As Unexplained Hepatitis Spreads, WHO Urges Action

Despite recent progress, more than 350 million people globally live with viral hepatitis and more than 1 million die annually—a greater toll than from HIV and malaria combined. Amid unexplained increases in childhood hepatitis cases in 34 countries, the World Hepatitis Alliance and World Health Organization (WHO) urged renewed efforts to eliminate viral hepatitis by 2030, according to a joint statement.

Since its introduction in 2016, the Sustainable Development Goals 2020 target of reducing the prevalence of hepatitis B in children younger than 5 years to less than 1% has been met globally and in most WHO regions. In addition, the number of people receiving treatment for hepatitis C has increased 10-fold to more than 10 million.

However, gains have been uneven across the world. In many low- and middle-income countries few newborns receive hepatitis B vaccine at birth, with the figure less than 10% in Africa. Stigma and discrimination remain barriers to testing and care. Only 10% of people with chronic hepatitis B and 21% of those with chronic hepatitis C are aware of their illness; even fewer receive treatment and hepatitis-related liver cancer is rising exponentially, according to the statement.

Increased funding and better integration of hepatitis prevention and treatment into routine care are needed to meet 2030 outcome goals. But accessibility, affordability, location, and poverty issues must be addressed, WHO Director-General Tedros Adhanom Ghebreyesus, MSc, PhD, said in the joint statement. “Hepatitis is one of the most devastating diseases on earth, but it’s also one of the most preventable and treatable, with services that can be delivered easily and cheaply at the primary health care level,” he added.

Mix-and-Match COVID-19 Boosters After Inactivated Virus Vaccine

A booster shot of mRNA or viral vector SARS-CoV-2 vaccine after 2 doses of an inactivated virus vaccine better protected patients against severe disease and death from COVID-19 than 3 doses of the inactivated virus vaccine, according to a large-scale study in The Lancet Global Health. The findings give additional support for a mix-and-match approach to COVID-19 boosters, the authors wrote.

The observational study involved about 4.1 million patients in Chile who received 2 doses of the CoronaVac (Sinovac Biotech) inactivated virus SARS-CoV-2 vaccine. Among them, 4.5% also received a CoronaVac booster while 48.9% received a BNT162b2 (Pfizer-BioNTech) mRNA vaccine booster and 46.5% received an AZD1222 (Oxford-AstraZeneca) viral vector vaccine booster.

Compared with unvaccinated patients, the homologous booster with the CoronaVac vaccine was 78.8% effective in preventing symptomatic COVID-19. The heterologous boosters with BNT162b2 and AZD1222 were 96.5% and 93.2% effective, respectively.

Similarly, the effectiveness of the 3-dose homologous CoronaVac regimen against COVID-19–related hospitalization, intensive care unit admission, and death was 86.3%, 92.2%, and 86.7%, respectively. By comparison, the BNT162b2 booster was more effective at 96.1%, 96.2%, and 96.8%, respectively, while the AZD1222 booster was the most effective at 97.7%, 98.9%, and 98.1%, respectively.

Updated Malaria Recommendations for Children and Pregnant People

The World Health Organization (WHO) has updated guidelines for chemotherapy to prevent malaria seasonally, perennially, and intermittently in infants and pregnant individuals. When given to young children and pregnant individuals who are most vulnerable to malaria, chemoprevention is safe, effective, and cost-effective for reducing malaria disease burden and saving lives, according to the WHO.

For seasonal malaria, the revised guidelines call for providing monthly chemoprevention, usually sulfadoxine-pyrimethamine plus amodiaquine, for as many months as the rainy season lasts in a wider geographic area than in the original 2012 recommendation. Previously, a maximum of 4 monthly doses were recommended and seasonal treatment was restricted to Africa’s Sahel subregion due to high resistance to sulfadoxine-pyrimeth-