Effect of Dietary Protein Content on Weight Gain, Energy Expenditure, and Body Composition During Overeating: A Randomized Controlled Trial | Lifestyle Behaviors | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008.  JAMA. 2010;303(3):235-24120071471PubMedGoogle ScholarCrossref
Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007-2008.  JAMA. 2010;303(3):242-24920071470PubMedGoogle ScholarCrossref
Swinburn B, Sacks G, Ravussin E. Increased food energy supply is more than sufficient to explain the US epidemic of obesity.  Am J Clin Nutr. 2009;90(6):1453-145619828708PubMedGoogle ScholarCrossref
Church TS, Thomas DM, Tudor-Locke C,  et al.  Trends over 5 decades in US occupation-related physical activity and their associations with obesity.  PLoS One. 2011;6(5):e1965721647427PubMedGoogle ScholarCrossref
Sumithran P, Prendergast LA, Delbridge E,  et al.  Long-term persistence of hormonal adaptations to weight loss.  N Engl J Med. 2011;365(17):1597-160422029981PubMedGoogle ScholarCrossref
Neumann RO. Experimentelle Beitrage zur Lehre von dem taglichen Nahrungsbedarf des Menschen unter besonderer Berucksichtigung der notwendigen Eiweissmenge.  Arch Hyg. 1902;45:1-87Google Scholar
Grafe E, Graham D. Uber die Anpassungsfahigkeit des tierischen Organismus an uiberreichliche Nahrungszufuhr.  Ztsch f physiol Chem. 1911;73:1Google ScholarCrossref
Gulick A. A study of weight regulation in the adult human body during overnutriton.  Am J Physiol. 1922;60:371-395Google Scholar
Wiley FH, Newburgh LH. The doubtful nature of “luxuskonsumption.”  J Clin Invest. 1931;10(4):733-74416694006PubMedGoogle ScholarCrossref
Stock MJ. Gluttony and thermogenesis revisited.  Int J Obes Relat Metab Disord. 1999;23(11):1105-111710578199PubMedGoogle ScholarCrossref
Miller DS, Mumford P, Stock MJ. Gluttony, 2: thermogenesis in overeating man.  Am J Clin Nutr. 1967;20(11):1223-12296057589PubMedGoogle Scholar
Miller DS, Mumford P. Gluttony, 1: an experimental study of overeating low- or high-protein diets.  Am J Clin Nutr. 1967;20(11):1212-12226057588PubMedGoogle Scholar
Goldman R, Haisman M, Bynum G, Horton E, Sims E. Experimental obesity in man: metabolic rate in relation to dietary intake. In: Bray GA, ed. Obesity in Perspective: A Conference. Washington, DC: US Government Printing Office; 1975:165-186
Norgan NG, Durnin JV. The effect of 6 weeks of overfeeding on the body weight, body composition, and energy metabolism of young men.  Am J Clin Nutr. 1980;33(5):978-9887369169PubMedGoogle Scholar
Webb P, Annis JF. Adaptation to overeating in lean and overweight men and women.  Hum Nutr Clin Nutr. 1983;37(2):117-1316575005PubMedGoogle Scholar
Forbes GB, Brown MR, Welle SL, Lipinski BA. Deliberate overfeeding in women and men: energy cost and composition of the weight gain.  Br J Nutr. 1986;56(1):1-93479191PubMedGoogle ScholarCrossref
Diaz EO, Prentice AM, Goldberg GR, Murgatroyd PR, Coward WA. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers.  Am J Clin Nutr. 1992;56(4):641-6551414963PubMedGoogle Scholar
Dériaz O, Tremblay A, Bouchard C. Non linear weight gain with long term overfeeding in man.  Obes Res. 1993;1(3):179-18516353352PubMedGoogle ScholarCrossref
Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans.  Science. 1999;283(5399):212-2149880251PubMedGoogle ScholarCrossref
Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review.  J Am Coll Nutr. 2004;23(5):373-38515466943PubMedGoogle ScholarCrossref
Westerterp-Plantenga MS, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp KR. Dietary protein, weight loss, and weight maintenance.  Annu Rev Nutr. 2009;29:21-4119400750PubMedGoogle ScholarCrossref
Dulloo AG, Jacquet J. Low-protein overfeeding: a tool to unmask susceptibility to obesity in humans.  Int J Obes Relat Metab Disord. 1999;23(11):1118-112110578200PubMedGoogle ScholarCrossref
Martin CK, Heilbronn LK, de Jonge L,  et al.  Effect of calorie restriction on resting metabolic rate and spontaneous physical activity.  Obesity (Silver Spring). 2007;15(12):2964-297318198305PubMedGoogle ScholarCrossref
Redman LM, Heilbronn LK, Martin CK,  et al; Pennington CALERIE Team.  Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss.  PLoS One. 2009;4(2):e437719198647PubMedGoogle ScholarCrossref
Schoeller DA. Measurement of energy expenditure in free-living humans by using doubly labeled water.  J Nutr. 1988;118(11):1278-12893142975PubMedGoogle Scholar
Racette SB, Schoeller DA, Luke AH, Shay K, Hnilicka J, Kushner RF. Relative dilution spaces of 2H- and 18O-labeled water in humans.  Am J Physiol. 1994;267(4 pt 1):E585-E5907943308PubMedGoogle Scholar
Taves DR. Minimization: a new method of assigning patients to treatment and control groups.  Clin Pharmacol Ther. 1974;15(5):443-4534597226PubMedGoogle Scholar
Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial.  Biometrics. 1975;31(1):103-1151100130PubMedGoogle ScholarCrossref
Ravussin E, Bogardus C. Relationship of genetics, age, and physical fitness to daily energy expenditure and fuel utilization.  Am J Clin Nutr. 1989;49(5):(suppl)  968-9752655422PubMedGoogle Scholar
Joosen AM, Westerterp KR. Energy expenditure during overfeeding.  Nutr Metab (Lond). 2006;3:2516836744PubMedGoogle ScholarCrossref
Flatt JP. The biochemistry of energy expenditure. In: Bray GAed. Recent Advances in Obesity Research: II. Proceedings of the 2nd International Congress on Obesity. London, England: Newman Publishing; 1978:211-228
Harris AM, Jensen MD, Levine JA. Weekly changes in basal metabolic rate with eight weeks of overfeeding.  Obesity (Silver Spring). 2006;14(4):690-69516741271PubMedGoogle ScholarCrossref
Dallosso HM, James WP. Whole-body calorimetry studies in adult men, 1: the effect of fat over-feeding on 24 h energy expenditure.  Br J Nutr. 1984;52(1):49-646743641PubMedGoogle ScholarCrossref
Lammert O, Grunnet N, Faber P,  et al.  Effects of isoenergetic overfeeding of either carbohydrate or fat in young men.  Br J Nutr. 2000;84(2):233-24511029975PubMedGoogle Scholar
Original Contribution
January 4, 2012

Effect of Dietary Protein Content on Weight Gain, Energy Expenditure, and Body Composition During Overeating: A Randomized Controlled Trial

Author Affiliations

Author Affiliations: Pennington Biomedical Research Center, Baton Rouge, Louisiana (Drs Bray, Rood, Martin, and Redman, and Mss Brock and Mancuso); Translational Research Institute for Metabolism and Diabetes, Florida Hospital and Sanford Burnham Medical Research Institute, Orlando (Drs Smith and Xie); National Institutes of Health, Bethesda, Maryland (Dr de Jonge); and St James Place, Baton Rouge, Louisiana (Dr Most).

JAMA. 2012;307(1):47-55. doi:10.1001/jama.2011.1918

Context The role of diet composition in response to overeating and energy dissipation in humans is unclear.

Objective To evaluate the effects of overconsumption of low, normal, and high protein diets on weight gain, energy expenditure, and body composition.

Design, Setting, and Participants A single-blind, randomized controlled trial of 25 US healthy, weight-stable male and female volunteers, aged 18 to 35 years with a body mass index between 19 and 30. The first participant was admitted to the inpatient metabolic unit in June 2005 and the last in October 2007.

Intervention After consuming a weight-stabilizing diet for 13 to 25 days, participants were randomized to diets containing 5% of energy from protein (low protein), 15% (normal protein), or 25% (high protein), which they were overfed during the last 8 weeks of their 10- to 12-week stay in the inpatient metabolic unit. Compared with energy intake during the weight stabilization period, the protein diets provided approximately 40% more energy intake, which corresponds to 954 kcal/d (95% CI, 884-1022 kcal/d).

Main Outcome Measures Body composition was measured by dual-energy x-ray absorptiometry biweekly, resting energy expenditure was measured weekly by ventilated hood, and total energy expenditure by doubly labeled water prior to the overeating and weight stabilization periods and at weeks 7 to 8.

Results Overeating produced significantly less weight gain in the low protein diet group (3.16 kg; 95% CI, 1.88-4.44 kg) compared with the normal protein diet group (6.05 kg; 95% CI, 4.84-7.26 kg) or the high protein diet group (6.51 kg; 95% CI, 5.23-7.79 kg) (P = .002). Body fat increased similarly in all 3 protein diet groups and represented 50% to more than 90% of the excess stored calories. Resting energy expenditure, total energy expenditure, and body protein did not increase during overfeeding with the low protein diet. In contrast, resting energy expenditure (normal protein diet: 160 kcal/d [95% CI, 102-218 kcal/d]; high protein diet: 227 kcal/d [95% CI, 165-289 kcal/d]) and body protein (lean body mass) (normal protein diet: 2.87 kg [95% CI, 2.11-3.62 kg]; high protein diet: 3.18 kg [95% CI, 2.37-3.98 kg]) increased significantly with the normal and high protein diets.

Conclusions Among persons living in a controlled setting, calories alone account for the increase in fat; protein affected energy expenditure and storage of lean body mass, but not body fat storage.

Trial Registration clinicaltrials.gov Identifier: NCT00565149