Schaffalitzky de Muckadell  O, Mortensen  MB.  Is screening for pancreatic cancer in high-risk groups cost-effective? experience from a Danish national screening program.  Pancreatology. 2016;16(4):584-592. doi:10.1016/j.pan.2016.03.013PubMedGoogle ScholarCrossref
15.
Harinck  F, Konings  IC, Kluijt  I,  et al; Dutch Research Group on Pancreatic Cancer Surveillance in High-Risk Individuals.  A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals.  Gut. 2016;65(9):1505-1513. doi:10.1136/gutjnl-2014-308008PubMedGoogle ScholarCrossref
16.
Al-Sukhni  W, Borgida  A, Rothenmund  H,  et al.  Screening for pancreatic cancer in a high-risk cohort: an eight-year experience.  J Gastrointest Surg. 2012;16(4):771-783. doi:10.1007/s11605-011-1781-6PubMedGoogle ScholarCrossref
17.
Schneider  R, Slater  EP, Sina  M,  et al.  German national case collection for familial pancreatic cancer (FaPaCa): ten years experience.  Fam Cancer. 2011;10(2):323-330. doi:10.1007/s10689-010-9414-xPubMedGoogle ScholarCrossref
18.
Verna  EC, Hwang  C, Stevens  PD,  et al.  Pancreatic cancer screening in a prospective cohort of high-risk patients: a comprehensive strategy of imaging and genetics.  Clin Cancer Res. 2010;16(20):5028-5037. doi:10.1158/1078-0432.CCR-09-3209PubMedGoogle ScholarCrossref
19.
Ludwig  E, Olson  SH, Bayuga  S,  et al.  Feasibility and yield of screening in relatives from familial pancreatic cancer families.  Am J Gastroenterol. 2011;106(5):946-954. doi:10.1038/ajg.2011.65PubMedGoogle ScholarCrossref
20.
Poley  JW, Kluijt  I, Gouma  DJ,  et al.  The yield of first-time endoscopic ultrasonography in screening individuals at a high risk of developing pancreatic cancer.  Am J Gastroenterol. 2009;104(9):2175-2181. doi:10.1038/ajg.2009.276PubMedGoogle ScholarCrossref
21.
Canto  MI, Goggins  M, Yeo  CJ,  et al.  Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach.  Clin Gastroenterol Hepatol. 2004;2(7):606-621. doi:10.1016/S1542-3565(04)00244-7PubMedGoogle ScholarCrossref
22.
Canto  MI, Goggins  M, Hruban  RH,  et al.  Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study.  Clin Gastroenterol Hepatol. 2006;4(6):766-781. doi:10.1016/j.cgh.2006.02.005PubMedGoogle ScholarCrossref
23.
Shin  EJ, Topazian  M, Goggins  MG,  et al.  Linear-array EUS improves detection of pancreatic lesions in high-risk individuals: a randomized tandem study.  Gastrointest Endosc. 2015;82(5):812-818. doi:10.1016/j.gie.2015.02.028PubMedGoogle ScholarCrossref
24.
Del Chiaro  M, Verbeke  CS, Kartalis  N,  et al.  Short-term results of a magnetic resonance imaging-based Swedish screening program for individuals at risk for pancreatic cancer.  JAMA Surg. 2015;150(6):512-518. doi:10.1001/jamasurg.2014.3852PubMedGoogle ScholarCrossref
25.
Barnes  CA, Krzywda  E, Lahiff  S,  et al.  Development of a high risk pancreatic screening clinic using 3.0 T MRI.  Fam Cancer. 2018;17(1):101-111. doi:10.1007/s10689-017-0057-zPubMedGoogle ScholarCrossref
26.
Gangi  A, Malafa  M, Klapman  J.  Endoscopic ultrasound-based pancreatic cancer screening of high-risk individuals: a prospective observational trial.  Pancreas. 2018;47(5):586-591.PubMedGoogle Scholar
27.
Andea  A, Sarkar  F, Adsay  VN.  Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma.  Mod Pathol. 2003;16(10):996-1006. doi:10.1097/01.MP.0000087422.24733.62PubMedGoogle ScholarCrossref
28.
Konstantinidis  IT, Vinuela  EF, Tang  LH,  et al.  Incidentally discovered pancreatic intraepithelial neoplasia: what is its clinical significance?  Ann Surg Oncol. 2013;20(11):3643-3647. doi:10.1245/s10434-013-3042-2PubMedGoogle ScholarCrossref
29.
Sharib  JM, Fonseca  AL, Swords  DS,  et al.  Surgical overtreatment of pancreatic intraductal papillary mucinous neoplasms: do the 2017 International Consensus Guidelines improve clinical decision making?  Surgery. 2018;164(6):1178-1184. doi:10.1016/j.surg.2018.07.014PubMedGoogle ScholarCrossref
30.
Tanaka  M, Fernández-Del Castillo  C, Kamisawa  T,  et al.  Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas.  Pancreatology. 2017;17(5):738-753. doi:10.1016/j.pan.2017.07.007PubMedGoogle ScholarCrossref
31.
Maheu  C, Vodermaier  A, Rothenmund  H,  et al.  Pancreatic cancer risk counselling and screening: impact on perceived risk and psychological functioning.  Fam Cancer. 2010;9(4):617-624. doi:10.1007/s10689-010-9354-5PubMedGoogle ScholarCrossref
32.
Konings  IC, Sidharta  GN, Harinck  F,  et al.  Repeated participation in pancreatic cancer surveillance by high-risk individuals imposes low psychological burden.  Psychooncology. 2016;25(8):971-978. doi:10.1002/pon.4047PubMedGoogle ScholarCrossref
33.
Canto  MI, Hruban  RH, Fishman  EK,  et al; American Cancer of the Pancreas Screening (CAPS) Consortium.  Frequent detection of pancreatic lesions in asymptomatic high-risk individuals.  Gastroenterology. 2012;142(4):796-804. doi:10.1053/j.gastro.2012.01.005PubMedGoogle ScholarCrossref
34.
Kamphues  C, Bova  R, Schricke  D,  et al.  Postoperative complications deteriorate long-term outcome in pancreatic cancer patients.  Ann Surg Oncol. 2012;19(3):856-863. doi:10.1245/s10434-011-2041-4PubMedGoogle ScholarCrossref
35.
McPhee  JT, Hill  JS, Whalen  GF,  et al.  Perioperative mortality for pancreatectomy: a national perspective.  Ann Surg. 2007;246(2):246-253. doi:10.1097/01.sla.0000259993.17350.3aPubMedGoogle ScholarCrossref
36.
Swanson  RS, Pezzi  CM, Mallin  K, Loomis  AM, Winchester  DP.  The 90-day mortality after pancreatectomy for cancer is double the 30-day mortality: more than 20,000 resections from the National Cancer Data Base.  Ann Surg Oncol. 2014;21(13):4059-4067. doi:10.1245/s10434-014-4036-4PubMedGoogle ScholarCrossref
37.
US Preventive Services Task Force.  Screening for Pancreatic Cancer: US Preventive Services Task Force Recommendation Statement. Rockville, MD: Agency for Healthcare Research and Quality; 2004.
38.
Syngal  S, Brand  RE, Church  JM, Giardiello  FM, Hampel  HL, Burt  RW; American College of Gastroenterology.  ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes.  Am J Gastroenterol. 2015;110(2):223-262. doi:10.1038/ajg.2014.435PubMedGoogle ScholarCrossref
×