Change in Disability After Hospitalization or Restricted Activity in Older Persons

Thomas M. Gill, MD
Heather G. Allore, PhD
Evelyne A. Gahbauer, MD, MPH
Terrence E. Murphy, PhD

Among older persons, disability in essential activities of daily living, such as bathing, dressing, walking, and transferring, is common and associated with increased mortality, institutionalization, and greater use of formal and informal home services. Active life expectancy, a metric that is often used by policy makers to forecast the functional health of older persons, is based on disability.

According to several conceptual models, disability is thought to arise when a vulnerable host is exposed to a new or worsening insult or intervening event. Supporting this theoretical framework, we have shown that intervening events, including illnesses and injuries leading to either hospitalization or restricted activity, are strongly associated with the development of disability in activities of daily living. These results, however, were based solely on the initial onset of disability. We have subsequently demonstrated that disability is a complex and highly dynamic process, with high rates of recovery and frequent transitions between states of disability. The role of intervening illnesses and injuries (ie, events) on these transitions is uncertain.

The objectives of the current study were to evaluate the association of intervening events with transitions between states of no disability, mild disability, severe disability, and death and to determine the association of physical frailty with these transitions.

Design, Setting, and Participants Prospective cohort study conducted in greater New Haven, Connecticut, from March 1998 to December 2008 of 754 community-living persons aged 70 years or older who were nondisabled at baseline in 4 essential activities of daily living: bathing, dressing, walking, and transferring. Telephone interviews were completed monthly for more than 10 years to assess disability and ascertain exposure to intervening events, which included illnesses and injuries leading to either hospitalization or restricted activity. Physical frailty (defined as gait speed >10 seconds on the rapid gait test) was assessed every 18 months through 108 months.

Main Outcome Measure Transitions between no disability, mild disability, and severe disability and 3 transitions from each of these states to death, evaluated each month.

Results Hospitalization was strongly associated with 8 of the 9 possible transitions, with increased multivariable hazard ratios (HRs) as high as 168 (95% confidence interval [CI], 118-239) for the transition from no disability to severe disability and decreased HRs as low as 0.41 (95% CI, 0.30-0.54) for the transition from mild disability to no disability. Restricted activity also increased the likelihood of transitioning from no disability to both mild and severe disability (HR, 2.59; 95% CI, 2.23-3.02; and HR, 8.03; 95% CI, 5.28-12.21, respectively), and from mild disability to severe disability (HR, 1.45; 95% CI, 1.14-1.84), but was not associated with recovery from mild or severe disability. For all 9 transitions, the presence of physical frailty accentuated the associations of the intervening events. For example, the absolute risk of transitioning from no disability to mild disability within 1 month after hospitalization for frail individuals was 34.9% (95% CI, 34.5%-35.3%) vs 4.9% (95% CI, 4.7%-5.1%) for nonfrail individuals. Among the possible reasons for hospitalization, fall-related injury conferred the highest likelihood of developing new or worsening disability.

Conclusions Among older persons, particularly those who were physically frail, intervening illnesses and injuries greatly increased the likelihood of developing new or worsening disability. Only the most potent events, ie, those leading to hospitalization, reduced the likelihood of recovery from disability.
complish our objectives, we used data from a longitudinal study that includes monthly assessments of intervening events and activities of daily living for more than 10 years in a cohort of community-living older persons.

METHODS

Study Population

Participants were members of the Precipitating Events Project, an ongoing longitudinal study of 754 community-living persons aged 70 years or older who were initially nondisabled (ie, required no personal assistance) in 4 activities of daily living—bathing, dressing, walking inside the house, and transferring from a chair.11 Exclusion criteria included significant cognitive impairment with no available proxy,12 inability to speak English, diagnosis of a terminal illness with a life expectancy less than 12 months, and a plan to move out of the New Haven area during the next 12 months.

The assembly of the cohort, which took place between March 1998 and October 1999, is summarized in the eFigure (available at http://www.jama .com) and has been described in detail elsewhere.7,11 In brief, potential participants were identified from a computerized list of 3157 age-eligible members of a large health plan in greater New Haven, Connecticut. Eligibility was determined during a screening telephone interview and was confirmed during an in-home assessment. Persons who were physically frail, as denoted by a timed score of greater than 10 seconds on the rapid gait test (ie, walk back and forth over a 10-ft [3-m] course as quickly as possible), were oversampled to ensure a sufficient number of participants at increased risk for disability.9 In the absence of a gold standard, operationalizing physical frailty as slow gait speed is justified by its high face validity,13 clinical feasibility,14 and strong epidemiologic link to functional decline and disability.9,10,15 Only 4.6% of the 2753 health plan members who were alive and could be contacted refused to complete the screening telephone interview, and 75.2% of the eligible members agreed to participate in the project. Persons who refused to participate did not differ significantly from those who were enrolled in terms of age or sex. The study protocol was approved by the Yale human investigation committee, and all participants provided verbal informed consent.

Data Collection

Comprehensive home-based assessments were completed at baseline and subsequently at 18-month intervals for 108 months, while telephone interviews were completed monthly through December 2008 (median, 111 months). For participants with significant cognitive impairment, the monthly telephone interviews were completed with a designated proxy. The accuracy of these proxy reports was high, with $\kappa = 1.0$ for disability, 1.0 for hospitalization, and 0.63 for restricted activity.8,12 Deaths were ascertained by review of the local obituaries or from an informant during a subsequent telephone interview. Four hundred five participants (53.7%) died after a median follow-up of 68 months, while 35 (4.6%) dropped out of the study after a median follow-up of 24 months. Data were otherwise available for 99.2% of the 66,425 monthly telephone interviews, with no difference between the decedents and nondecedents.

Physical Frailty and Covariates

During each of the comprehensive assessments, data were collected on physical frailty as previously described, and several covariates, including demographic characteristics; cognitive status as assessed by the Mini-Mental State Examination (MMSE)16; depressive symptoms as assessed by the Center for Epidemiologic Studies Depression (CES-D) Scale17; and 9 self-reported, physician-diagnosed chronic conditions: hypertension, myocardial infarction, congestive heart failure, stroke, diabetes mellitus, arthritis, hip fracture, chronic lung disease, and cancer. Data on these covariates were 100% complete at baseline and greater than 95% complete during the subsequent comprehensive assessments. Participants were considered to be cognitively impaired if they scored less than 24 on the MMSE16 and to have significant depressive symptoms if they scored 20 or higher on the CES-D.18 Participants were asked by a trained nurse researcher to identify their race/ethnicity. These data were collected primarily for descriptive purposes and to fulfill federal regulations regarding the inclusion of minority participants in studies funded by the US National Institutes of Health.

Intervening Events

The intervening events included illnesses and injuries leading to either hospitalization or restricted activity. During the monthly telephone interviews, participants were asked whether they had stayed at least overnight in a hospital since the last interview, ie, during the past month. The accuracy of these reports, based on an independent review of hospital records among a subgroup of 94 participants, was high, with $\kappa = 0.94$.6 Participants who were hospitalized were also asked to provide the primary reason for their admission. These reasons were subsequently grouped into distinct diagnostic categories using a revised version of the protocol described by Ferrucci et al.19 Agreement relative to an independent review of hospital records among a subgroup of 172 admissions was 82%.9

To ascertain less potent intervening events, participants were asked 2 questions related to restricted activity using a standardized protocol with high reliability, ie, $\kappa = 0.90$: (1) “Since we last talked on (date of last interview), have you stayed in bed for at least half a day due to an illness, injury, or other problem?” and (2) “Since we last talked on (date of last interview), have you cut down on your usual activities due to an illness, injury, or other problem?” Participants who answered yes to one or both of these questions were considered to have restricted activity during a specific month.11 These participants were subsequently asked to identify the
reasons for their restricted activity using
a standardized protocol that included
24 prespecified problems and an open-
ended response. We have previously
demonstrated that older persons usu-
ally attribute their restricted activity to
several concurrent health-related
problems.11

For participants who had died, a fi-
nal interview was completed with a
proxy informant who was asked about
any hospitalizations since the prior in-
terview. Given the nature of the ques-
tions, asking about restricted activity in
the last month of life was not feasible.
For each month during the follow-up
period, exposure to the intervening
events was categorized as hospitaliza-
tion; restricted activity without hospi-
talization, referred to hereafter as sim-
ply restricted activity; or neither hospitalization or restricted activity.

Disability

During the monthly telephone inter-
views, participants were assessed for dis-
ability using standard questions that were
identical to those used during the screen-
ing telephone interview.12 For each of the
4 essential activities of daily living, we
asked, “At the present time, do you need
help from another person to (complete
the task)?” Disability was operational-
ized as the need for personal assistance,
and the severity of disability was de-
noted by the number of disabled activi-
ties of daily living (from 0 to 4) in a spe-
cific month. Disability in 1 or 2 activities
of daily living was considered mild, while
disability in 3 or 4 activities of daily liv-
ing was considered severe.7,8 The reli-
ability of our disability protocol was sub-
stantial (κ = 0.75) for reassessments
completed within 48 hours and excel-
tent (κ = 1.0) for reassessments per-
fomed the same day.12 Complete de-
tails regarding these procedures, in-
cluding formal tests of reliability and
accuracy, are provided elsewhere.7,12 To
address the small amount of missing data
on disability (ie, less than 1% of obser-
vations), we used multiple imputation
with 50 random draws per missing ob-
servation according to procedures de-
scribed in an earlier report.20

Functional Transitions

Based on prior research,6 4 states were
declared: no disability, mild disability,
severe disability, and death. Transi-
tions were possible between each of the
nondecedent states and from each non-
decedent state to death.

Statistical Analysis

For each of the 9 possible transitions,
we calculated the cumulative inci-
dence rate per 1000 person-months
spent in the state immediately preced-
ing the transition. We also calculated
the median time (months) spent in a
specific state before the next transi-
tion or end of follow-up for no disabil-
ity, mild disability, and severe disabil-
ity, respectively. To quantify exposure
to the 2 types of intervening events—
hospitalization and restricted activi-
ity—we calculated the mean rate for
each as the number of person-months
exposed divided by all person-months
observed. Confidence intervals (CIs) for
the transition rates and exposure rates
were calculated by bootstrapping, using
sampling with replacement. One thou-
sand samples were created, and the
2.5th and 97.5th percentiles were used
to form the CIs. Bootstrap-derived CIs
provide nonparametric estimates of dis-
persion. For each of these analyses, the
results were stratified according to
physical frailty.

To evaluate the multivariable rela-
tionships between the independent
variables and 9 functional transitions,
we used a competing-risk Cox model
for recurrent events.21 In this model,
participants are simultaneously at risk for
several “competing” outcomes. For ex-
ample, participants with severe disabil-
ity could transition to no disability,
mild disability, and death. The model
calculates the respective associations
based on the amount of time partici-
pants spend in a specific state prior to
transitioning to another state. The com-
peting-risk Cox model accounts
for the correlation among observations
within individuals through the use of
robust sandwich variance estimators
for standard errors of the coefficients;22 is fairly robust to the distribu-
tion of time to event; and can be used
for nonproportional hazards, which
may occur with time-dependent vari-
ables.23 The independent variables
included physical frailty, which was
time-varying, and the 2 types of inter-
vening events. For the intervening
events, the calculated hazard ratio
(HR) refers to the risk of making a
specific transition between month t
and month t + 1 based on exposure to
hospitalization or restricted activity,
respectively, relative to participants
who had no hospitalization or restric-
ted activity, during this 1-month
interval. We have previously shown
that intervening events occurring prior
to this 1-month interval are not inde-
pendently associated with the develop-
ment of disability.6 Similarly, the HR
for physical frailty refers to the risk of
making a specific transition between
month t and month t + 1 among par-
ticipants who were physically frail
relative to those who were not physi-
ically frail.

The multivariable model, which
evaluated associations between the in-
dependent variables and each of the
functional transitions, included 3 fixed
covariates—sex, race/ethnicity, and
years of education—and 5 time-
varying covariates—age 85 years or
older, living alone, number of chronic
conditions, cognitive impairment, and
depressive symptoms. These covari-
ates represent important sociodemo-
graphic factors and pertinent clinical
factors that have been linked to dis-
ability in prior studies.6 The time-
varying covariates and physical frailty
were updated using data from the com-
prehensive assessment that immedi-
ately preceded entry into the state.

P values were adjusted for multiple
comparisons assuming a false discov-
ery rate of 5%.24 Potential interactions
between physical frailty and the inter-
vening events were tested and statisti-
cally significant interactions were re-
tained in the final model. Because
restricted activity could not be ascer-
tained among decedents, transitions to
death were not evaluated for this ex-
posure.
To enhance the interpretability of our findings, we calculated the absolute risk per month of each functional transition for hospitalization, restricted activity, and no intervening event, respectively, in the presence and absence of physical frailty. Values for the absolute risk represent the probability of developing a specific outcome per unit of time in the setting of the competing outcomes. The coefficients used to calculate the absolute risks were obtained from a set of pooled logistic models (one for each transition) that approximate a simple exponential model over the entire follow-up period. Covariates were assumed to remain fixed across time and were set as described herein.

To be conservative, power calculations were based on the lowest frequency of observed transitions out of each state. Covariates were assumed to contribute an R^2 of 0.20. Using Cox regression and assuming 20% exposure for either physical frailty or hospitalization, we had 80% power with a type I error of 3% to detect HRs of 2.05, 2.35, and 1.85 for transitions from no disability, mild disability, and severe disability, respectively. For restricted activity, we had 80% or greater power to detect an HR of 1.5 or higher for all transitions except from severe disability to no disability, which had 46% power. All statistical tests were 2-tailed with $P < .05$ denoting statistical significance, and all analyses were performed using SAS version 9.2 (SAS Institute, Cary, North Carolina).

RESULTS

To enhance the interpretability of our findings, we calculated the absolute risk per month of each functional transition for hospitalization, restricted activity, and no intervening event, respectively, in the presence and absence of physical frailty. Values for the absolute risk represent the probability of developing a specific outcome per unit of time in the setting of the competing outcomes. The coefficients used to calculate the absolute risks were obtained from a set of pooled logistic models (one for each transition) that approximate a simple exponential model over the entire follow-up period. Covariates were assumed to remain fixed across time and were set as described herein.

To be conservative, power calculations were based on the lowest frequency of observed transitions out of each state. Covariates were assumed to contribute an R^2 of 0.20. Using Cox regression and assuming 20% exposure for either physical frailty or hospitalization, we had 80% power with a type I error of 3% to detect HRs of 2.05, 2.35, and 1.85 for transitions from no disability, mild disability, and severe disability, respectively. For restricted activity, we had 80% or greater power to detect an HR of 1.5 or higher for all transitions except from severe disability to no disability, which had 46% power. All statistical tests were 2-tailed with $P < .05$ denoting statistical significance, and all analyses were performed using SAS version 9.2 (SAS Institute, Cary, North Carolina).

RESULTS

To enhance the interpretability of our findings, we calculated the absolute risk per month of each functional transition for hospitalization, restricted activity, and no intervening event, respectively, in the presence and absence of physical frailty. Values for the absolute risk represent the probability of developing a specific outcome per unit of time in the setting of the competing outcomes. The coefficients used to calculate the absolute risks were obtained from a set of pooled logistic models (one for each transition) that approximate a simple exponential model over the entire follow-up period. Covariates were assumed to remain fixed across time and were set as described herein.

To be conservative, power calculations were based on the lowest frequency of observed transitions out of each state. Covariates were assumed to contribute an R^2 of 0.20. Using Cox regression and assuming 20% exposure for either physical frailty or hospitalization, we had 80% power with a type I error of 3% to detect HRs of 2.05, 2.35, and 1.85 for transitions from no disability, mild disability, and severe disability, respectively. For restricted activity, we had 80% or greater power to detect an HR of 1.5 or higher for all transitions except from severe disability to no disability, which had 46% power. All statistical tests were 2-tailed with $P < .05$ denoting statistical significance, and all analyses were performed using SAS version 9.2 (SAS Institute, Cary, North Carolina).

RESULTS

To enhance the interpretability of our findings, we calculated the absolute risk per month of each functional transition for hospitalization, restricted activity, and no intervening event, respectively, in the presence and absence of physical frailty. Values for the absolute risk represent the probability of developing a specific outcome per unit of time in the setting of the competing outcomes. The coefficients used to calculate the absolute risks were obtained from a set of pooled logistic models (one for each transition) that approximate a simple exponential model over the entire follow-up period. Covariates were assumed to remain fixed across time and were set as described herein.

To be conservative, power calculations were based on the lowest frequency of observed transitions out of each state. Covariates were assumed to contribute an R^2 of 0.20. Using Cox regression and assuming 20% exposure for either physical frailty or hospitalization, we had 80% power with a type I error of 3% to detect HRs of 2.05, 2.35, and 1.85 for transitions from no disability, mild disability, and severe disability, respectively. For restricted activity, we had 80% or greater power to detect an HR of 1.5 or higher for all transitions except from severe disability to no disability, which had 46% power. All statistical tests were 2-tailed with $P < .05$ denoting statistical significance, and all analyses were performed using SAS version 9.2 (SAS Institute, Cary, North Carolina).

RESULTS

To enhance the interpretability of our findings, we calculated the absolute risk per month of each functional transition for hospitalization, restricted activity, and no intervening event, respectively, in the presence and absence of physical frailty. Values for the absolute risk represent the probability of developing a specific outcome per unit of time in the setting of the competing outcomes. The coefficients used to calculate the absolute risks were obtained from a set of pooled logistic models (one for each transition) that approximate a simple exponential model over the entire follow-up period. Covariates were assumed to remain fixed across time and were set as described herein.

To be conservative, power calculations were based on the lowest frequency of observed transitions out of each state. Covariates were assumed to contribute an R^2 of 0.20. Using Cox regression and assuming 20% exposure for either physical frailty or hospitalization, we had 80% power with a type I error of 3% to detect HRs of 2.05, 2.35, and 1.85 for transitions from no disability, mild disability, and severe disability, respectively. For restricted activity, we had 80% or greater power to detect an HR of 1.5 or higher for all transitions except from severe disability to no disability, which had 46% power. All statistical tests were 2-tailed with $P < .05$ denoting statistical significance, and all analyses were performed using SAS version 9.2 (SAS Institute, Cary, North Carolina).

RESULTS

To enhance the interpretability of our findings, we calculated the absolute risk per month of each functional transition for hospitalization, restricted activity, and no intervening event, respectively, in the presence and absence of physical frailty. Values for the absolute risk represent the probability of developing a specific outcome per unit of time in the setting of the competing outcomes. The coefficients used to calculate the absolute risks were obtained from a set of pooled logistic models (one for each transition) that approximate a simple exponential model over the entire follow-up period. Covariates were assumed to remain fixed across time and were set as described herein.

To be conservative, power calculations were based on the lowest frequency of observed transitions out of each state. Covariates were assumed to contribute an R^2 of 0.20. Using Cox regression and assuming 20% exposure for either physical frailty or hospitalization, we had 80% power with a type I error of 3% to detect HRs of 2.05, 2.35, and 1.85 for transitions from no disability, mild disability, and severe disability, respectively. For restricted activity, we had 80% or greater power to detect an HR of 1.5 or higher for all transitions except from severe disability to no disability, which had 46% power. All statistical tests were 2-tailed with $P < .05$ denoting statistical significance, and all analyses were performed using SAS version 9.2 (SAS Institute, Cary, North Carolina).
Among the 117 participants without a functional transition, 68 (58.1%) had at least 1 hospital admission and 107 (91.5%) had at least 1 month of restricted activity; they had a median of 2 hospital admissions (IQR, 1-3) and 7 months (IQR, 3-13) of restricted activity. Among the 637 participants who had at least 1 functional transition, 578 (90.7%) had at least 1 hospital admission and 601 (94.3%) had at least 1 month of restricted activity during a median follow-up of 102 months (IQR, 52-119); they had a median of 3 hospital admissions (IQR, 2-6) and 10 months (IQR, 5-18) of restricted activity. As shown in FIGURE 2, the exposure rates to both hospitalization and restricted activity were considerably greater among participants who were physically frail than those who were not physically frail.

The multivariable associations between the 3 independent variables—physical frailty, hospitalization, and restricted activity—and each of the functional transitions are shown in TABLE 2. Participants who were frail were more likely to transition to new or worsening disability and less likely to recover from mild and severe disability, but frailty was associated with the transition to death only for those with no disability. Hospitalization was associated with disability for 8 of the 9 transitions (the ninth being severe disability to no disability), with HRs as high as 168 for the transition from no disability to severe disability and as low as 0.41 for the transition from mild disability to no disability. Restricted activity increased the likelihood of transitioning from no disability to both mild and severe disability, respectively, and from mild disability to severe disability, but was not associated with recovery from mild or severe disability.

TABLE 3 provides the absolute risk per month of having a functional transition, based on exposure to intervening events and stratified by physical frailty. Regardless of intervening event, the absolute risk of transitions to new or worsening disability or death was consistently higher in participants with frailty, while transitions representing functional recovery were consistently more likely in those who were not frail. As shown in the eTable, similar results were observed for those 85 years and older vs those younger than 85 years, although the differences in absolute risk were generally smaller than the differences in absolute risk observed for frailty. The absolute risk of death was consistently higher in men than women, while the functional outcomes related to both hospitalization and restricted activity were worse in women than men, with few exceptions (eg, severe disability to mild disability). These differences were generally small. Regardless of sex or age, the absolute risks for new or worsening disability or death were greatest for those who were frail and hospitalized, with probabilities as high as 41.1% for the transition from no disability to mild dis-
ability among women aged 85 years or older. In contrast, for those without an intervening event or physical frailty, the absolute risk of transitioning to new or worsening disability or dying was very low, while the probability of functional recovery ranged widely—from 19.0% for the transition from severe disability to no disability among women older than 85 years to 44.1% for the transition from mild disability to no disability among men younger than 85 years.

The primary reasons that individuals were hospitalized are provided in Table 4. Although cardiac causes (coronary heart disease, congestive heart failure, arrhythmia, etc) and infection were the most common diagnostic categories (as seen in the total columns), fall-related injury conferred the highest likelihood of developing new or worsening disability. For example, of the 97 hospital admissions for a fall-related injury among non-disabled participants, 32 (33.0%) and 43 (44.3%) resulted in

Table 2. Associations of Physical Frailty, Hospitalization, and Restricted Activity With Functional Transitions

<table>
<thead>
<tr>
<th>Transition</th>
<th>Physical Frailty</th>
<th>Hospitalization</th>
<th>Restricted Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>From no disability to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disability</td>
<td>HR (95% CI)</td>
<td>P Value</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>From no disability to death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No disability</td>
<td>4.34 (3.58-5.27)</td>
<td><.001</td>
<td>8.90 (7.05-11.22)</td>
</tr>
<tr>
<td>Severe disability</td>
<td>3.53 (2.68-4.63)</td>
<td><.001</td>
<td>168 (118-239)</td>
</tr>
<tr>
<td>Death</td>
<td>1.79 (1.20-2.68)</td>
<td><.005</td>
<td>23.8 (15.9-35.7)</td>
</tr>
</tbody>
</table>

From mild disability to				
No disability	0.30 (0.21-0.41)	<.001	0.41 (0.30-0.54)	<.001
Severe disability	2.15 (1.51-3.04)	<.001	7.73 (5.47-10.9)	<.001
Death	1.26 (0.59-2.67)	<.001	10.9 (6.70-17.7)	<.001

From severe disability to				
No disability	0.13 (0.08-0.21)	<.001	1.04 (0.65-1.66)	<.001
Mild disability	0.57 (0.39-0.83)	<.001	0.70 (0.51-0.95)	<.001
Death	0.87 (0.51-1.46)	<.001	6.4 (4.49-9.12)	<.001

Table 3. Absolute Risk of Functional Transitions Per Month, Based on Intervening Events and Stratified by Physical Frailty

<table>
<thead>
<tr>
<th>Transition</th>
<th>No Intervening Event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospitalization</td>
</tr>
<tr>
<td></td>
<td>% (95% Confidence Interval)</td>
</tr>
<tr>
<td>No disability to</td>
<td></td>
</tr>
<tr>
<td>Mild disability</td>
<td>34.9 (34.5-35.3)</td>
</tr>
<tr>
<td>Severe disability</td>
<td>19.5 (19.2-19.9)</td>
</tr>
<tr>
<td>Death</td>
<td>7.9 (7.6-8.1)</td>
</tr>
<tr>
<td>Mild disability to</td>
<td></td>
</tr>
<tr>
<td>No disability</td>
<td>14.6 (13.8-15.3)</td>
</tr>
<tr>
<td>Severe disability</td>
<td>18.1 (17.2-18.9)</td>
</tr>
<tr>
<td>Death</td>
<td>6.1 (5.6-6.7)</td>
</tr>
<tr>
<td>Severe disability to</td>
<td></td>
</tr>
<tr>
<td>No disability</td>
<td>8.4 (7.8-9.0)</td>
</tr>
<tr>
<td>Mild disability</td>
<td>14.5 (13.7-15.2)</td>
</tr>
<tr>
<td>Death</td>
<td>14.0 (13.2-14.7)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; HR, hazard ratio.

**As described in the “Methods” section, a single multivariable model was run that included 3 fixed covariates (sex, race/ethnicity, and years of education), 5 time-dependent covariates (age 85 years or older, living alone, number of chronic conditions, cognitive impairment, and depressive symptoms), and the transition-specific interaction terms that were statistically significant in the competing-risk Cox model. For hospitalization, significant interactions with physical frailty were observed for the transitions from no disability to mild disability and from no disability to severe disability. For restricted activity, a significant interaction with physical frailty was observed only for the transition from no disability to mild disability. Physical frailty and the time-dependent covariates were updated every 18 months.

**As calculated using coefficients obtained from a set of pooled logistic regression models (one for each transition) that included the 3 independent variables: 3 covariates, and the transition-specific interaction terms that were statistically significant in the competing-risk Cox model. For hospitalization, significant interactions with physical frailty were observed for the transitions from no disability to mild disability and from no disability to severe disability. For restricted activity, a significant interaction with physical frailty was observed only for the transition from no disability to mild disability. Physical frailty and the time-dependent covariates were updated every 18 months during the comprehensive assessments.

©2010 American Medical Association. All rights reserved.
transitions to mild and severe disability, respectively. Table 5 provides comparable information for episodes of restricted activity. For each set of transitions, fatigue was the most common reason for restricted activity. Of all the reasons, however, a fall or injury conferred the highest likelihood of transitioning from no disability to mild and severe disability, respectively, and the second highest likelihood (after problem with memory or difficulty thinking) of transitioning from mild disability to severe disability. For example, of the 665 episodes of restricted activity attributed to a fall or injury among nondisabled participants, 100 (15.0%) and 25 (3.8%) resulted in transitions to mild and severe disability, respectively.

COMMENT

In this prospective cohort study of community-living older persons, we found that illnesses and injuries leading to hospitalization were associated with worsening functional ability for nearly all transitions between states of no disability, mild disability, severe disability, and death over the course of more than 10 years. Furthermore, illnesses and injuries leading to restricted activity but not hospitalization increased the likelihood of transitioning from no disability to both mild and severe disability and from mild disability to severe disability, but were not associated with recovery from mild or severe disability. Finally, these associations of hospitalization and restricted activity with functional transitions were accentuated by the presence of physical frailty. These results provide strong evidence that intervening events have an important role in precipitating and, subsequently, perpetuating the disabling process. Unlike conditions that invariably progress, such as Alzheimer disease, disability is a recurrent disorder, characterized by high rates of recovery. The dynamic nature of disability has only recently been elucidated, and relatively little is known about the factors that are associated with clinically relevant transitions in functional status. We have previously shown that illnesses and injuries leading to either hospitalization or restricted activity are strongly associated with the initial onset of disability. The current study extends this earlier work by demonstrating that exposure to these intervening illnesses and injuries is also associated with the subsequent course of disability.

Hospitalization was associated with a particularly pronounced risk, with HRs for developing new and worsening disability much greater than those for physical frailty, which is the single strongest risk factor for disability and functional decline. For the transition from no disability to severe disability, the high HR associated with hospitalization is likely attributable not only to the potent disabling effects of serious illness, and hospitalization itself, but also to the low incidence of severe disability in the comparison group of nondisabled participants without an acute hospital admission or restricted activity. Our results support the hypothesis that illnesses and injuries leading to hospitalization act not only to precipitate and worsen disability, but also to hasten death and to impede recovery from disability, thereby prolonging the disabling process. Illnesses and injuries leading to hospitalization were not associated with the transition from severe disability to no disability; this was likely due to the short duration of severe disability among participants who regained independence (median, 1 month; IQR, 1-1) and, for participants with severe disability, the strong association of hospitalization with the 2 competing outcomes of mild disability and death.
Illnesses and injuries leading to restricted activity were also associated with developing new and worsening disability. These associations were not as strong as those for acute hospital admissions, although they are important because restricted activity was much more common than hospitalization. We were unable to calculate population attributable fractions, but in our earlier report, which focused only on the initial onset of disability, the population attributable fractions were considerably greater for hospitalization than restricted activity for 3 distinct disability outcomes. In the current study, we found that episodes of restricted activity were not associated with transitions from mild disability to no disability or from severe disability to mild disability, suggesting that intervening events less potent than those leading to hospitalization do not impede recovery from disability.

Physical frailty was independently associated with each of the 6 transitions between no disability, mild disability, and severe disability and accentuated the associations of the intervening events in absolute terms for all 9 of the possible transitions. For both hospitalization and restricted activity, the influence of physical frailty was most striking for transitions from no disability to mild disability, with increases in absolute risk within 1 month of hospitalization as high as 30%. Because physical frailty was assessed every 18 months but could have changed over shorter periods of time, it is possible that its effects were underestimated. Nonetheless, in the setting of an intervening

Table 5. Reasons for Restricted Activity According to Functional Transition

<table>
<thead>
<tr>
<th>Reason for Restricted Activity</th>
<th>To Mild Disability</th>
<th>To Severe Disability</th>
<th>To Death</th>
<th>Total (n = 6906)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue, no energy, tired</td>
<td>4326 (62.9)</td>
<td>323 (4.7)</td>
<td>8 (0.2)</td>
<td>983 (13.6)</td>
</tr>
<tr>
<td>Pain or stiffness in hands</td>
<td>2695 (39.0)</td>
<td>229 (3.4)</td>
<td>1 (0.0)</td>
<td>615 (9.0)</td>
</tr>
<tr>
<td>Pain or stiffness in back</td>
<td>2212 (32.0)</td>
<td>170 (2.5)</td>
<td>2 (0.0)</td>
<td>532 (8.2)</td>
</tr>
<tr>
<td>Dizziness or unsteadiness on feet</td>
<td>1953 (28.3)</td>
<td>130 (1.9)</td>
<td>4 (0.6)</td>
<td>492 (7.4)</td>
</tr>
<tr>
<td>Cold or flu symptoms</td>
<td>1693 (24.5)</td>
<td>77 (1.1)</td>
<td>1 (0.0)</td>
<td>274 (4.0)</td>
</tr>
<tr>
<td>Leg pain during walking</td>
<td>1475 (21.4)</td>
<td>109 (1.6)</td>
<td>2 (0.3)</td>
<td>396 (5.8)</td>
</tr>
<tr>
<td>Fear of falling</td>
<td>1475 (21.4)</td>
<td>163 (2.4)</td>
<td>3 (0.5)</td>
<td>430 (6.4)</td>
</tr>
<tr>
<td>Nausea, vomiting, diarrhea, or other stomach (abdominal) problem</td>
<td>1347 (19.5)</td>
<td>87 (1.2)</td>
<td>2 (0.0)</td>
<td>331 (4.9)</td>
</tr>
<tr>
<td>Difficulty breathing or shortness of breath</td>
<td>1334 (19.3)</td>
<td>110 (1.6)</td>
<td>2 (0.0)</td>
<td>331 (4.9)</td>
</tr>
<tr>
<td>Difficulty sleeping</td>
<td>1317 (19.1)</td>
<td>112 (1.6)</td>
<td>0</td>
<td>306 (4.5)</td>
</tr>
<tr>
<td>Depressed</td>
<td>1059 (15.3)</td>
<td>124 (1.8)</td>
<td>2 (0.0)</td>
<td>299 (4.4)</td>
</tr>
<tr>
<td>Weakness of arms or legs</td>
<td>883 (12.8)</td>
<td>94 (1.3)</td>
<td>1 (0.0)</td>
<td>247 (3.6)</td>
</tr>
<tr>
<td>Anxious or worried</td>
<td>877 (12.7)</td>
<td>86 (1.2)</td>
<td>1 (0.0)</td>
<td>269 (4.0)</td>
</tr>
<tr>
<td>Swelling in feet or ankles</td>
<td>860 (12.5)</td>
<td>88 (1.3)</td>
<td>2 (0.0)</td>
<td>255 (3.7)</td>
</tr>
<tr>
<td>Fall or injury</td>
<td>665 (9.6)</td>
<td>100 (1.5)</td>
<td>2 (0.0)</td>
<td>190 (2.8)</td>
</tr>
<tr>
<td>Poor or decreased vision</td>
<td>654 (9.2)</td>
<td>56 (0.8)</td>
<td>1 (0.0)</td>
<td>158 (2.3)</td>
</tr>
<tr>
<td>Change in medications</td>
<td>620 (8.9)</td>
<td>53 (0.8)</td>
<td>1 (0.0)</td>
<td>165 (2.4)</td>
</tr>
<tr>
<td>Chest pain or tightness</td>
<td>552 (8.0)</td>
<td>48 (0.7)</td>
<td>2 (0.0)</td>
<td>121 (1.8)</td>
</tr>
<tr>
<td>Lost control of urine and wet self</td>
<td>430 (6.2)</td>
<td>47 (0.7)</td>
<td>7 (1.0)</td>
<td>199 (2.9)</td>
</tr>
<tr>
<td>Frequent or painful urination</td>
<td>421 (6.1)</td>
<td>52 (0.8)</td>
<td>1 (0.0)</td>
<td>119 (1.7)</td>
</tr>
<tr>
<td>Family member or friend became seriously ill or was injured</td>
<td>283 (4.1)</td>
<td>16 (0.2)</td>
<td>3 (0.1)</td>
<td>48 (0.7)</td>
</tr>
<tr>
<td>Problem with memory or difficulty thinking</td>
<td>281 (4.1)</td>
<td>42 (0.6)</td>
<td>9 (0.1)</td>
<td>173 (2.5)</td>
</tr>
<tr>
<td>Experienced death or loss of a family member or friend</td>
<td>219 (3.2)</td>
<td>18 (0.3)</td>
<td>7 (0.1)</td>
<td>54 (0.8)</td>
</tr>
<tr>
<td>Problem with alcohol</td>
<td>4 (0.1)</td>
<td>0</td>
<td>0</td>
<td>1 (0.0)</td>
</tr>
<tr>
<td>Other reason</td>
<td>1745 (25.3)</td>
<td>124 (1.8)</td>
<td>1 (0.0)</td>
<td>341 (5.0)</td>
</tr>
</tbody>
</table>

Note: Presented in order of frequency of occurrence, from highest to lowest, for total transitions from no disability, with the exception of other reason.
event, the change in absolute risks associated with physical frailty on transitions to new or worsening disability was considerably greater than that of sex and age.

We determined absolute risks for subgroups defined on the basis of physical frailty, sex, and age, which greatly enhances the clinical relevance of our findings. For example, in the setting of an acute illness or injury leading to hospitalization, the absolute risk of transitioning from no disability to severe disability within 1 month ranged from only 3.3% in men younger than 85 years without physical frailty to 24.4% in physically frail women aged 85 years or older. Although the multivariate nature (ie, 9 different outcomes) of our analytic strategy did not permit us to evaluate the risks associated with specific reasons for hospitalization or restricted activity, we found that falls and fall-related injuries almost invariably conferred the highest likelihood for developing new or worsening disability.

The results of the current study, coupled with those of our earlier report, provide strong evidence that disability among older persons is driven largely by illnesses and injuries leading to hospitalization or restricted activity. Both types of intervening events greatly increased the likelihood of developing new or worsening disability, while only the most potent events, ie, those leading to hospitalization, reduced the likelihood of recovery from disability. Given the central role of intervening illnesses and injuries on the disabling process, more aggressive efforts are warranted to prevent their occurrence, to manage them more effectively and reduce subsequent complications, especially in the hospital setting and, after an event, to enhance restorative interventions in the subacute, home care, and outpatient settings.

Although causality cannot be established by an observational study, the frequency of our assessments increases the likelihood that the intervening events at least preceded the functional transitions. However, our data do not allow us to determine how often the intervening events resulted immediately in new or worsening disability, as may occur with a sudden acute process such as a stroke or hip fracture. The validity of our results is strengthened by the nearly complete ascertainment of intervening events and disability, by the high reliability and accuracy of these assessments, and by adjustment for several relevant covariates at 18-month intervals with few missing data.

Our study has at least 2 additional limitations. First, information was not available on the duration of the intervening events. It is possible that the likelihood of recovery may be reduced by long episodes of restricted activity but not by short episodes. Second, because our study participants were members of a single health plan in a small urban area and were oversampled for slow gait speed, our results may not be generalizable to older persons in other settings. However, the demographic characteristics of our cohort did reflect those of older persons in New Haven County, Connecticut, which are similar to the characteristics of the US population as a whole, with the exception of race or ethnic group. The generalizability of our results is enhanced by our high participation rate, which was greater than 75%.

Despite the reductions observed in the prevalence of disability over the past 2 decades, the absolute number of disabled older Americans could increase substantially in the coming years with the aging of the baby boom generation. To obviate this increase, more aggressive efforts will be needed to prevent and manage intervening illnesses and injuries, given their apparent role in precipitating and perpetuating the disabling process.

Author Contributions: Dr Gill had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Gill, Allore. Acquisition of data: Gill, Gahbauer. Analysis and interpretation of data: Gill, Allore, Murphy. Drafting of the manuscript: Gill, Allore, Gahbauer, Murphy.

REFERENCES

10. Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of...
The older I get, the greater power I seem to have to help the world; I am like a snowball—the further I am rolled, the more I gain.

—Susan B. Anthony (1820-1906)