Hand-Rubbing With an Aqueous Alcoholic Solution vs Traditional Surgical Hand-Scrubbing and 30-Day Surgical Site Infection Rates
A Randomized Equivalence Study

Jean Jacques Parienti, MD, DTM&H
Pascal Thibon, MD
Remy Heller, PharmD, PhD
Yannick Le Roux, MD, DCh
Peter von Theobald, MD, DCh
Hervé Bensadoun, MD, DCh
Alain Bouvet, MD
François Lemarchand, MD, DCh
Xavier Le Coutour, MD
for Members of the Antisepsie Chirurgicale des Mains Study Group

SURGICAL SITE INFECTIONS (SSI) prolong hospital stays; they are also among the leading nosocomial causes of morbidity and a source of excess medical costs.2 Sterile gloves contribute to preventing surgical wound contamination,4 but some are permeable to bacteria and all can be damaged during use. Effective hand antisepsis thus remains crucial. Guidelines on hand and forearm antisepsis for operating department staff5 aim at removing transient microorganisms and reducing the resident flora (by at least 2-log).

In France, 2 protocols are recommended for surgical hand preparation: 5 minutes of hand-scrubbing with antiseptic soap; and an optional 1-minute hand wash with nonantiseptic soap and tap water, followed by 5 minutes of hand-rubbing with a liquid aqueous alcoholic solution (AAS) alone. In other European countries, only 3 minutes of hand-rubbing with AAS are required.

Context Surgical site infections prolong hospital stays, are among the leading nosocomial causes of morbidity, and a source of excess medical costs. Clinical studies comparing the risk of nosocomial infection after different hand antisepsis protocols are scarce.

Objective To compare the effectiveness of hand-cleansing protocols in preventing surgical site infections during routine surgical practice.

Design Randomized equivalence trial.

Setting Six surgical services from teaching and nonteaching hospitals in France.

Patients A total of 4387 consecutive patients who underwent clean and clean-contaminated surgery between January 1, 2000, and May 1, 2001.

Interventions Surgical services used 2 hand-cleansing methods alternately every other month: a hand-rubbing protocol with 75% aqueous alcoholic solution containing propanol-1, propanol-2, and mecetronium etilsulfate; and a hand-scrubbing protocol with antiseptic preparation containing 4% povidone iodine or 4% chlorhexidine gluconate.

Main Outcome Measures Thirty-day surgical site infection rates were the primary end point; operating department teams’ tolerance of and compliance with hand antisepsis were secondary end points.

Results The 2 protocols were comparable in regard to surgical site infection risk factors. Surgical site infection rates were 55 of 2252 (2.44%) in the hand-rubbing protocol and 53 of 2135 (2.48%) in the hand-scrubbing protocol, for a difference of 0.04% (95% confidence interval, −0.88% to 0.96%). Based on subsets of personnel, compliance with the recommended duration of hand antisepsis was better in the hand-rubbing protocol of the study compared with the hand-scrubbing protocol (44% vs 28%, respectively; P = .008), as was tolerance, with less skin dryness and less skin irritation after aqueous solution use.

Conclusions Hand-rubbing with aqueous alcoholic solution, preceded by a 1-minute nonantiseptic hand wash before each surgeon’s first procedure of the day and before any other procedure if the hands were soiled, was as effective as traditional hand-scrubbing with antiseptic soap in preventing surgical site infections. The hand-rubbing protocol was better tolerated by the surgical teams and improved compliance with hygiene guidelines. Hand-rubbing with liquid aqueous alcoholic solution can thus be safely used as an alternative to traditional surgical hand-scrubbing.

JAMA. 2002;288:722-727

©2002 American Medical Association. All rights reserved.
recommended. Many reports suggest that AAS has better and more sustained antimicrobial activity than traditional scrubs.6–11 For example, Hobson et al11 compared hand antimicrobial count after either 3 minutes of hand-scrubbing with solutions containing 7.5% povidone iodine and 4% chlorhexidine gluconate or 3 minutes of hand-rubbing with an AAS. Mean logarithmic reduction of colony forming units (CFU) from baseline was significantly higher in the AAS protocol when compared with povidone iodine or chlorhexidine gluconate after 1 minute (2.90 log10 vs 1.20 log10 and 1.68 log10 of CFU reduction from baseline), 3 hours (1.58 log10 vs 0.71 log10 and 1.08 log10 of CFU reduction from baseline) and 6 hours (1.94 log10 vs –0.21 log10 and 0.86 log10 of CFU reduction from baseline) at day 1 and day 2. However, these investigations involved healthy volunteers or short study periods, with hand microorganism counts as the primary end point. Poor compliance and the risk of dermatitis were not taken into account. Because of the need for a very large population sample, together with the existence of numerous confounding factors and prohibitive costs, clinical studies comparing the risk of nosocomial infection after different hand antisepsis protocols are scarce.5,9

To confirm the validity of current recommendations for hand antisepsis before surgery, we conducted a randomized equivalence study comparing hand-scrubbing and hand-rubbing protocols with a multiple service crossover experimental design. The aim was to demonstrate the equivalence of the 2 protocols in terms of SSI rates.

METHODS

Setting and Study Design

Six surgical services in France were invited to participate in this study and all accepted. They consisted of 3 surgical services of a teaching hospital (Côte de Nacre University Hospital Centre, Caen) and the surgical services of 3 nonteaching hospitals (François Baclesse Centre, Caen; General Hospital, Colmar; General Hospital, Pont-Audemer). A 2-month feasibility study was first conducted in a single surgical service, during which training requirements were determined; the surgical team switched readily from traditional hand-scrubbing to hand-rubbing with AAS. Surgeons from the 6 candidate centers were then invited to discuss the project. The clinical trial started January 1, 2000, and lasted 16 months (May 1, 2001). The following end points were used: nosocomial SSI rates (main end point), compliance by the surgical teams, and tolerance of the 2 hand antisepsis protocols by the surgical teams in real world conditions. The first protocol to be used in each surgical service was chosen randomly. Each participating surgical service was assigned a 2-digit random number by using a random number table. Surgical services corresponding to the 3 higher numbers were assigned to hand-rubbing with AAS and the remaining 3 services were assigned to traditional hand-scrubbing. The alternative antiseptic product was systematically removed from the services during each period. At the end of each month, the antiseptic products were switched in a multiple service crossover design.

Definition, Surveillance, and Validation of Nosocomial SSIs

Diagnosis for SSI was standardized in accordance with the Centers for Disease Control and Prevention (CDC) definitions for nosocomial infection.12 For the purpose of this study, however, SSI surveillance lasted 30 days regardless of prosthesis implantation. It should be noted that our hygiene department has been involved in SSI surveillance for many years.13

In-hospital SSIs were prospectively diagnosed by a surgeon, infectious disease specialist, or hygiene specialist on a standard data-collection form. Postdischarge surveillance was based on chart review of visits and telephone contacts with the surgeons. If data at 30 days were unavailable, the patient was contacted by telephone and asked to answer a brief questionnaire on fever and other potential symptoms of SSI, together with antibiotic use and visits to an emergency department or to another physician, who was then contacted to confirm the SSI.

According to CDC guidelines, all SSIs had to be confirmed by the surgeon or the physician in charge of the patient. Thus, observers of the clinical outcome could not be blinded to the hand antisepsis protocol. For possible postdischarge SSIs reported by the patient only, a data validation for SSIs according to CDC guidelines was performed by investigators who were blinded to the protocol used by surgeons prior to surgical procedure.

Patients and Data Collection

All consecutive patients treated in the 6 participating surgical services were screened for SSI. Because bacteria on operating department personnel hands are more likely to affect the outcome in clean and clean-contaminated surgical wounds (classified according to Altemeier et al14), our study group decided to exclude from analysis patients in contaminated or dirty procedure groups, when designing this study. Patients undergoing a second operation less than 15 days after the first were also excluded, because this is an independent risk factor for SSI.

The first 2 months after randomization of the services, investigators checked if the protocols were correctly performed. Therefore, because introduction of a new protocol and feedback can influence short-term surgical personnel behavior, compliance observations for the hand antisepsis protocol started at month 3 and continued until month 16. Twice as many observations were performed in the new hand-rubbing protocol compared with the traditional hand-scrubbing protocol. Compliance observers did not belong to the operating department team but were usually present in the surgical suite. To avoid a Hawthorne effect, the surgical teams were not informed of the timing of the evaluations. Only the first hand antisepsis of the day was observed in the 2 study protocols.
In the 3 participating surgical services of our teaching hospital (Côte de Nacre University Hospital Centre), the surgical personnel (77 subjects) were asked to estimate the effect of the 2 protocols on their skin. We used 2 10-cm visual analog scales, at month 0 and after 3 crossovers; 0 cm representing absence of any tolerance problem and 10 cm representing maximal dryness with chapped hands and desquamation or maximal irritation with erythema, burning sensation, and abrasion.

Hand Antisepsis Protocols

The standard surgical scrubbing antiseptic technique was as defined in CDC guidelines. In particular, at least 5 minutes of systematic hand-scrubbing was required with a sterile sponge and brush. Hand-scrubbing with antiseptic solutions containing 4% povidone iodine (Betadine, Asta Medica, Merignac, France) or 4% chlorhexidine gluconate (Hibiscrub, AstraZeneca, Ruell-Malmaison, France) had been used for many years by the surgical teams and was thus chosen as the control protocol for this study.

Hand-rubbing involved a 75% AAS containing propanol-1, propanol-2, and mecetronium etilsulfate (Sterillium, Rivadis Laboratories, Thouard, France). We chose this product because it was the only AAS licensed for surgical antisepsis in France. Prior to the first procedure of the day, or if the hands were visibly soiled, the surgical team was instructed to use a nonantiseptic soap (Savon Codex, Rivadis Laboratories, Thouard, France) for a 1-minute hand wash, including subungual space cleaning with a brush. The hands and forearms were then rinsed with nonsterile tap water and wiped carefully with nonsterile paper. The user was instructed to take enough AAS to fully cover the hands and forearms (at least 5 mL, which represents at least 4 pump strokes), and to apply it twice for 2 minutes 30 seconds (for a total of 5 minutes) without drying. As recommended by the manufacturer, users were also instructed to rub their hands with AAS for 30 seconds when changing gloves. The hand-rubbing technique was based on the European Norm 1500 from the Association Française de Normalisation.

RESULTS

During the study period (Figure), 4823 consecutive patients underwent surgery. Among these, 385 patients underwent contaminated or dirty-contaminated surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group). The remaining 4387 patients (68.5% of whom underwent clean surgery, and 51 were lost to follow-up at 30 days (17 in the hand-rubbing group).
SSIs Rates
The surveillance system identified 99 in-hospital and 9 postdischarge SSIs. The global SSI rate 30 days after surgery was 2.46% (95% CI, 1.81%-3.11%). The SSI rates for clean and clean-contaminated surgery were 2.03% (95% CI, 1.33%-2.73%) and 3.40% (95% CI, 2.07%-4.73%), respectively. In the hand-scrubbing protocol, 21 SSIs were superficial, 19 deep, and 8 organ-space (5 unknown). In the hand-rubbing protocol, 24 SSIs were superficial, 15 deep, and 7 organ-space (9 unknown). The distribution of these categories of SSI did not differ between the 2 protocols.

There were 53 of 2135 SSIs (2.48%) in the hand-scrubbing protocol and 55 of 2252 (2.44%) in the hand-rubbing protocol (Table 2). The difference between the SSI rates with hand-scrubbing and the SSI rate with hand-rubbing with AAS was 0.04% (as treated 95% CI, −0.88% to 0.96%). In an intention-to-treat analysis, considering that all the 17 patients lost to follow-up in the hand-scrubbing group had an SSI and none of the 34 patients lost to follow-up in the hand-rubbing group had an SSI (maximal bias), the rate difference would have been −0.69% (95% CI, −1.67% to 0.29%). The equivalence of the 2 protocols was accepted.

Compliance With the Antiseptics Protocols
During the study period, 278 individual compliance assessments were made of the operating teams (174 in the hand-scrubbing group), corresponding with 160 surgical procedures (102 in the hand-scrubbing group). On average, the first hand-cleansing protocol of the day (Table 3), excluding the simple nonantiseptic hand wash prior to hand-rubbing, lasted significantly longer in the hand-rubbing group than in the hand-scrubbing group (mean [SD], 313 [80] seconds vs 287 [75] seconds; P = .01). Scrub nurses complied better with the recommended duration of hand antisepsis than did surgeons and assistants (56% vs 33%; P < .001). Compliance with the recommended dura-

Table 1. Characteristics of the Patients According to the Hand-Hygiene Protocol*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hand-Scrubbing (n = 2135)</th>
<th>Hand-Rubbing (n = 2252)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>51.1 (17.6)</td>
<td>49.5 (17.4)</td>
</tr>
<tr>
<td>ASA physical status class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>948 (44.4)</td>
<td>1057 (46.9)</td>
</tr>
<tr>
<td>2</td>
<td>796 (37.2)</td>
<td>840 (37.3)</td>
</tr>
<tr>
<td>3</td>
<td>351 (16.4)</td>
<td>306 (13.6)</td>
</tr>
<tr>
<td>4 and 5</td>
<td>15 (0.7)</td>
<td>16 (0.7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>26 (1.2)</td>
<td>33 (1.5)</td>
</tr>
<tr>
<td>Alternative clean class</td>
<td>1485 (69.6)</td>
<td>1520 (67.5)</td>
</tr>
<tr>
<td>Duration of surgery, mean (SD), min</td>
<td>79.1 (73.6)</td>
<td>76.3 (71.6)</td>
</tr>
<tr>
<td>Emergency surgery</td>
<td>189 (8.9)</td>
<td>213 (9.5)</td>
</tr>
<tr>
<td>Type of surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gynecology</td>
<td>629 (29.5)</td>
<td>730 (32.4)</td>
</tr>
<tr>
<td>Urology</td>
<td>268 (12.6)</td>
<td>272 (12.1)</td>
</tr>
<tr>
<td>Abdominal</td>
<td>374 (17.5)</td>
<td>390 (17.3)</td>
</tr>
<tr>
<td>Orthopedic</td>
<td>378 (17.7)</td>
<td>368 (16.3)</td>
</tr>
<tr>
<td>Otolaryngology</td>
<td>167 (7.8)</td>
<td>179 (7.9)</td>
</tr>
<tr>
<td>Other</td>
<td>319 (14.9)</td>
<td>313 (13.9)</td>
</tr>
</tbody>
</table>

*ASA indicates American Society of Anesthesiologists. The ASA physical status classification indicates class 1, a healthy patient; class 2, a patient with mild systemic disease; class 3, a patient with severe systemic disease; class 4, a patient with very severe systemic disease that is a constant threat; and class 5, a moribund patient who is not expected to survive without an operation.

Table 2. Surgical Site Infection (SSI) Rates and Differences Between Hand-Scrubbing and Hand-Rubbing*

<table>
<thead>
<tr>
<th>Altemeier Class of Contamination</th>
<th>Hand-Scrubbing Protocol</th>
<th>Hand-Rubbing Protocol</th>
<th>SSI Rate Difference (95% Confidence Interval)</th>
<th>χ² Test of Equivalence (P Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>29/1485 (1.95)</td>
<td>32/1520 (2.11)</td>
<td>−0.15 (−1.16 to 0.85)</td>
<td>16.0 (<.001)</td>
</tr>
<tr>
<td>Clean-contaminated</td>
<td>24/650 (3.69)</td>
<td>23/732 (3.14)</td>
<td>0.55 (−1.36 to 2.46)</td>
<td>1.9 (.39)</td>
</tr>
</tbody>
</table>

*The 95% confidence interval of the SSI rate difference was calculated according to Wallenstein and the χ² test was the lowest χ² value of the Dunnett and Gent continuity-corrected double 1-sided test for equivalence at −2% and +2%.

Table 3. Compliance With the Recommended Duration of Hand Antiseptic During the First Procedure of the Day*

<table>
<thead>
<tr>
<th>Operating Room Personnel</th>
<th>Hand-Scrubbing Protocol</th>
<th>Hand-Rubbing Protocol</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of hand antiseptic, mean (range), s</td>
<td>287 (100-480)</td>
<td>313 (60-510)</td>
<td>.01‡</td>
</tr>
<tr>
<td>No. of hand antiseptics ≥5 min/total no. of hand antiseptics (%)</td>
<td>20/83 (24)</td>
<td>51/133 (38)</td>
<td>.04</td>
</tr>
<tr>
<td>Surgeon/assistant</td>
<td>9/21 (42)</td>
<td>26/41 (63)</td>
<td>.18</td>
</tr>
<tr>
<td>Scrub nurse</td>
<td>29/104 (28)</td>
<td>77/174 (44)</td>
<td>.008</td>
</tr>
</tbody>
</table>

*Time required for the nonantiseptic hand wash prior to hand-rubbing with aqueous alcoholic solution has been excluded.
†Analyzed using Fisher exact test.
‡Analyzed using Mann-Whitney test.
curred for a total of 34 procedures (5.9%) compared with 2 SSIs for 36 procedures (3.6%) when the nonantiseptic hand washing was performed in the same services. Glove changes occurred during 32 of the 102 observed procedures in the hand-rubbing protocol; the recommended 30-second AAS rub before a glove change was complied with in 16 of these 32 cases, not complied with in 10 cases, and 6 were unknown.

Subjective Tolerance of the Antisepsis Protocols
A total of 77 operating department staff members were assessed for skin tolerance at entry to the study and after the first 3 crossovers. Based on the visual analog scales scores, skin dryness decreased by 0.9 cm (95% CI, 0.5-1.2) after the hand-rubbing periods and increased by 0.4 cm (95% CI, 0.1 to 1.2) after the hand-scrubbing periods (P = .046). Similarly, skin irritation decreased by 1.5 cm (95% CI, 1.1-1.9) after the hand-rubbing periods and increased by 0.4 cm (95% CI, 0.2-0.6) after the hand-scrubbing periods (P = .03). One scrub nurse reported hand and eye irritation (swelling) when using AAS for hand-rubbing.

COMMENT
To our knowledge, this study is the first randomized trial to compare hand-rubbing with alcohol-based solution and traditional hand-scrubbing in the routine surgical setting, with the 30-day SSI rate as the primary end point. The hand-rubbing with AAS was equivalent to traditional hand-scrubbing in preventing SSI after clean and clean-contaminated surgery. In addition, hand-rubbing with AAS improved the tolerance of and compliance with hand antisepsis protocols, as evaluated for 4 and 14 months, respectively.

This study involved an unselected population of patients undergoing routine surgery in teaching and nonteaching hospitals. The baseline SSI rates for abdominal surgery procedures only, with routine 3-month per year surveillance methods were 45 of 912 (4.9%) on average during 1997-2000.13 The SSI rates we observed in this study are consistent with those reported elsewhere.18,10 In a cohort of 59352 patients, Haley et al18 found an SSI rate of 2.9% and 3.9% in clean and clean-contaminated class of procedures, respectively. Olson and Lee10 reported an infection rate of 1.4% in clean and 2.8% in clean-contaminated procedures in 40915 patients. However, we observed a very low proportion of postdischarge SSIs (8.3%) compared with recent studies. The percentages of SSIs occurring after hospital discharge vary from 13.6% to 84.0% according to studies;20-22 thus, we cannot exclude that possible SSIs were not validated in the absence of evidence, although they were real.

Any direct comparison between reported studies would be hazardous, as they differ in several respects, such as the SSI rate surveillance methods, the study period, and the characteristics of the study population. In our study, differences in the characteristics of the patients and surgical personnel in the 2 protocols were minimized by the randomized service crossover experimental design.

Infection control epidemiology has clearly demonstrated that bacteria responsible for SSI can be shed from the surgical team’s hands, despite standard antisepsis.23-25 Alcohol-based hand disinfection has previously been shown to reduce nosocomial infection rates and to improve compliance with hand hygiene rules when implemented throughout a hospital, particularly at the bedside in medical wards,26 although other studies are less favorable.27,28 An 8-month prospective study conducted in 3 intensive care units showed that the rate of nosocomial infections was significantly higher after alcohol-based vs scrub-based hand hygiene, possibly due to poor compliance with hand-rubbing instructions.29 This underscores the need to evaluate new protocols in the routine context.

As previously reported in intensive care unit patients,20 the rate of SSIs was higher when nonantiseptic hand wash was not performed prior to use of AAS. Although the number of observations is too low to perform any test, it underscores the importance of the optional simple nonantiseptic hand wash in the hand-rubbing protocol. However, we cannot exclude that surgical personnel did not perform previous nonantiseptic hand wash before handrubbing in the case of an emergency procedure with a higher risk for SSI (confounding by indication).

We chose each surgical service for initial randomization of the antiseptic protocol. This allowed us to evaluate the compliance and tolerance of each protocol during 1-month periods. In addition, the alternative antiseptic was removed from the surgical service at each crossover, as contamination between protocols of a study increases the chances of declaring equivalence in the equivalence trials.25

As reported in previous studies, AAS was, on average, better tolerated than traditional hand-scrubbings by the surgery team.9,30,31 Less reported are issues regarding compliance of the operating department personnel to hand antiseptic protocols. For presurgery hand antiseptic, the critical end point for compliance is not the occurrence of the protocol but how well and how long it is performed. We observed significantly better compliance with the duration of hand hygiene in the AAS handrubbing group, and this effect persisted throughout the 14-month evaluation. One possible explanation is that the necessary duration of hand-rubbing in the AAS-based protocol depends on the amount of AAS applied, whereas the hand-scrubbing protocol can be foreshortened by drying the hands with absorbent material. Contrary to studies performed in nonsurgical settings,26,30 compliance was also improved by the use of AAS in the surgeon or assistant subgroup; this subgroup had already been identified as complying poorly with hand-hygiene regimens. The fact that the rate of SSI is equivalent in both groups, despite a better compliance in the hand-rubbing group, is not surprising given the low SSI occurrence rate.
A previous French study has compared the costs of the 2 techniques for hand and forearm antisepsis before scheduled orthopedic surgery. They reported a relative cost of 203 euros per week when using povidone iodine or chlorhexidine gluconate and 25 euros per week when using AAS (1 euro-US $1.03). Nonetheless, AAS may not be accepted or tolerated by all surgical personnel. Thus, we do not believe that AAS should systematically replace surgical hand antisepsis with traditional hand-scrubbings for economic reasons. The choice of the technique for hand and forearm antisepsis before surgery should remain a matter of personal preference among users. In conclusion, given its equivalence to personal preference among users. In conclusion, given its equivalence to standard hand-scrubbing in preventingSSI, we consider that preoperative hand-rubbing with AAS preceded by a nonantiseptic hand wash is a safe alternative.

REFERENCES

28. Acknowledgment: We thank D. Young for the English translation, K. Droulon and J. Riou, RN, for SSI surveillance and data management, and all surgeons, assistants, and scrub nurses of the Antisepsie Chirurgicale des Mains Study Group, in particular C. Alin, RN, J. Leroux, RN, M. C. Taschi, RN, B. Jacque- maire, MD, DCh, C. Berlín, T. Aucouturier, MD, DCh, M. Imam, MD, DCh, P. Merle, MD, DCh, A. Polette, MD, DCh, J. Riou, RN; Paris, France: C. Berlín.

Funding/Support: This study was supported by a French government grant from the Programme Hospitalier de Recherche Clinique.

Previous Presentation: This study was presented in part at the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, Ill, November 18-20, 2002; Orlando, Florida. Abstract K-714.

©2002 American Medical Association. All rights reserved.
plied an average of 10% larger sample size with specific methods of calculation.\(^1\)

Regarding our estimate of the likely SSI rate in the control group (required to calculate the number of patients to be included), we used our previous routine SSI surveillance obtained with traditional hand-scrubbing (cited in the article as reference 13).\(^2\)

In fact, we assumed that our SSI rate would be lower, as we chose to study only clean and clean-contaminated procedures. However, when we simulated a lower prevalence of SSI in the control group, we found no reduction of statistical power. For example, with an SSI rate of 2.48% (which was actually observed in the control group), only 2618 patients would have been required.\(^1\) In any event, we included 4387 patients, yielding a power higher than 99%.\(^1\)

Type II error is the risk of wrongly accepting the null hypothesis when the alternative hypothesis is true. We rejected the null hypothesis by showing that the 2 protocols were equivalent (alternative hypothesis in an equivalence trial). This is a positive outcome ($\chi^2=19.5; P<.001$) as shown in Table 2 of our article. Consequently, regardless of the power of the study, it cannot be a type II error as Sosis suggests.

The weakness of equivalence trials lies elsewhere. Because it is impossible to prove an exact equality, the calculation of statistical power in even the best designed study contains an irreductibly subjective element, namely the clinically significant difference that the study was designed to exclude. A value of 10% is usually chosen for bioequivalence studies. However, after discussions with the study group surgeons, epidemiologists, and clinical investigators, we set the maximal limit at 2%, which is particularly low for an equivalence trial. Moreover, the 95% confidence interval of the SSI rate difference between the 2 protocols we observed was less than 1%.

In response to the second point, the decision to omit simple hand-washing including subungual space cleaning was made by choice rather than by chance. Thus, as discussed in our article, it is difficult to compare the SSI rate we observed in these cases. On the other hand, we observed no omission of the antisepptic alcohol-based hand rub in the hand-rubbing protocol, which is quite reassuring.

Finally, our study contributes to the scientific evidence base for hand-hygiene guidelines in surgery. Because improving the surgical team’s compliance and tolerance are both desirable, we believe that the hand-rubbing protocol for presurgical hand disinfection should be considered as a good alternative to traditional hand-scrubbing.

Jean Jacques Parienti, MD, DTM&H
Departments of Infectious Diseases and Intensive Care Unit, Hygiene, and Public Health
Pascal Thibon, MD
Xavier Le Coutour, MD
Departments of Hygiene and Public Health
Yannick Le Roux, MD, DCh
Department of Abdominal Surgery
Henri Bensadoun, MD, DCh
Department of Urology
Peter von Theobald, MD, DCh
Department of Gynaecology and Obstetrics
Côte de Nacre University Hospital Centre
Caen, France
Remy Heller, PharmD, PhD
Department of Hygiene
General Hospital
Colmar, France
for Members of the Antisepsie Chirurgicale des Mains Study Group

CORRECTION

Incorrect Author First Name: In the Original Contribution entitled “Hand-Rubbing With an Aqueous Alcoholic Solution vs Traditional Surgical Hand-Scrubbing and 30-Day Surgical Site Infection Rates: A Randomized Equivalence Study” published in the August 14, 2002, issue of THE JOURNAL (2002;288:722-727), there was an incorrect author first name. On page 722, the sixth author, Hervé Bensadoun, MD, DCh, should be Henri Bensadoun, MD, DCh.