Hypertension is reported to be the second leading cause of end-stage renal disease (ESRD). African Americans are 6 times more likely to develop ESRD from hypertension than whites. Observational studies show a direct relationship between the level of blood pressure (BP) and renal disease progression. Post hoc analyses of clinical trials also suggest that lowering BP may retard progression of hypertensive kidney disease.

Context Hypertension is a leading cause of end-stage renal disease (ESRD) in the United States, with no known treatment to prevent progressive declines leading to ESRD.

Objective To compare the effects of 2 levels of blood pressure (BP) control and 3 antihypertensive drug classes on glomerular filtration rate (GFR) decline in hypertension.

Design Randomized 3 × 2 factorial trial with enrollment from February 1995 to September 1998.

Setting and Participants A total of 1094 African Americans aged 18 to 70 years with hypertensive renal disease (GFR, 20-65 mL/min per 1.73 m²) were recruited from 21 clinical centers throughout the United States and followed up for 3 to 6.4 years.

Interventions Participants were randomly assigned to 1 of 2 mean arterial pressure goals, 102 to 107 mm Hg (usual; n=554) or 92 mm Hg or less (lower; n=540), and to initial treatment with either a β-blocker (metoprolol 50-200 mg/d; n=441), an angiotensin-converting enzyme inhibitor (ramipril 2.5-10 mg/d; n=436) or a dihydropyridine calcium channel blocker, (amlodipine 5-10 mg/d; n=217). Open-label agents were added to achieve the assigned BP goals.

Main Outcome Measures Rate of change in GFR (GFR slope); clinical composite outcome of reduction in GFR by 50% or more (or ≥25 mL/min per 1.73 m²) from baseline, ESRD, or death. Three primary treatment comparisons were specified: lower vs usual BP goal; ramipril vs metoprolol; and amlodipine vs metoprolol.

Results Achieved BP averaged (SD) 128/78 (12/8) mm Hg in the lower BP group and 141/85 (12/7) mm Hg in the usual BP group. The mean (SE) GFR slope from baseline through 4 years did not differ significantly between the lower BP group (−2.21 [0.17] mL/min per 1.73 m² per year) and the usual BP group (−1.95 [0.17] mL/min per 1.73 m² per year; P=.24), and the lower BP goal did not significantly reduce the rate of the clinical composite outcome (risk reduction for lower BP group=2%; 95% confidence interval [CI], −22% to 21%; P=.85). None of the drug group comparisons showed consistent significant differences in the GFR slope. However, compared with the metoprolol and amlodipine groups, the ramipril group manifested risk reductions in the clinical composite outcome of 22% (95% CI, 1%-38%; P=.04) and 38% (95% CI, 14%-56%; P=.004), respectively. There was no significant difference in the clinical composite outcome between the amlodipine and metoprolol groups.

Conclusions No additional benefit of slowing progression of hypertensive nephrosclerosis was observed with the lower BP goal. Angiotensin-converting enzyme inhibitors appear to be more effective than β-blockers or dihydropyridine calcium channel blockers in slowing GFR decline.

JAMA. 2002;288:2421-2431

See also p 2466 and Patient Page.
progression of renal disease and reduce cardiovascular risk.5-10 African Americans, however, were not well represented in the aforementioned studies.7,9,11

Several studies document that African Americans with chronic kidney disease have faster declines in renal function compared with whites with similar BPs.12-14 In the first trial to randomize patients to different BP levels and examine the outcome on kidney disease progression, the Modification of Diet in Renal Disease trial, a benefit of the lower BP goal (≤92 mm Hg) was suggested in the small subgroup of 53 African Americans.15 However, whether a lower BP goal actually retards progression of renal disease in African Americans is uncertain.16-20

In trials that enrolled individuals with renal disease from diabetes and other etiologies, angiotensin-converting enzyme inhibitors significantly reduce progression of kidney disease. However, few African Americans were included in such trials.21-24

Angiotensin-converting enzyme inhibitor use is lower in African Americans with hypertension and chronic kidney disease compared with whites. This is a consequence of many factors including a lack of clinical end point safety data and lower antihypertensive potency when they are used as monotherapy compared with other classes of antihypertensive agents.

The African American Study of Kidney Disease and Hypertension (AASK) prospectively addressed 2 questions in patients with hypertensive nephrosclerosis.25 First, does very aggressive lowering of BP result in slower declines in kidney function? Second, does the type of antihypertensive agent used to initiate BP lowering matter with regard to kidney disease outcomes?

METHODS

Participants

The study design has been previously described.25,26 Briefly, participants were self-identified African Americans with hypertension (n=1094) who were aged 18 to 70 years with a glomerular filtration rate (GFR) between 20 and 65 mL/min per 1.73 m² and no other identified causes of renal insufficiency. Exclusion criteria included diastolic BP of less than 95 mm Hg, known history of diabetes mellitus (fasting glucose, ≥140 mg/dL or random glucose, >200 mg/dL), urinary protein to creatinine ratio of more than 2.5, accelerated or malignant hypertension within 6 months, secondary hypertension, evidence of non-BP-related causes of chronic kidney disease, serious systemic disease, clinical congestive heart failure, or specific indication for or contraindication to a study drug or study procedure. The protocol and procedures were approved by the institutional review board at each center, and all participants gave written informed consent. An independent data and safety monitoring board was also established by the National Institute of Diabetes and Digestive and Kidney Diseases.

Participant enrollment began in February 1995 and ended in September 1998. Figure 1 summarizes the numbers of participants recruited, randomized, and followed up. Planned follow-up to the end of the study in September 2001 was 3 to 6.4 years. On the recommendation of the data and safety monitoring board, the amiodipine arm was halted in September 2000,27 at which point patients randomized to amiodipine were switched to open-label medication. The study’s visit schedule, including GFR measurements, was continued and patients in all 3 drug groups remained on their randomly assigned BP goals through the end of the trial.

Figure 1. Participant Recruitment and Follow-up Flow Diagram

GFR indicates glomerular filtration rate; MAP, mean arterial pressure. All deaths were prior to dialysis and the number of participants who were alive and not receiving dialysis and who did not have a GFR were measured in the final year of follow-up. In all treatment groups combined, 96.7% of patients had at least 1 follow-up GFR.

©2002 American Medical Association. All rights reserved.
Study Design
Based on a 3 × 2 factorial design, participants were randomized equally to a usual mean arterial pressure goal of 102 to 107 mm Hg or to a lower mean arterial pressure goal of 92 mm Hg or lower, and to treatment with 1 of 3 antihypertensive drugs (a sustained-release β-blocker, metoprolol, 50 to 200 mg/d; an angiotensin-converting enzyme inhibitor, ramipril, 2.5 to 10 mg/d; or a dihydropyridine calcium channel blocker, amlodipine, 5 to 10 mg/d). If the BP goal could not be achieved by the randomized drug, additional open-labeled antihypertensives (furosemide, doxazosin, clonidine, and hydralazine or minoxidil) were added sequentially. A 2:2:1 randomization ratio for the metoprolol, ramipril, and amlodipine groups was used because comparisons involving amlodipine had increased power because of a projected early increase in GFR from this medication. Participants and investigators were masked to randomized drug but not BP goal.

Three primary treatment comparisons were specified: lower vs usual BP goal, ramipril vs metoprolol, and amlodipine vs metoprolol. Results of ramipril vs amlodipine, which was a secondary comparison, have been presented previously.

Measurement of BP and Kidney Function
At each visit, 3 consecutive seated BP readings were measured using a Hawk-sley random zero sphygmomanometer after at least 5 minutes rest, with the mean of the last 2 readings recorded. The baseline BP readings were those obtained at the screening visits prior to randomization. The follow-up BP measurements reported represent the mean of all BPs measured within a given visit window, including those at interim visits. The GFR was assessed by renal clearance of iodine I 125 iothalamate at baseline twice, then at 3, 6, and every 6 months thereafter. Serum and urinary levels of creatinine and protein were measured by a central laboratory at 6-month intervals.

Trial Outcomes
The primary analysis is based on the rate of change in GFR (GFR slope). The GFR slope was determined separately during the first 3 months following randomization (acute slope) and after 3 months (chronic slope). The acute and chronic phases were distinguished because previous studies indicated that the AASK interventions have acute effects on GFR that may differ from their long-term effects on disease progression. The chronic slope and the mean total slope from baseline (includes both the acute and chronic phases) were designated as coprimary outcomes. The analysis plan stipulated that a definitive benefit of a treatment intervention would be inferred if it is shown to reduce the magnitude of both the chronic and total mean slopes.

The total slope assesses effects of interventions on kidney function during the study period, while the chronic slope may better reflect long-term progression.

Statistical Methods
Because of acute changes in GFR at discontinuation of amlodipine, data from participants assigned to amlodipine were censored at termination of this arm in September 2000. This required slightly different strategies for each treatment group comparison. The BP group comparison retained all data through the end of the study in the 80% of patients in the ramipril or metoprolol groups but censored data on September 2000 for patients randomized to amlodipine (giving a median GFR follow-up of 3.8 years). Data was retained to the end of the study in both groups for the ramipril vs metopro-lol comparison (median GFR follow-up, 4.1 years), and data was censored in September 2000 in both groups for the amlodipine vs metoprolol comparison (median GFR follow-up, 3.0 years).

The primary renal function analysis was based on a mixed-effects model with random intercepts, acute slopes, and chronic slopes, and with fixed effects for estimation of the mean acute, chronic, and total slopes within each of the 6 cells in the 2 × 3 factorial design, adjusting for clinical center and 5 prespecified baseline covariates: proteinuria (log urinary protein to creatinine ratio), history of cardiovascular disease, mean arterial pressure, sex, and age. The mean total slopes were computed as time-weighted averages of the mean acute and chronic slopes, and expressed from baseline to 3 years for the amlodipine vs metoprolol comparison and from baseline to 4 years for the lower vs usual BP and ramipril vs metoprolol comparisons. Because the effects of the BP and drug interventions were similar at each level of the other intervention for both the chronic and total GFR slopes (ie, no interaction between the BP groups and drug interventions), we report analyses of the main effects for both interventions. Thus, the BP group comparisons are averaged across the 3 drug groups according to the 2:2:1 randomization ratio, and the drug group comparisons are averaged equally across the 2 BP groups.

The relationships of the treatment comparisons with baseline proteinuria were investigated by adding con-
tinuous interaction terms between ln (urinary protein to creatinine ratio) and the treatment groups.21,23 If a statistically significant interaction was detected, the results were then illustrated by subgroup analyses in participants with baseline urinary protein to creatinine ratio of higher than 0.22 (n=357) and 0.22 or less (n=733). The value of 0.22 corresponds to a urine protein to creatinine ratio of higher than 0.22\(\mu\)mol/L and divides the two thirds of patients with the lowest proteinuria in accordance with a heavy positive skewness of the urinary protein to creatinine ratio. Since proteinuria was inversely associated with GFR at baseline, the interaction of the treatment groups with baseline GFR was also reported.

The effects of the interventions on the clinical composite outcome, specific renal events, mortality, and secondary cardiovascular events were each analyzed by Cox proportional hazards regression model with adjustment for the same 5 covariates as the analysis of GFR slope. Baseline GFR was included as an additional covariate in Cox proportional hazards regression models of time to ESRD and time to ESRD or death. Participants were administered centrally at loss-to-follow-up (9 patients) or else at the end of the study or September 2000 by the same strategy used for the primary renal function analysis. Because fewer participants were randomized to amlodipine than to the other 2 groups, numbers of events are expressed as rates per patient-year. Proportions of participants reporting symptoms during follow-up were compared between treatment groups by logistic regression controlling for reported symptoms at baseline.

All analyses are intent-to-treat and were performed using SAS versions 6.12 and 8 (SAS Institute Inc, Cary, NC). Two-sided P values and 95\% confidence intervals (CIs) are reported. This is conservative for the primary analysis because both the chronic and total slopes comparisons needed to reach significance for a definitive conclusion. To simplify the presentation and maintain comparability of risk ratios, comparisons of amlodipine with metoprolol are expressed as risk reductions for metoprolol relative to amlodipine, although metoprolol was the reference group in the study design.

Based on 1094 patients and assuming a mean GFR slope of \(-4\) mL/min per 1.73m2 per year in the usual BP group, the study was projected to have 99\%, 79\%, and 87\% power to detect a 30\% reduction in GFR slope for the BP comparison for analyses of the chronic slope, total slope, and clinical composite outcome.

Table 1. Baseline Characteristics by Randomized Group*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Blood Pressure Goal</th>
<th>Drug Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower (n = 540)</td>
<td>Usual (n = 554)</td>
</tr>
<tr>
<td>Age, mean (SE), y</td>
<td>54.5 (10.9)</td>
<td>54.7 (10.4)</td>
</tr>
<tr>
<td>Female, No. (%)</td>
<td>205 (38.0)</td>
<td>219 (39.5)</td>
</tr>
<tr>
<td>Blood pressure, mean (SE), mm Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>152 (25)</td>
<td>149 (23)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>96 (15)</td>
<td>95 (14)</td>
</tr>
<tr>
<td>Mean arterial pressure</td>
<td>115 (17)</td>
<td>113 (15)</td>
</tr>
<tr>
<td>GFR, mean (SE), mL/min per 1.73 m2</td>
<td>46.0 (12.9)</td>
<td>45.3 (13.2)</td>
</tr>
<tr>
<td>Serum creatinine, mean (SE), mg/dL†</td>
<td>2.17 (0.75)</td>
<td>2.20 (0.77)</td>
</tr>
<tr>
<td>Urine protein/creatinine ratio, mean (SE)</td>
<td>1.72 (0.55)</td>
<td>1.81 (0.57)</td>
</tr>
<tr>
<td>Urine protein, mean (SE), g/24 h</td>
<td>0.33 (0.50)</td>
<td>0.32 (0.52)</td>
</tr>
<tr>
<td>With urinary protein to creatinine ratio of at least 0.22, No. (%)</td>
<td>181 (33.5)</td>
<td>176 (31.8)</td>
</tr>
</tbody>
</table>

*GFR indicates glomerular filtration rate; ACE, angiotensin-converting enzyme. There are no significant differences between the lower and usual blood pressure groups or between either the ramipril and amlodipine groups vs the metoprolol group for any of the indicated baseline characteristics.

†To convert creatinine values to \(\mu\)mol/L, multiply values by 88.4.
come, respectively. Assuming a mean GFR slope of -4 mL/min per 1.73 m2 per year in the metoprolol group, the projected power was 88%, 99%, and 98% for these same 3 outcomes to detect a 30% reduction in GFR slope for amlodipine vs metoprolol, and 97%, 69%, and 79% for ramipril vs metoprolol, respectively. Based on the AASK pilot study and other studies, the power calculations as-
tively. Based on the AASK pilot study and for ramipril vs metoprolol, respec-
vs metoprolol, and 97%, 69%, and 79% reduction in GFR slope for amlodipine
for these same 3 outcomes to detect a 30%
reduction was 88%, 99%, and 98% for
year in the metoprolol group, the pro-
tical pressure and mean number of add-on
ary outcomes were essentially unchanged
throughout most of the follow-up pe-
arterial pressure was maintained
ation of approximately 10 mm Hg mean
 Libertad and Metoprolol.
©2002 American Medical Association. All rights reserved.
slower in the amlodipine group than the metoprolol group (1.60 [0.34] vs 2.68 [0.20] mL/min per 1.73 m² per year; \(P = .004 \)).

Clinical Composite Outcome Analysis

Lower vs Usual BP. The numbers of events (rate/participant year) for the main clinical composite outcome (declining GFR events, ESRD, or death) were 173 (rate, 0.081) and 167 (rate, 0.076) in the lower and usual BP groups. After adjustment for the prespecified covariates, there were no significant differences between the BP groups in the risk of the clinical composite outcome (risk reduction for lower BP goal, 2%; 95% CI, −22% to 21%; \(P = .85 \)), the combined kidney end points of a declining GFR event or ESRD, the combined hard clinical end points of ESRD or death, or ESRD alone (Table 4).

Ramipril vs Metoprolol. A total of 126 (rate, 0.069) and 155 (rate, 0.087) patients in the ramipril and metoprolol groups reached the main clinical composite outcome during the full follow-up period. The risk reduction for ramipril vs metoprolol was 22% (95% CI, 1%-38%; \(P = .04 \)). Similar risk reductions of 21% to 22%, which were not statistically significant, were seen for

Table 3. Comparison of Mean Glomerular Filtration Rate Slopes Between Drug Groups

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Acute Slope (mL/min per 1.73 m² per 3 months)</th>
<th>P Value</th>
<th>Chronic Slope (mL/min per 1.73 m² per year)†</th>
<th>P Value</th>
<th>Total Slope (mL/min per 1.73 m² per year)‡</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delta Mean (SE)</td>
<td></td>
<td>Delta Mean (SE)</td>
<td></td>
<td>Delta Mean (SE)</td>
<td></td>
</tr>
<tr>
<td>Lower vs usual blood pressure</td>
<td>−1.82 (0.54)</td>
<td><.001</td>
<td>+0.21 (0.22)</td>
<td>.33</td>
<td>−0.25 (0.22)</td>
<td>.24</td>
</tr>
<tr>
<td>Ramipril vs metoprolol</td>
<td>+1.50 (0.59)</td>
<td>.01</td>
<td>+0.25 (0.22)</td>
<td>.26</td>
<td>+0.61 (0.22)</td>
<td>.007</td>
</tr>
<tr>
<td>Metoprolol vs amlodipine</td>
<td>−5.76 (0.76)</td>
<td>.001</td>
<td>+0.89 (0.38)</td>
<td>.02</td>
<td>+1.08 (0.38)</td>
<td>.004</td>
</tr>
<tr>
<td>Ramipril vs amlodipine*</td>
<td>−4.19 (0.79)</td>
<td>.001</td>
<td>+1.16 (0.38)</td>
<td>.002</td>
<td>−0.34 (0.38)</td>
<td>.38</td>
</tr>
</tbody>
</table>

*Shown are differences in mean slopes between the randomized treatment groups, adjusted for clinical center and 5 prespecified covariates: baseline proteinuria, mean arterial pressure, sex, history of heart disease, and age. Plus signs indicate slower mean slope in the first than the second treatment group listed. Glomerular filtration rates censored in September 2000 for both treatment groups in the comparisons involving the amlodipine group and for the patients in the amlodipine group for the lower vs usual blood pressure comparison. Additional information on the mean glomerular filtration rate slopes within the 6 cells of the 2 x 3 factorial design is available from the author upon request.

†Total slope estimated over 4 years for the lower vs usual blood pressure and ramipril vs metoprolol comparisons, and over 3 years for comparisons involving amlodipine.

‡Second comparison described in previous publication.23

Table 4. Analyses of Clinical Event Composite Outcomes

<table>
<thead>
<tr>
<th>Outcome§</th>
<th>Lower vs Usual Blood Pressure Goal Intervention</th>
<th>Ramipril vs Metoprolol</th>
<th>Metoprolol vs Amlodipine</th>
<th>Ramipril vs Amlodipine†</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Risk Reduction (95% Confidence Interval)‡</td>
<td>P Value</td>
<td>% Risk Reduction (95% Confidence Interval)‡</td>
<td>P Value</td>
<td>% Risk Reduction (95% Confidence Interval)‡</td>
</tr>
<tr>
<td>GFR event, ESRD, or death</td>
<td>2 (−22 to 21)</td>
<td>.85</td>
<td>22 (1 to 38)</td>
<td>.04</td>
</tr>
<tr>
<td>GFR event or ESRD</td>
<td>−2 (−31 to 20)</td>
<td>.87</td>
<td>22 (−2 to 41)</td>
<td>.07</td>
</tr>
<tr>
<td>ESRD or death</td>
<td>12 (−13 to 32)</td>
<td>.31</td>
<td>21 (−5 to 40)</td>
<td>.11</td>
</tr>
<tr>
<td>ESRD alone</td>
<td>6 (−29 to 31)</td>
<td>.72</td>
<td>22 (−10 to 45)</td>
<td>.16</td>
</tr>
</tbody>
</table>

*GFR indicates glomerular filtration rate; ESRD, end-stage renal disease.

†Second comparison described in previous publication.23

‡All risk reductions adjusted for prespecified covariates: baseline proteinuria, mean arterial pressure, sex, history of heart disease, and age. Risk difference for ESRD or death composite and ESRD alone also adjusted for baseline GFR.

§GFR event, ESRD, or death: main secondary composite clinical outcome with 340 events, including 179 declining GFR events, 84 additional participants with ESRD events, and 77 deaths; GFR event or ESRD: composite end point with 263 events, including 179 declining GFR events and 84 additional participants with ESRD events; ESRD or death: composite end point with 261 events, including 171 ESRD events and 80 deaths; and ESRD alone: end point with 171 events and deaths censored in this analysis.
ESRD alone and for the combined end points of declining GFR events or ESRD, and ESRD or death.

Metoprolol vs Amlodipine. A total of 117 (rate, 0.079) and 59 (rate, 0.082) patients in the metoprolol and amlodipine groups reached the main clinical composite outcome by September 2000. There was no significant difference between the amlodipine and metoprolol groups in the main clinical composite outcome (risk reduction for metoprolol vs amlodipine, 20%; 95% CI, −10% to 41%; P = .17) or in declining GFR events or ESRD combined. However, the metoprolol group had a significantly lower risk than amlodipine for ESRD or death (P = .003) and for ESRD alone (P < .001).

Effects of Baseline Proteinuria and GFR
Baseline proteinuria was a strong predictor of GFR decline. For all treatment groups combined, the mean (SE) chronic slope was −1.35 (0.15) mL/min per 1.73 m² per year if baseline urinary protein to creatinine ratio was 0.22 or less compared with −4.09 (0.25) mL/min per 1.73 m² per year if baseline urinary protein to creatinine ratio was higher than 0.22 (P < .001).

Drug Group Comparisons. The difference in mean GFR decline between the amlodipine and metoprolol groups was significantly related to baseline proteinuria for the acute and total GFR slope (FIGURE 3A and 3C). These interactions reflect the presence of a large acute increase in GFR with amlodipine for participants with baseline urinary protein to creatinine ratio of 0.22 or less but not in participants with urinary protein to creatinine ratio higher than 0.22 (P < .001).

Figure 3. Mean Change in Glomerular Filtration Rate by Randomized Group for Proteinuria Subgroups

Presented are the mean changes (SE) in glomerular filtration rate (GFR) (mL/min per 1.73 m²) from baseline through follow-up in the 3 drug interventions (A and C) and in the 2 blood pressure goal interventions (B and D) for patients with baseline urinary protein to creatinine ratio of 0.22 or less (A and B) and higher than 0.22 (C and D) based on the multislope spline model (see legend of Figure 2). A urinary protein to creatinine ratio of 0.22 corresponds approximately with proteinuria of 300 mg/d. The GFRs after September 2000 were censored for the amlodipine group. For the 2-slope model, the results of the comparison of amlodipine with metoprolol and ramipril differed significantly depending on the level of baseline proteinuria for the acute slope (P < .002 and P < .001, respectively) and total slopes (P < .001 and P < .001, respectively) but not for the chronic slope (P = .1 and P = .24, respectively). The results of the blood pressure comparison differed significantly depending on the level of baseline proteinuria for the acute slope (P < .008) and total slopes (P = .004) but not for the chronic slope (P = .16).
metoprolol (interaction $P = .51$, .32, and .61 for the chronic slope, total slope, and main clinical composite outcome, respectively).

BP Group Comparison. The BP group comparison also depended significantly on the level of baseline proteinuria for the acute slope, total slope, and main clinical composite outcome ($P = .007$) but not for the chronic slope (Figure 3B and 3D). For each outcome, there were slight trends that tended to favor the lower BP goal over the usual goal in participants with higher proteinuria and opposite trends in participants with little or no proteinuria. However, with the exception of the acute slope, the BP comparison for the aforementioned outcomes was not significantly different within either the lower (baseline urinary protein to creatinine ratio ≤ 0.22) or higher (baseline urinary protein to creatinine ratio >0.22) proteinuria strata. There was a corresponding trend for an interaction of the BP-group comparison with baseline GFR for the total GFR slope ($P = .07$) favoring the usual goal over the lower goal for patients with higher baseline GFR with the opposite pattern for patients with lower baseline GFR (data not shown).

Change in Proteinuria
Proteinuria (geometric mean urinary protein to creatinine ratio) increased by 58% for the amiodipine group and declined by 14% in the metoprolol group between baseline and 6 months ($P <.001$) (FIGURE 4). Proteinuria increased by 7% in the usual BP group and decreased by 17% in the lower BP group during the first 6 months. These differences between treatment groups persisted throughout the study. Follow-up proteinuria was slightly lower in the ramipril than the metoprolol group but not significantly ($P = .06$ for the comparison of total change over 4 years).

Adverse Events
There were no significant differences in all-cause mortality, cardiovascular mortality, or first cardiovascular events (defined as cardiovascular mortality or first cardiovascular hospitalizations) between the treatment groups (TABLE 5). Proportions of patients reporting adverse symptoms (including hypotensive symptoms) were similar in the 2 BP groups. The proportions of participants reporting angioedema and cough were highest in the ramipril group, although the proportion reporting edema was higher in the amlodipine group. Hyperkalemia was reported for 3 participants randomized to the ramipril group and 1 randomized to metoprolol.

COMMENT

The AASK is the first published large-scale trial to our knowledge that examines both the effect of 3 different antihypertensive regimens as well as the effect of 2 BP goals on decline in kidney function in a population with chronic kidney disease attributed to hypertensive nephrosclerosis.

Blood Pressure
Treatment of study participants to a lower than usual mean BP of 128/78 mm Hg did not significantly reduce either the mean rate of GFR decline or the risk of the clinical composite outcome compared with usual BP goal with a mean achieved BP of 141/85. The AASK, with its larger sample size and wider BP separation, extends previous negative findings regarding the level of BP reduction and change in GFR observed in smaller samples of both African Americans and non–African Americans with nonproteinuric kidney disease.

The average rate of decline in GFR in both treatment groups was approximately 2 mL/min per 1.73 m² per year. This average rate of GFR decline is similar to or slower than earlier trials of hypertensive nephrosclerosis and slower than other common progressive kidney diseases. The relatively slow mean GFR decline reduced the power of the primary analysis of GFR slope. Nonetheless, the upper limits of the 95% CIs for the BP comparison exclude a risk reduction for the lower BP goal larger than 21% for the clinical composite outcome and 31% for ESRD alone. While a benefit smaller than these limits can-
not be excluded, the upper confidence limits are substantially smaller than the effects that would be estimated from observational studies given the large separation in BP that was achieved between the AASK BP groups.43 Because randomized comparisons more accurately evaluate causal relationships,44,45 this discrepancy suggests that relationships observed between BP level and rates of ESRD in nonrandomized studies have overestimated the effect of lowering BP.

Mean BP during follow-up in the usual BP group was 141/85 mm Hg, which is similar to the level recommended to prevent cardiovascular target organ damage and is less than that achieved by more than 70% of individuals being treated for hypertension.46 This study’s finding of a failure to further slow progression of kidney disease by reducing BP below this level does not diminish the importance of maintaining BP in accordance with the current guidelines.18 We do not interpret the apparent lack of an effect of the lower BP goal to slow decline in GFR (and reduce risk for clinical end points) to illustrate that BP lowering is not important for preserving kidney function. Our study did not test the hypothesis that treatment vs no treatment of hypertension preserves kidney function. Nevertheless, our data suggest that once BP is lowered to a given level, additional risk factors are important in patients with chronic kidney disease resulting from hypertension.

Although there was no significant effect of the BP intervention on GFR slope or clinical events in all patients or in subgroup analyses by baseline proteinuria strata, there were significant interactions with a trend favoring the lower BP goal in participants with higher baseline proteinuria and an opposite trend in participants with little or no proteinuria. This is consistent with the Modification of Diet in Renal Disease results that showed a favorable trend for the lower BP goal in participants with baseline proteinuria of higher than 1 gram per day but not at lower levels of proteinuria.8 However, because proteinuria was inversely correlated with GFR at baseline, it is possible that the dependence of the BP comparison on baseline proteinuria in the AASK reflects a larger hemodynamic effect in patients with higher baseline GFR rather than true differences in clinically relevant outcomes. This study was not powered to detect differences in the rate of myocardial infarction, stroke, or death. However, we found no evidence of differences in the rates of these events between the randomized BP groups.

Antihypertensive Agents

The primary analysis of GFR slope did not establish a definitive difference among the 3 drug regimens. However, significant benefits of ramipril vs metoprolol (reported here) and amlodipine25 on the main clinical composite outcome and the results of other secondary analyses suggest that ramipril slows hypertensive kidney disease progression compared with the other 2 regimens. Secondary analyses also suggest that metoprolol may improve renal outcome compared with amlodipine, particularly in participants with higher proteinuria.

Comparisons of amlodipine with the other drug groups were complicated by a large acute increase in GFR for amlodipine in the 3 months after randomization. Due to this acute effect, which was likely a hemodynamic response without clinical significance, beneficial effects of ramipril and metoprolol vs amlodipine on GFR decline after 3 months did not lead to corresponding beneficial effects on the total mean slope from baseline to the end of the study (Figures 2 and 3). However, compared with amlodipine, ramipril significantly reduced the risk of the main clinical composite,21 and both ramipril and metoprolol reduced the risk of ESRD and of death combined (Table 4). The latter 2 outcomes were probably less sensitive to the acute effect, because they are based on clinical end points independent of GFR measurement. In the subgroup of patients with baseline urinary protein to creatinine ratio of more than 0.22 (urinary protein, 300 mg/d), the acute effect was negligible and each of the slope-based and time-to-event outcomes were in agreement, indicating consistent advantages for ramipril and metoprolol vs amlodipine.

Table 5. Rates of Adverse Events or Symptoms During Follow-up*

<table>
<thead>
<tr>
<th>Blood Pressure Goal</th>
<th>Drug Intervention, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention, %</td>
<td>Ramipril</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Adverse event</td>
<td></td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>1.6</td>
</tr>
<tr>
<td>Cardiovascular mortality</td>
<td>0.6</td>
</tr>
<tr>
<td>Cardiovascular event†</td>
<td>2.3</td>
</tr>
<tr>
<td>Symptom</td>
<td></td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>0</td>
</tr>
<tr>
<td>Angioedema</td>
<td>3.5</td>
</tr>
<tr>
<td>Shortness of breath‡</td>
<td>48.4</td>
</tr>
<tr>
<td>Syncope‡</td>
<td>6.3</td>
</tr>
<tr>
<td>Dizziness‡</td>
<td>53.4</td>
</tr>
<tr>
<td>Lightheadedness‡</td>
<td>51.2</td>
</tr>
<tr>
<td>Edema</td>
<td>55.1</td>
</tr>
<tr>
<td>Cough</td>
<td>54.6¶</td>
</tr>
<tr>
<td>Sexual dysfunction</td>
<td>29.6</td>
</tr>
</tbody>
</table>

*Reported are the percentages of patients experiencing the adverse event per patient year of follow-up through the end of the study in the ramipril and metoprolol groups, and through September 2000 in the amlodipine group and the percentages of patients reporting the symptom at least once during follow-up.
†Composite of cardiovascular mortality or first cardiovascular hospitalization.
‡Participants were specifically asked about these symptoms at each protocol visit.
§Percentage reporting symptom significantly different from metoprolol group (P<.05).
P<.05).
¶Percentage reporting symptom significantly different from ramipril and amlodipine groups (P<.05).
**Percentage reporting symptom significantly different between lower and usual blood pressure groups (P<.05).
The AASK was designed to compare 3 active drug regimens and did not have a placebo control. In a placebo controlled trial of participants with diabetic nephropathy and proteinuria that included an amloidipe arm, however, no difference was noted between placebo and amloidipe on ESRD, death, or doubling of serum creatinine, and trends in proteinuria change were the same as AASK for amloidipe.47-48

In contrast with the comparisons involving amloidipe, the evidence for benefit of ramipril vs metropolol was noted in the full AASK cohort, irrespective of baseline proteinuria. However, the conclusion of the beneficial effect of ramipril compared with metropolol is less definitive because the chronic slope was not significant. Several clinical trials of participants with proteinuria and primary glomerular disease show beneficial effects of ramipril.49 Data from AASK extend these results to participants with hypertensive glomerulopathy and minimal proteinuria.51-52 Evidence that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers lower BP to a lesser extent in African Americans than others, when used as monotherapy, taken together with the paucity of prospective clinical end point data, has resulted in less use of such agents in African Americans.51-52 The AASK is the first outcome trial to demonstrate a renoprotective effect of angiotensin-converting enzyme inhibitor in an African American population.

We conclude that although BP reduction to levels below current guidelines for cardiovascular risk reduction are achievable, our results do not support additional reduction as a strategy to prevent progression of hypertensive nephrosclerosis. Our results do support recommendations that angiotensin-converting enzyme inhibitors should be considered as first line therapy over β-blockers and dihydropyridine calcium channel blockers in these patients. Moreover, β-blockers may be more effective than dihydropyridine calcium channel blockers in slowing progression among patients with proteinuria.

Author Affiliations: Departments of Medicine, University Hospitals Case Medical Center, Cleveland, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center (Dr Wright); Department of Biostatistics, Cleveland Clinic Foundation (Drs Greene and Gassman), and Department of Internal Medicine, Case Western Reserve University (Dr Douglass-Baltimore), Cleveland, Ohio; Department of Preventive Medicine, Rush-Presbyterian-St Luke’s Medical Center, Chicago, III (Dr Bakris); National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md (Dr Agodoa); Department of Preventive Medicine, Johns Hopkins University, Baltimore, Md (Dr Appel and Ms Charlton); Department of Medicine, Medical University of South Carolina, Charleston (Dr Cheek); Department of Medicine, University of California, Los Angeles (Dr Glasscock); Department of Medicine, Ohio State University, Columbus (Dr Hebert); Department of Medicine, University of Michigan, Ann Arbor (Dr Jamerson); Department of Medicine, Vanderbilt University, Nashville, Tenn (Dr Lewis); Mt Sinai School of Medicine, New York, NY (Dr Phillips); University of Texas Southwestern Medical Center, Dallas (Dr Toto and Middleton); and University of Alabama, Birmingham (Dr Ro-

Financial Disclosure: Dr Wright has no stock ownership but has consulting fees from Astra, Bayer, Bristol-Myers Squibb, Eli Lilly and Co, Merck & Co, Novartis Pharma AG, Pharmacia, Pfizer, Sankyo inc, GlaxoSmithKline, and Solvay/Upjohn. Dr Bakris received royalties from Astra and Novartis Pharma AG. Dr Cheek is a speaker for Wyeth, Novartis, and Sanofi-Synthelabo, and an investigator for Abbott Laboratories. Dr Middleton is a consultant for Merck and a consultant for King Pharmaceuticals.

Author Contributions: Dr Wright, as principal investigator of the AASK study, had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Wright, Bakris, Greene, Agodoa, Appel, Cheek, Gassman, Glasscock, Hebert, Jamerson, Lewis, Phillips, Toto, Rostand.

Acquisition of data: Wright, Bakris, Greene, Appel, Cheek, Douglas-Baltimore, Hebert, Jamerson, Lewis, Phillips, Toto, Middleton, Rostand.

Drafting of the manuscript: Wright, Bakris, Greene, Agodoa, Cheek, Douglas-Baltimore, Glasscock, Glasscock, Hebert, Lewis, Phillips, Toto, Middleton.

Critical revision of the manuscript for important intellectual content: Wright, Bakris, Greene, Agodoa, Appel, Douglas-Baltimore, Glasscock, Glasscock, Glasscock, Hebert, Jamerson, Lewis, Phillips, Toto, Middleton, Rostand.

Statistical expertise: Greene, Gassman.

Obtained funding: Wright, Agodoa, Appel, Lewis, Toto, Rostand.

Administrative, technical, or material support: Wright, Bakris, Agodoa, Appel, Glasscock, Glasscock, Phillips, Middleton.

The African American Study of Kidney Disease and Hypertension (AASK) Study Group: Case Western Reserve University, principal investigator, J Wright, study coordinator, Y Hall, R Haynie, C Mbanefo, M Rah-

Man, M Smith, B Crenshaw, R Dance, L Jaen; Emory University, principal investigator, W J Lee, M A Chap-
man, L Dean; study coordinator, M Douglas, D Wat-
kins, B Wilkening, L Williams, C Ross; Harbor-UCLA Medical Center, principal investigator, J Koppel; study coordinator, L Malinovitch, P Oleksiev; Harriet Tubman Hospital Center, principal investigator, V Pogue, study coordinator, D Dowie, H Anderson, L Herbert, R

Locke, H Nurse, J Cheng, G Darkwa, V Dowdy, B Nicholl, M Howard, principal investigator, M Randall, G Ali, T Retta, study coordinator, S Xu, T Alexander, M Ketete, E Mathew, D Ordon, C Til-

ghman; Johns Hopkins University, principal investiga-
tor, A Appel, study coordinator, A C Ding, C C Diggs, C Harris, P Miller, T Shields, M Sotomayer, P Whelton; Martin Luther King, Sr. Charles D Rew Medical Center, principal investigator, K Norris, H Ward, D Martins, study coordinator, M Miller, H Howell; Medical University of South Carolina, prin-
cipal investigator, D Cheek, C Gadgebuk, D Ploth, study coordinator, B Brooks, N Monetine, S Munner, S Thompson; Meharry Medical College, principal in-
vestigator, M Faulkner, O Adeyeye, study coordina-
tor, K Phillips, G Sanford, C Weaver, Morehouse School of Medicine, principal investigator, W Cleve-
dland, A Howard, K Chapman, S Plater, study coordi-
nator, W Smith; Mt Sinai School of Medicine, prin-
cipal investigator, R Phillips, M Lipkowitz, study coordinator, A Gabriel, A Travis, J Williams; Ohio State University, principal investigator, L Hebert, M Fal-
tory, P Hall, D Pexa, H Reid, N Tal Pena, K Collins, study coordinator, L Hiremark, A Dodley, J Parks, D Veley, Rush-Presbyterian-St Luke’s Medical Cen-
ter, principal investigator, G Bakris, J Lash, study co-
ordinator, L Fendren, study coordinator, L Fondren, A Do-

nelo, study coordinator, J Cohen, study coordinator, M Powell, A Smith, D White, G Henry, A Johnson, T Collins, S Koshy, E Atanfe; University of Ala-

bama, Birmingham, principal investigator, S Ro-

stand, D Thornley-Brown, R Gay, study coordina-
tor, C Johnson, C Key, University of California, San Diego, principal investigator, D O’Connor, F Gab-
bai, R Farmer, F Rao, L Little, study coordinator, R Veley, principal investigator, S Ro-

stand, D Tao, C Karrison, T. Kotchen, E Saunders, M Sika; University of Florida, principal investigator, C Tisher, D Allen, study coordinator, L Burghin, A Diaz, C Sarmiento; University of Alabama, principal inves-
tigator, J Bourgoinie, G Contreras, D Florence-Green, study coordinator, A Doss, J Junco, D Merrill, J Vas-

sallo, A de Velasco; University of Michigan, princi-
al investigator, K Jamerson, F Port, M Keshishian, A Ojo, S Steigerwald, study coordinator, D Cornish-Zirkier, T Graham, A Johnson, J Layne, S Nesbitt, K Manchester, W Bliemorenberg; University of South-
ern California, principal investigator, S Massry, V. Campese, M Smogorzewski, study coordinator, A Richardson; University of Texas Southwestern Medical Center, Dallas, principal investigator, J Middle-
ton, E Kuo, S Leach, R Toto, K Jones, K Hart, study coordinator, T Lightfoot, L Littmon, B McNiel, C Ying; Vanderbilt University, principal investigator, J Lewis, G Schulman, S McEeroy, study coordinator, N Rogers, M Siku; National Institute of Diabetes and Digestive and Kidney Diseases, principal investigator, L Y. Briggs, J Kibulis, J W Kusek; steering committee chair, J Dou-

gas; Data Coordinating Center (Cleveland Clinic Foun-

dation): J Gassman, G Beck, V Dennis, T Greene, M Kutner, study coordinator, K Brittain, S Sherer, R Stewart, L Tusson, S-R Wang, X Wang, W Zhang; Central Biochemistry Laboratory, Data and Safety Monitoring Committee: F Van Lente, J Waletzky, C O’Laughlin, C Peck, Central GFR Labo-

ratory, J Hall, D Peck, J Rao, J Wright, study coordinator, R Byington; Psychological Consultant, P. Greene; Data and Safety Monitoring Committee: R Luke, V Chinchilli, C Cook, B Falkner, C Ford, R Glasscock, T Karrison, J Kotchen, E Saunders, M Se-
cundy, D Wesson.

Funding/Support: In addition to funding under a co-
aparative agreement from National Institute of Dia-
betes and Digestive and Kidney Diseases, this work was supported in part by the following institutional General Clinical Research Center and other National Institutes of Health grants: M01 RR-00030, 5M01 RR-

007, M01 RR-00002, 2P01-DK-08491, 2P01-DK-

08492, M01 RR00052, 2P01 RR11104, and DK 2818-02. We gratefully acknowledge support from the Office of Re-

2430 JAMA, November 20, 2002—Vol 288, No. 19 (Reprinted) ©2002 American Medical Association. All rights reserved.
search in Minority Health and the donation of drug and joint-financial support to NDDK by Pfizer Inc, AstraZeneca Pharmaceuticals, and King Pharmaceuticals.

Acknowledgment: We thank the AASK participants for their time and commitment to the trial.

REFERENCES

©2002 American Medical Association. All rights reserved.
diovascular disease and have served as a consultant to several of the above-listed entities. None of these entities played any role whatsoever in the design, interpretation, or drafting of the manuscript. I regret making this omission.

Paul M Ridker, MD
pridker@partners.org
Brigham and Women’s Hospital
Boston, Mass

Financial Disclosures: Dr Ridker reports that he has received research funding and research support from the National Heart, Lung, and Blood Institute, the Doris Duke Charitable Foundation, the Leukemia Foundation, the Donald W. Reynolds Foundation, the American Heart Association, the James and Polly Annenberg La Veia Charitable Trusts, AstraZeneca, Bayer, Bristol-Myers Squibb, Dade-Becking, Novartis, Pharmacia, Roche, Sanofi-Aventis, and Varigenics. Dr Ridker reports being listed as a coinventor on patents held by the Brigham and Women’s Hospital that relate to the use of inflammatory biomarkers in cardiovascular disease and has served as a consultant to Schering-Plough, Sanofi-Aventis, AstraZeneca, Isis Pharmaceuticals, Dade-Becking, and Interleukin Genetics.

Table 2. Antihypertensive Therapy and Blood Pressure During Follow-up*

<table>
<thead>
<tr>
<th>Blood Pressure Goal</th>
<th>Drug Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Ramipril</td>
</tr>
<tr>
<td>Arterial pressure, mean (SD), mm Hg†</td>
<td>95 (8)</td>
</tr>
<tr>
<td>Systolic blood pressure, mean (SD), mm Hg†</td>
<td>128 (12)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mean (SD), mm Hg†</td>
<td>78 (8)</td>
</tr>
<tr>
<td>Visits with mean arterial pressure in goal, %†</td>
<td>51.6</td>
</tr>
<tr>
<td>Visits with mean arterial pressure of <107 mm Hg, %†</td>
<td>81.3</td>
</tr>
<tr>
<td>Visits with systolic/diastolic blood pressure of <140/90, %†</td>
<td>68.5</td>
</tr>
<tr>
<td>Visits with systolic/diastolic blood pressure of <125/75, %†</td>
<td>24.6</td>
</tr>
<tr>
<td>Visits with assigned primary drug, %‡</td>
<td>82.7</td>
</tr>
<tr>
<td>Visits with high dose, %‡</td>
<td>63.6</td>
</tr>
<tr>
<td>Visits with crossover to 1 of other 2 classes, %‡</td>
<td>9.3</td>
</tr>
</tbody>
</table>

Total No. of drug classes, mean (SD)§	3.07 (1.11)	2.69 (1.22)	2.81 (1.15)
Visits with level 2 (furosemide), %§	83.2	74.9	72.0
Visits with level 3 (doxazosin), %‡	55.8	42.6	47.1
Visits with level 4 (clonidine), %‡	41.0	35.0	34.6
Visits with level 5 (minoxidil), %‡	35.4	27.8	24.4
Protocol visits held, %	90.3	88.0	89.8

*GFR indicates glomerular filtration rate.
†Blood pressure summaries include visits after 3 months and exclude GFR visits.
‡Medication summaries include all visits starting at month 1 and are censored on September 22, 2000, for the calcium channel blocker (amlodipine) group only.

©2006 American Medical Association. All rights reserved.