Patterns of Functional Decline at the End of Life

June R. Lunney, PhD, RN
Joanne Lynn, MD, MA, MS
Daniel J. Foley, MS
Steven Lipson, MD
Jack M. Guralnik, MD, PhD

Clinicians have observed various patterns of functional decline at the end of life, but few empirical data have tested these patterns in large populations.

Objective To determine if functional decline differs among 4 types of illness trajectories: sudden death, cancer death, death from organ failure, and frailty.

Design, Setting, and Participants Cohort analysis of data from 4 US regions in the prospective, longitudinal Established Populations for Epidemiologic Studies of the Elderly (EPESE) study. Of the 14456 participants aged 65 years or older who provided interviews at baseline (1981-1987), 4871 died during the first 6 years of follow-up; 4190 (86%) of these provided interviews within 1 year before dying. These decedents were evenly distributed in 12 cohorts based on the number of months between the final interview and death.

Main Outcome Measures Self- or proxy-reported physical function (performance of 7 activities of daily living [ADLs]) within 1 year prior to death; predicted ADL dependency prior to death.

Results Mean function declined across the 12 cohorts, simulating individual decline in the final year of life. Sudden death decedents were highly functional even in the last month of life (mean [95% confidence interval (CI)] numbers of ADL dependencies: 0.69 [0.19-1.19] at 12 months before death vs 1.22 [0.59-1.85] at the final month of life, P = .20); cancer decedents were highly functional early in their final year but markedly more disabled 3 months prior to death (0.77 [0.30-1.24] vs 4.09 [3.37-4.81], P < .001); organ failure decedents experienced a fluctuating pattern of decline, with substantially poorer function during the last 3 months before death (2.10 [1.49-2.70] vs 3.66 [2.94-4.38], P < .001); and frail decedents were relatively more disabled in the final year and especially dependent during the last month (2.92 [2.24-3.60] vs 5.84 [5.33-6.35], P < .001). After controlling for age, sex, race, education, marital status, interval between final interview and death, and other demographic differences, frail decedents were more than 8 times more likely than sudden death decedents to be ADL dependent (OR, 8.32 [95% CI, 6.46-10.73]; cancer decedents, one and a half times more likely (OR, 1.57 [95% CI, 1.25-1.96]); and organ failure decedents, 3 times more likely (OR, 3.00 [95% CI, 2.39-3.77]).

Conclusions Trajectories of functional decline at the end of life are quite variable. Differentiating among expected trajectories and related needs would help shape tailored strategies and better programs of care prior to death.

May 14, 2003—Vol 289, No. 18

2387

JAMA. 2003;289:2387-2392

www.jama.com

Author Affiliations: Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Md (Drs Lunney and Guralnik and Mr Foley); Washington Home Center for Palliative Care Studies, Washington, DC (Dr Lynn); Hebrew Home of Greater Washington, Rockville, Md (Dr Lipson).

Corresponding Author and Reprints: June R. Lunney, PhD, RN, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Gateway Bldg, Suite 3C-309, Bethesda, MD 20892-9205 (e-mail: June.Lunney@nih.gov).
METHODS

Study Cohort

We analyzed data from 4 areas from the Established Populations for Epidemiologic Studies of the Elderly (EPESE) study: East Boston, Mass; Washington and Iowa counties, Iowa; New Haven, Conn; and 5 contiguous rural counties of north central North Carolina. The EPESE followed community-based cohorts of persons aged 65 years or older with baseline in-person interviews conducted between 1981 and 1987 followed by 6 to 10 annual in-person or telephone follow-up interviews. Others have described the design and data collection methods in detail.17,18 Of the 14,456 EPESE participants who were interviewed at baseline, 4,871 died during the first 6 years of the follow-up period and a date of death is available for 4,865. The group of 4,190 decedents (86%) who happened to be interviewed within 1 year before death constitutes the sample population for these analyses. Those 4,190 did not differ from the remaining decedents in age at death or any other demographic characteristics.

Each interview included self-reported or proxy-reported physical function. At baseline, 99% of decedents participated directly in the interview process. Proxies provided data for the last follow-up interview of 26% of the decedents, who were too cognitively or physically impaired to participate directly at that point. Interviewers asked if participants needed help or were unable to perform each of the following 7 activities of daily living (ADLs): walking across a small room, bathing, grooming, dressing, eating, transferring from bed to chair, and using the toilet. In addition, questions ascertained their ability to walk a half mile; stoop, kneel, or crouch; climb a flight of stairs; and do heavy housework, such as washing floors. Each year, participants also reported on a variety of other health issues, such as the new diagnosis of a chronic illness (cancer, heart disease, or diabetes), or the occurrence of a hip fracture, stroke, hospitalization, or nursing home stay during the preceding year. We have death certificate data for 4,865 of the 4,871 decedents.

Analysis

The 4,190 EPESE decedents who provided interview data during their final year of life were evenly distributed in 12 cohorts based on the number of months between the participant’s final interview and death, with 6.6% to 8.2% interviewed in any particular month. Of particular interest, 315 were interviewed 12 months before death and 316 in the final month of life. We derived functional patterns from the mean number of ADL dependencies for each monthly cohort.

We also grouped decedents into categories corresponding to the 4 theoretical trajectories based on information from the death certificate and from interviews. Decedents with a diagnosis of cancer (International Classification of Diseases, Ninth Revision [ICD-9] codes 140.0-239.9) noted as the immediate or underlying cause of death on their death certificate constituted the cancer group. Decedents with congestive heart failure (ICD-9 codes 428.0-428.9) or chronic lung disease (ICD-9 codes 490.0-496.9) in any diagnosis field on the death certificate made up the organ failure group. Those decedents who had reported a nursing home stay during any follow-up interview comprised the frailty group. The sudden death group consisted of those who died with no diagnosis of cancer or organ failure on the death certificate, with no nursing home stay, and who had reported no history of the following at any point during the study: cancer, heart disease, diabetes, hip fracture, or stroke. Remaining (unclassified) decedents formed the “other” group.
Table 1. Decedent Group Characteristics*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Sudden Death (a)</th>
<th>Cancer (b)</th>
<th>Organ Failure (c)</th>
<th>Frailty (d)</th>
<th>Other (e)</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>80.4 (7.8)</td>
<td>78.7 (6.9)</td>
<td>82.3 (7.7)</td>
<td>85.1 (7.2)</td>
<td>79.2 (7.0)</td>
<td>81.1 (7.6)</td>
</tr>
<tr>
<td>Women, No. (%)</td>
<td>321 (49.5)</td>
<td>424 (47.3)</td>
<td>122 (15.0)</td>
<td>134 (16.1)</td>
<td>243 (24.6)</td>
<td>834 (20.0)</td>
</tr>
<tr>
<td>Current married, No. (%)</td>
<td>262 (44.1)</td>
<td>412 (50.3)</td>
<td>322 (42.2)</td>
<td>446 (47.7)</td>
<td>1699 (44.0)</td>
<td></td>
</tr>
<tr>
<td>No. of reported medical conditions, mean (SD)†</td>
<td>1.05 (0.91)</td>
<td>1.04 (0.94)</td>
<td>1.08 (0.96)</td>
<td>1.45 (0.66)</td>
<td>0.99 (0.92)</td>
<td></td>
</tr>
</tbody>
</table>

*Each superscript letter represents a significant difference (P<.05) with the group bearing that label, with a Bonferroni correction for multiple comparisons.
†Self report of cancer, heart disease, diabetes, history of hip fracture, or stroke.

Because comorbidity is common among elderly patients, we expected overlap among the cancer, organ failure, and frailty decedents (the only groups with the potential for overlap). Therefore, we forced unique decedent group membership by sequentially identifying each category and removing those decedents from the pool before identifying the next category. We chose the hierarchy of cancer > organ failure > frailty, based on the expectation that cancer would be the dominant illness when it is listed as the immediate or underlying cause of death. We found that all demographic characteristics and patterns of functional decline attributed to a decedent group were consistent regardless of whether the groups were independently identified with overlap allowed or sequentially defined, and, when sequentially defined, regardless of which order was used to define and remove the decedent groups. The characteristics of these trajectory groups were notably consistent regardless of the specific way in which they were defined.

We compared descriptive characteristics among the groups using analysis of variance with a Bonferroni correction for multiple comparisons. In addition to describing the demographic characteristics of the categorized decedents and plotting the decline in physical function as the cohort interval approached the date of death, we developed a logistic regression model to examine the importance of decedent group membership in predicting the likelihood of being disabled before dying, adjusting for the effects of age, sex, race, education, marital status, and the amount of time between the final interview and death. We defined disability as requiring assistance with or being unable to perform any ADL. The group expected to be least disabled (men who died suddenly at ages 65-74 years) was chosen as the reference group. As with the descriptive analyses, the regression model was found to be consistent across each different decedent classification approach. Results reported here are for decedent classification in the following order: sudden death, cancer, organ failure, frailty, and other.

RESULTS

Compared with participants in EPESE who survived the first 6 years of the follow-up period, those who died were significantly older at baseline (77.0 vs 72.6 years, P<.001) and more likely to be men (47% vs 33%, P<.001) and single (56% vs 49%, P<.001). At baseline, decedents also reported a higher number of the following previous medical conditions: history of cancer, heart disease, diabetes, hip fracture, or stroke (0.76 vs 0.44, P<.001). Years of education and percentage of nonwhite race did not differ between decedents and survivors.

Among the 4190 decedents who happened to have interviews during the final year of life, the decedent group sizes were as follows when sequentially identified: sudden death (n=649 [15%]), cancer (n=897 [21%]), organ failure (n=817 [20%]), frail (n=837 [20%]), and other (n=990 [24%]). When allowed, overlap existed primarily among the organ failure and frailty groups (n=320 [8%]) and the cancer and frailty groups (n=202 [5%]).

Among the decedent groups, cancer decedents were the youngest group (Table 1). Death from cancer peaked before age 80 years, and 79% were younger than 85 years when they died. Organ failure decedents were also significantly older, whereas members of the sudden death and unclassified groups were younger than the mean age. Those classified as frail were the oldest. Of these, 77% were aged 80 years or older, and the distribution among age groups increased steadily with each incremental increase in age. Frail decedents were most likely to be women and least likely to be currently married. The unclassified or “other” decedents had the most coexisting medical conditions.

For all decedents, mean function declined across the 12-month–based subgroups in a pattern that could be expected to represent mean individual decline in the final year of life. With decedents grouped into 3 age categories (65-74 years, 75-84 years, and ≥85 years), the overall level of dependency was greater with increasing age, but the trajectory of ADL dependence followed a similar slope of decline for each age group. Similarly, sex differences existed in the amount of disability but not in the slope of decline in the last year of life. As has been well documented by others, women in this study were consistently more disabled than their male counterparts. No differences in functional disability prior to death associated with race or level of education were significant.

©2003 American Medical Association. All rights reserved.
FUNCTIONAL DECLINE AT THE END OF LIFE

Figure 2. Dependent Activities of Daily Living (ADLs) for Each Month Cohort, by Trajectory Group

Error bars indicate 95% confidence intervals.

Figure 2 shows patterns of observed ADL disability for each of the 4 trajectory-based groups. Those in the sudden death group were substantially more independent and these cohorts did not decline in function as death approached. The mean (95% confidence interval [CI]) number of ADL disabilities for those interviewed in the final month of life (1.22 [0.59-1.85]) was not significantly different from that for those interviewed 12 months before death (0.69 [0.19-1.19]) (P = .20). Cancer decedents also experienced better functional status early in the final year, but those interviewed during the 3 months before death were markedly more disabled. Individual variation in functional ability during any 1-year period fits with the clinical pattern of disease exacerbations associated with congestive heart failure and chronic obstructive pulmonary disease. However, this study examined only mean group disability and this also declined erratically for the organ failure decedents. Decedents in the frailty group were relatively more disabled throughout the last year of life. Like the cancer group, both the organ failure and frailty groups demonstrated a substantial decline in function during the last 3 months of life. For all 3 of these groups, those interviewed in the final month of life were significantly more disabled than those interviewed 12 months before death (cancer: 4.09 [3.37-4.81] vs 0.77 [0.30-1.24]; organ failure: 3.66 [2.94-4.38] vs 2.10 [1.49-2.70]; frailty: 5.84 [5.33-6.35] vs 2.92 [2.24-3.60]; P < .001 for all).

The decedents who met none of the classification criteria (ie, the “other” group) showed a pattern of modest and gradual decline in independence during the final year of life. Those interviewed 12 months before death reported dependence in 1.23 (95% CI, 0.77-1.69) of 7 activities; those interviewed in the final month of life reported a mean of 2.27 (95% CI, 1.58-2.96) dependencies. Of these unclassified decedents, 395 (40%) had ischemic heart disease noted as the underlying cause of death, whereas this rate of ischemic heart disease was 27% across the full decedent pool. The pattern of modest, gradual functional decline in the unclassified group closely matched the pattern of decline we found when we evaluated all ischemic heart disease decedents (n = 1140) as a single decedent group. Among decedents who had had ischemic heart disease noted in any field on the death certificate, those interviewed 12 months before death reported dependence in 0.74 (95% CI, 0.35-1.13) of 7 activities; those interviewed in the last month of life reported a mean of 2.38 (95% CI, 1.28-2.98) dependencies.

In the multiple logistic regression model of ADL dependency, assignment to a trajectory category continued to be a very strong predictor of disability even after controlling for age, sex, race, education, marital status, and the interval between the final interview and death (Table 2). Not surprisingly, decedents aged 85 years or older were 4 times more likely to require assistance by those aged 65 through 74 years. Women were more than one and a half times more likely to be dependent than were men. Yet, after controlling for these and other demographic differences, those assigned to the frailty group were more than 8 times more likely to be ADL dependent than those who died suddenly.

COMMENT

The empirical trajectories of functional decline for the 4 categories of decedents differed markedly and were very similar to the previously published theoretical model. The scheme is clinically intuitive and the possible existence of these different pathways to death has important implications for health care delivery. Only short-term expected deaths, such as may occur with cancer decedents, are likely to have a predictable terminal period that meets the public expectation of dying and the health care requirements for hospice care.
care. Those who experience entry
to entry deaths or lingering deaths may
also need the supportive services of-
ffered by hospice care, but hospice re-
imbursment requires the certainty of
a limited lifespan. Additional data about
functional trajectories of dying will bet-
ter inform both health care practice and
delivery of service at the end of life.
Prospective, longitudinal data collected
from a population-based sample at
high risk of death provides an im-
portant opportunity to learn from re-
trospectively examining lives before both
predictable and unpredictable death.
The ideal data set would require fre-
quent measures (at least quarterly) on
all high-risk individuals for many years,
thereby generating multiple data points
in the year before each death. Unfor-
nately, such research is prohibi-
tively expensive to conduct with large,
population-based samples. On the other
hand, with a large number of annual fol-
low-up interviews and a sufficient
sample size, the EPESE study allowed
an alternative approach: analyses from
multiple subgroups of the sample, each
of which had data collected at a simi-
lar time point in the final year of life.
Though limited to group analyses, this
viewpoint permits a useful examina-
tion of functional decline from pro-
spectively collected data.
This study and our previous analy-
sis of Medicare claims data2 demon-
strate the importance of recognizing dif-
fferences in the trajectories or clinical
course that people can experience in the
last phase of life. However, these stud-
ies also highlight the conceptual and op-
erational challenges associated with at-
ttempts to create distinct categories from
a complex event such as death, espe-
cially among elderly individuals. De-
fining frailty is a particular challenge.
In this study, after first removing can-
cer and organ-failure decedents, we
classified 20% of the decedents as frail
using evidence of a nursing home stay
as the defining criterion. Using a simi-
lar procedure in our previous analy-
zes, we classified 47% as frail with the
criterion of a Medicare claim listing
1 condition from a previously pub-
lished list of conditions commonly as-
sociated with slowly declining health.21
As a proxy for frailty, nursing home uti-
lization has some face validity, but it un-
doubtedly underestimates the frail
population and tends to present a cir-
cular argument when ADLs serve as the
outcome measure. Unfortunately, di-
gnooses on death certificates do not cur-
tently offer a reasonable alternative ap-
proach for the identification of frail
elderly decedents.
These findings encourage further ex-
ploration of the possibility of a fifth con-
ceptually distinct trajectory of dying:
one in which individuals experience a
steady decline in function but at a mod-
erately high level of performance. This
trajectory arose in the unclassified
and also among all decedents
with ischemic heart disease as the un-
derlying cause of death. A better un-
derstanding of the importance of this
type of decline and the role of heart dis-
ease in functional decline at the end of
life will require more comprehensive
clinical data than are available in the
EPESE study.
Even with these limitations, this em-
pirical validation of the existence of dif-
ferent trajectories of dying is an im-
portant first step in getting beyond the
"one-size-fits-all" model for end-of-
life care and research. The public im-
ge of dying and most scientific evi-
dence for care at the end of life come
from studies of those diagnosed with
a terminal illness. Yet that is not the ex-
perience facing most individuals in the
United States, only 23% of whom die
from cancer.22 Many more will die from
acute complications of an otherwise
chronic condition, most likely with-
out a discrete terminal illness phase.23
Good end-of-life care must allow for
this unpredictable timing of death. In
addition to supporting those with a
clearly terminal illness, we must find
ways to better assist those for whom a
serious chronic illness or multiple
chronic problems present an ongoing
threat of sudden exacerbation and
death. End-of-life care must also serve
those who become increasingly frail,
even without a life-threatening ill-
ness. Because of a steadily diminish-
ing reserve capacity to cope with in-
evitable but unpredictable acute health
challenges, these frail elderly persons
may also die without a clear terminal
period. Given the variable trajectories
dependency, our data support the
idea that each group requires a differ-
ent clinical approach and different types
of health services.

Table 2. Multiple Logistic Regression Model Predicting ADL Dependency*

<table>
<thead>
<tr>
<th>Effect</th>
<th>Decedent group</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudden death</td>
<td>649 (16)</td>
<td>Reference</td>
</tr>
<tr>
<td>Cancer</td>
<td>897 (21)</td>
<td>1.57 (1.25-1.96)</td>
</tr>
<tr>
<td>Organ failure</td>
<td>817 (20)</td>
<td>3.00 (2.39-3.77)</td>
</tr>
<tr>
<td>Frailty</td>
<td>837 (20)</td>
<td>8.32 (6.46-10.73)</td>
</tr>
<tr>
<td>Other</td>
<td>990 (23)</td>
<td>1.84 (1.47-2.29)</td>
</tr>
<tr>
<td>Age group, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td>949 (23)</td>
<td>Reference</td>
</tr>
<tr>
<td>75-84</td>
<td>1846 (44)</td>
<td>1.62 (1.35-1.95)</td>
</tr>
<tr>
<td>≥85</td>
<td>1365 (33)</td>
<td>4.15 (3.36-5.14)</td>
</tr>
<tr>
<td>Women</td>
<td>2201 (53)</td>
<td>1.66 (1.41-1.95)</td>
</tr>
<tr>
<td>White</td>
<td>3338 (80)</td>
<td>0.75 (0.62-0.90)</td>
</tr>
<tr>
<td>Finished high school</td>
<td>1150 (28)</td>
<td>0.79 (0.67-0.93)</td>
</tr>
<tr>
<td>Currently married</td>
<td>1699 (44)</td>
<td>1.23 (1.04-1.46)</td>
</tr>
</tbody>
</table>

*ADL dependency defined as requiring assistance with or being unable to perform any activity of daily living; model
adjusted for number of months between functional assessment and death. The model correctly predicted disability
for 75% of the decedents who had a predicted probability >0.5 from the model (C = 0.758).

Abbreviations: ADL, activities of daily living; CI, confidence interval; OR, odds ratio.
FUNCTIONAL DECLINE AT THE END OF LIFE

Statistical expertise: Foley, Guralnik.
Obtained funding; administrative, technical, or material support: Lunney, Lynn.
Study supervision: Guralnik.
Funding/Support: This work was supported by National Institute of Nursing Research award K22-NR07967.

REFERENCES
3. Lynn J. Serving patients who may die soon and their families: the role of hospice and other services. JAMA, 2392, 1112.
8. Ferrucci L, Guralnik JM, Pahor M, Corti MC, Havlik RJ. Hospital diagnoses, Medicare charges, and nursing home admissions in the year when older persons become severely disabled. JAMA. 1997;277:728-734.

Philosophy asks the simple question, What is it all about? Alfred North Whitehead (1861-1947)