Effect of Low-Intensity vs Standard-Intensity Warfarin Prophylaxis on Venous Thromboembolism or Death Among Patients Undergoing Hip or Knee Arthroplasty: A Randomized Clinical Trial | Orthopedics | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Shehab  N, Lovegrove  MC, Geller  AI, Rose  KO, Weidle  NJ, Budnitz  DS.  US emergency department visits for outpatient adverse drug events, 2013-2014.  JAMA. 2016;316(20):2115-2125. doi:10.1001/jama.2016.16201PubMedGoogle Scholar
Venker  BT, Ganti  BR, Lin  H, Lee  ED, Nunley  RM, Gage  BF.  Safety and efficacy of new anticoagulants for the prevention of venous thromboembolism after hip and knee arthroplasty: a meta-analysis.  J Arthroplasty. 2017;32(2):645-652. doi:10.1016/j.arth.2016.09.033PubMedGoogle Scholar
Cieri  NE, Kusmierski  K, Lackie  C, Van Opdorp  A, Hassan  AK.  Retrospective evaluation of postoperative adverse drug events in patients receiving rivaroxaban after major orthopedic surgery compared with standard therapy in a community hospital.  Pharmacotherapy. 2017;37(2):170-176. doi:10.1002/phar.1888PubMedGoogle Scholar
Jensen  CD, Steval  A, Partington  PF, Reed  MR, Muller  SD.  Return to theatre following total hip and knee replacement, before and after the introduction of rivaroxaban: a retrospective cohort study.  J Bone Joint Surg Br. 2011;93(1):91-95. doi:10.1302/0301-620X.93B1.24987PubMedGoogle Scholar
Nam  D, Nunley  RM, Johnson  SR, Keeney  JA, Clohisy  JC, Barrack  RL.  The effectiveness of a risk stratification protocol for thromboembolism prophylaxis after hip and knee arthroplasty.  J Arthroplasty. 2016;31(6):1299-1306. doi:10.1016/j.arth.2015.12.007PubMedGoogle Scholar
Oake  N, Jennings  A, Forster  AJ, Fergusson  D, Doucette  S, van Walraven  C.  Anticoagulation intensity and outcomes among patients prescribed oral anticoagulant therapy: a systematic review and meta-analysis.  CMAJ. 2008;179(3):235-244. doi:10.1503/cmaj.080171PubMedGoogle Scholar
Hylek  EM, Go  AS, Chang  Y,  et al.  Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation.  N Engl J Med. 2003;349(11):1019-1026. doi:10.1056/NEJMoa022913PubMedGoogle Scholar
Nassif  ME, LaRue  SJ, Raymer  DS,  et al.  Relationship between anticoagulation intensity and thrombotic or bleeding outcomes among outpatients with continuous-flow left ventricular assist devices.  Circ Heart Fail. 2016;9(5):e002680. doi:10.1161/CIRCHEARTFAILURE.115.002680PubMedGoogle Scholar
Kearon  C, Ginsberg  JS, Kovacs  MJ,  et al; Extended Low-Intensity Anticoagulation for Thrombo-Embolism Investigators.  Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism.  N Engl J Med. 2003;349(7):631-639. doi:10.1056/NEJMoa035422PubMedGoogle Scholar
Ridker  PM, Goldhaber  SZ, Danielson  E,  et al; PREVENT Investigators.  Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism.  N Engl J Med. 2003;348(15):1425-1434. doi:10.1056/NEJMoa035029PubMedGoogle Scholar
American Academy of Orthopaedic Surgeons Pulmonary Embolism Work Group.  Clinical Guidelines on Prevention Of Pulmonary Embolism in Patients Undergoing Total Hip or Knee Arthroplasty. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2007:1-63.
Markel  DC, York  S, Liston  MJ  Jr,  et al.  Venous thromboembolism: management by American Association of Hip and Knee Surgeons.  J Arthroplasty. 2010;25(1):3.e1-2-9.e1-2. 19837560 doi:10.1016/j.arth.2009.07.021Google Scholar
Falck-Ytter  Y, Francis  CW, Johanson  NA,  et al.  Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.  Chest. 2012;141(2 suppl):e278S-325S. doi:10.1378/chest.11-2404PubMedGoogle Scholar
Wigle  P, Hein  B, Bloomfield  HE, Tubb  M, Doherty  M.  Updated guidelines on outpatient anticoagulation.  Am Fam Physician. 2013;87(8):556-566.PubMedGoogle Scholar
Clark  NP, Cho  SE, Delate  T, Witt  DM.  Thromboembolic and bleeding outcomes of low-intensity warfarin thromboprophylaxis following elective total hip arthroplasty.  Thromb Res. 2013;131(5):390-395. doi:10.1016/j.thromres.2013.02.017PubMedGoogle Scholar
Gage  BF, Bass  AR, Lin  H,  et al.  Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT Randomized Clinical Trial.  JAMA. 2017;318(12):1115-1124. doi:10.1001/jama.2017.11469PubMedGoogle Scholar
Lenzini  PA, Grice  GR, Milligan  PE,  et al.  Optimal initial dose adjustment of warfarin in orthopedic patients.  Ann Pharmacother. 2007;41(11):1798-1804. doi:10.1345/aph.1K197PubMedGoogle Scholar
Gage  BF, Eby  C, Johnson  JA,  et al.  Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin.  Clin Pharmacol Ther. 2008;84(3):326-331. doi:10.1038/clpt.2008.10PubMedGoogle Scholar
Lenzini  PA, Grice  GR, Milligan  PE,  et al.  Laboratory and clinical outcomes of pharmacogenetic vs clinical protocols for warfarin initiation in orthopedic patients.  J Thromb Haemost. 2008;6(10):1655-1662. doi:10.1111/j.1538-7836.2008.03095.xPubMedGoogle Scholar
Horne  BD, Lenzini  PA, Wadelius  M,  et al.  Pharmacogenetic warfarin dose refinements remain significantly influenced by genetic factors after one week of therapy.  Thromb Haemost. 2012;107(2):232-240. doi:10.1160/TH11-06-0388PubMedGoogle Scholar
Rosendaal  FR, Cannegieter  SC, van der Meer  FJ, Briët  E.  A method to determine the optimal intensity of oral anticoagulant therapy.  Thromb Haemost. 1993;69(3):236-239. doi:10.1055/s-0038-1651587PubMedGoogle Scholar
Do  EJ, Lenzini  P, Eby  CS,  et al.  Genetics Informatics Trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT): rationale and study design.  Pharmacogenomics J. 2012;12(5):417-424. doi:10.1038/tpj.2011.18PubMedGoogle Scholar
Newcombe  RG.  Two-sided confidence intervals for the single proportion: comparison of seven methods.  Stat Med. 1998;17(8):857-872. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-EPubMedGoogle Scholar
Piaggio  G, Elbourne  DR, Pocock  SJ, Evans  SJ, Altman  DG; CONSORT Group.  Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement.  JAMA. 2012;308(24):2594-2604. doi:10.1001/jama.2012.87802PubMedGoogle Scholar
Gage  BF, Yan  Y, Milligan  PE,  et al.  Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF).  Am Heart J. 2006;151(3):713-719. doi:10.1016/j.ahj.2005.04.017PubMedGoogle Scholar
Nordstrom  BL, Kachroo  S, Fraeman  KH,  et al.  Warfarin prophylaxis in patients after total knee or hip arthroplasty—international normalized ratio patterns and venous thromboembolism.  Curr Med Res Opin. 2011;27(10):1973-1985. doi:10.1185/03007995.2011.614938PubMedGoogle Scholar
Bern  MM, Hazel  D, Deeran  E,  et al.  Low dose compared to variable dose warfarin and to fondaparinux as prophylaxis for thromboembolism after elective hip or knee replacement surgery; a randomized, prospective study.  Thromb J. 2015;13:32. doi:10.1186/s12959-015-0062-0PubMedGoogle Scholar
Eckman  MH, Alonso-Coello  P, Guyatt  GH,  et al.  Women’s values and preferences for thromboprophylaxis during pregnancy: a comparison of direct-choice and decision analysis using patient specific utilities.  Thromb Res. 2015;136(2):341-347. doi:10.1016/j.thromres.2015.05.020PubMedGoogle Scholar
Man-Son-Hing  M, Gage  BF, Montgomery  AA,  et al.  Preference-based antithrombotic therapy in atrial fibrillation: implications for clinical decision making.  Med Decis Making. 2005;25(5):548-559. doi:10.1177/0272989X05280558PubMedGoogle Scholar
Kimmel  SE, French  B, Kasner  SE,  et al; COAG Investigators.  A pharmacogenetic versus a clinical algorithm for warfarin dosing.  N Engl J Med. 2013;369(24):2283-2293. doi:10.1056/NEJMoa1310669PubMedGoogle Scholar
Pirmohamed  M, Burnside  G, Eriksson  N,  et al; EU-PACT Group.  A randomized trial of genotype-guided dosing of warfarin.  N Engl J Med. 2013;369(24):2294-2303. doi:10.1056/NEJMoa1311386PubMedGoogle Scholar
Aynardi  M, Brown  PB, Post  Z, Orozco  F, Ong  A.  Warfarin for thromboprophylaxis following total joint arthroplasty: are patients safely anti-coagulated?  J Arthroplasty. 2013;28(8):1251-1253. doi:10.1016/j.arth.2012.12.007PubMedGoogle Scholar
Parvizi  J, Ghanem  E, Joshi  A, Sharkey  PF, Hozack  WJ, Rothman  RH.  Does “excessive” anticoagulation predispose to periprosthetic infection?  J Arthroplasty. 2007;22(6)(suppl 2):24-28. doi:10.1016/j.arth.2007.03.007PubMedGoogle Scholar
Original Investigation
September 3, 2019

Effect of Low-Intensity vs Standard-Intensity Warfarin Prophylaxis on Venous Thromboembolism or Death Among Patients Undergoing Hip or Knee Arthroplasty: A Randomized Clinical Trial

Author Affiliations
  • 1Department of Medicine, Washington University in St Louis, St Louis, Missouri
  • 2Department of Medicine, Hospital for Special Surgery, New York, New York
  • 3Department of Medical Education, University of Massachusetts, Worcester
  • 4Department of Medicine, Intermountain Medical Center, Salt Lake City, Utah
  • 5Department of Medicine, University of Utah, Salt Lake City
  • 6Department of Cardiology, Intermountain Medical Center, Salt Lake City, Utah
  • 7Department of Pathology, University of Utah, Salt Lake City
  • 8Department of Medicine, New York Presbyterian Queens Hospital, New York
  • 9Department of Medical Education, University of Central Florida College of Medicine, Orlando
  • 10Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Maryland
  • 11Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
  • 12Department of Orthopedic Surgery, Washington University in St Louis, St Louis, Missouri
  • 13Department of Pathology and Immunology, Washington University in St Louis, St Louis, Missouri
JAMA. 2019;322(9):834-842. doi:10.1001/jama.2019.12085
Key Points

Question  Compared with standard intensity warfarin (international normalized ratio [INR] target, 2.5), is a target INR of 1.8 noninferior for preventing the composite outcome of venous thromboembolism (VTE) or death after elective arthroplasty?

Findings  In this randomized clinical trial that included 1597 patients aged 65 years or older undergoing hip or knee arthroplasty and receiving prophylactic warfarin, an INR goal of 1.8 compared with 2.5 resulted in a rate of VTE or death of 5.1% vs 3.8%, respectively. The upper confidence limit for the difference (3.05%) exceeded the noninferiority margin of 3.0%.

Meaning  Compared with a standard INR goal, a low-intensity INR goal did not meet the noninferiority criterion for risk of the composite outcome of VTE or death among patients undergoing knee or hip arthroplasty; however, the study may have been underpowered to establish noninferiority.


Importance  The optimal international normalized ratio (INR) to prevent venous thromboembolism (VTE) in warfarin-treated patients with recent arthroplasty is unknown.

Objective  To determine the safety and efficacy of a target INR of 1.8 vs 2.5 for VTE prophylaxis after orthopedic surgery.

Design, Setting, and Participants  The randomized Genetic Informatics Trial (GIFT) of Warfarin to Prevent Deep Vein Thrombosis enrolled 1650 patients aged 65 years or older initiating warfarin for elective hip or knee arthroplasty at 6 US medical centers. Enrollment began in April 2011 and follow-up concluded in October 2016.

Interventions  In a 2 × 2 factorial design, participants were randomized to a target INR of 1.8 (n = 823) or 2.5 (n = 827) and to either genotype-guided or clinically guided warfarin dosing. For the first 11 days of therapy, open-label warfarin dosing was guided by a web application.

Main Outcomes and Measures  The primary outcome was the composite of VTE (within 60 days) or death (within 30 days). Participants underwent screening duplex ultrasound postoperatively. The hypothesis was that an INR target of 1.8 would be noninferior to an INR target of 2.5, using a noninferiority margin of 3% for the absolute risk of VTE. Secondary end points were bleeding and INR values of 4 or more.

Results  Among 1650 patients who were randomized (mean age, 72.1 years; 1049 women [63.6%]; 1502 white [91.0%]), 1597 (96.8%) received at least 1 dose of warfarin and were included in the primary analysis. The rate of the primary composite outcome of VTE or death was 5.1% (41 of 804) in the low-intensity-warfarin group (INR target, 1.8) vs 3.8% (30 of 793) in the standard-treatment-warfarin group (INR target, 2.5), for a difference of 1.3% (1-sided 95% CI, −∞ to 3.05%, P = .06 for noninferiority). Major bleeding occurred in 0.4% of patients in the low-intensity group and 0.9% of patients in the standard-intensity group, for a difference of −0.5% (95% CI, −1.6% to 0.4%). The INR values of 4 or more occurred in 4.5% of patients in the low-intensity group and 12.2% of the standard-intensity group, for a difference of −7.8% (95% CI, −10.5% to −5.1%).

Conclusions and Relevance  Among older patients undergoing hip or knee arthroplasty and receiving warfarin prophylaxis, an international normalized ratio goal of 1.8 compared with 2.5 did not meet the criterion for noninferiority for risk of the composite outcome of VTE or death. However, the trial may have been underpowered to meet this criterion and further research may be warranted.

Trial Registration  ClinicalTrials.gov Identifier: NCT01006733