Enteral Omega-3 Fatty Acid, γ-Linolenic Acid, and Antioxidant Supplementation in Acute Lung Injury | Cardiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Bernard GR. Acute respiratory distress syndrome: a historical perspective.  Am J Respir Crit Care Med. 2005;172(7):798-80616020801PubMedGoogle ScholarCrossref
Ware LB, Matthay MA. The acute respiratory distress syndrome.  N Engl J Med. 2000;342(18):1334-134910793167PubMedGoogle ScholarCrossref
Abraham E. Coagulation abnormalities in acute lung injury and sepsis.  Am J Respir Cell Mol Biol. 2000;22(4):401-40410745020PubMedGoogle ScholarCrossref
Caironi P, Ichinose F, Liu R, Jones RC, Bloch KD, Zapol WM. 5-Lipoxygenase deficiency prevents respiratory failure during ventilator-induced lung injury.  Am J Respir Crit Care Med. 2005;172(3):334-34315894604PubMedGoogle ScholarCrossref
Gust R, Kozlowski JK, Stephenson AH, Schuster DP. Role of cyclooxygenase-2 in oleic acid-induced acute lung injury.  Am J Respir Crit Care Med. 1999;160(4):1165-117010508803PubMedGoogle ScholarCrossref
Acute Respiratory Distress Syndrome Network.  Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.  N Engl J Med. 2000;342(18):1301-130810793162PubMedGoogle ScholarCrossref
Calder PC. n-3 fatty acids, inflammation, and immunity—relevance to postsurgical and critically ill patients.  Lipids. 2004;39(12):1147-116115736910PubMedGoogle ScholarCrossref
Prescott SM, Stenson WF. Fish oil fix.  Nat Med. 2005;11(6):596-59815937467PubMedGoogle ScholarCrossref
Kumar KV, Rao SM, Gayani R, Mohan IK, Naidu MU. Oxidant stress and essential fatty acids in patients with risk and established ARDS.  Clin Chim Acta. 2000;298(1-2):111-12010876008PubMedGoogle ScholarCrossref
Johnson MM, Swan DD, Surette ME,  et al.  Dietary supplementation with gamma-linolenic acid alters fatty acid content and eicosanoid production in healthy humans.  J Nutr. 1997;127(8):1435-14449237935PubMedGoogle Scholar
Barham JB, Edens MB, Fonteh AN, Johnson MM, Easter L, Chilton FH. Addition of eicosapentaenoic acid to gamma-linolenic acid–supplemented diets prevents serum arachidonic acid accumulation in humans.  J Nutr. 2000;130(8):1925-193110917903PubMedGoogle Scholar
Gadek JE, DeMichele SJ, Karlstad MD,  et al; Enteral Nutrition in ARDS Study Group.  Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome.  Crit Care Med. 1999;27(8):1409-142010470743PubMedGoogle ScholarCrossref
Singer P, Theilla M, Fisher H, Gibstein L, Grozovski E, Cohen J. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury.  Crit Care Med. 2006;34(4):1033-103816484911PubMedGoogle ScholarCrossref
Pontes-Arruda A, Aragão AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock.  Crit Care Med. 2006;34(9):2325-233316850002PubMedGoogle ScholarCrossref
Bernard GR, Artigas A, Brigham KL,  et al; The American-European Consensus Conference on ARDS.  Definitions, mechanisms, relevant outcomes, and clinical trial coordination.  Am J Respir Crit Care Med. 1994;149(3, pt 1):818-8247509706PubMedGoogle ScholarCrossref
National Heart, Lung, and Blood Institute (NHLBI).  Early versus delayed enteral feeding to treat people with acute lung injury or acute respiratory distress syndrome (The EDEN Study). ClinicalTrials.com Web site. http://www.clinicaltrials.gov/ct2/show/NCT00883948?term=ALI+feeding&rank=2. Accessed March 16, 2011
Wiedemann HP, Wheeler AP, Bernard GR,  et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network.  Comparison of two fluid-management strategies in acute lung injury.  N Engl J Med. 2006;354(24):2564-257516714767PubMedGoogle ScholarCrossref
Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogué S, Ferrer M. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial.  Lancet. 1999;354(9193):1851-185810584721PubMedGoogle ScholarCrossref
DeMets DL, Ware JH. Asymmetric group sequential boundaries for monitoring clinical trials.  Biometrika. 1982;69:661-663Google ScholarCrossref
Brower RG, Lanken PN, MacIntyre N,  et al; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network.  Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome.  N Engl J Med. 2004;351(4):327-33615269312PubMedGoogle ScholarCrossref
Montori VM, Devereaux PJ, Adhikari NK,  et al.  Randomized trials stopped early for benefit: a systematic review.  JAMA. 2005;294(17):2203-220916264162PubMedGoogle ScholarCrossref
al-Saady NM, Blackmore CM, Bennett ED. High fat, low carbohydrate, enteral feeding lowers PaCO2 and reduces the period of ventilation in artificially ventilated patients.  Intensive Care Med. 1989;15(5):290-2952504796PubMedGoogle ScholarCrossref
Finfer S, Chittock DR, Su SY,  et al; NICE-SUGAR Study Investigators.  Intensive versus conventional glucose control in critically ill patients.  N Engl J Med. 2009;360(13):1283-129719318384PubMedGoogle ScholarCrossref
Parsons PE, Eisner MD, Thompson BT,  et al; NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network.  Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury.  Crit Care Med. 2005;33(1):1-6, 230-23215644641PubMedGoogle ScholarCrossref
Cao J, Schwichtenberg KA, Hanson NQ, Tsai MY. Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids.  Clin Chem. 2006;52(12):2265-227217053155PubMedGoogle ScholarCrossref
Skeaff CM, Hodson L, McKenzie JE. Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course.  J Nutr. 2006;136(3):565-56916484525PubMedGoogle Scholar
Pacht ER, DeMichele SJ, Nelson JL, Hart J, Wennberg AK, Gadek JE. Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome.  Crit Care Med. 2003;31(2):491-50012576957PubMedGoogle ScholarCrossref
Chilton FH, Patel M, Fonteh AN, Hubbard WC, Triggiani M. Dietary n-3 fatty acid effects on neutrophil lipid composition and mediator production: influence of duration and dosage.  J Clin Invest. 1993;91(1):115-1228380809PubMedGoogle ScholarCrossref
Barbosa VM, Miles EA, Calhau C, Lafuente E, Calder PC. Effects of a fish oil containing lipid emulsion on plasma phospholipid fatty acids, inflammatory markers, and clinical outcomes in septic patients: a randomized, controlled clinical trial.  Crit Care. 2010;14(1):R520085628PubMedGoogle ScholarCrossref
Friesecke S, Lotze C, Köhler J, Heinrich A, Felix SB, Abel P. Fish oil supplementation in the parenteral nutrition of critically ill medical patients: a randomised controlled trial.  Intensive Care Med. 2008;34(8):1411-142018357434PubMedGoogle ScholarCrossref
Caring for the Critically Ill Patient
October 12, 2011

Enteral Omega-3 Fatty Acid, γ-Linolenic Acid, and Antioxidant Supplementation in Acute Lung Injury

Author Affiliations

Author Affiliations: Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (Drs Rice and Wheeler); Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Boston (Dr Thompson); Pulmonary and Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans (Dr deBoisblanc); Critical Care Medicine, Baystate Medical Center, Springfield, Massachusetts (Dr Steingrub); and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore (Dr Rock).

JAMA. 2011;306(14):1574-1581. doi:10.1001/jama.2011.1435

Context The omega-3 (n-3) fatty acids docosahexaenoic acid and eicosapentaenoic acid, along with γ-linolenic acid and antioxidants, may modulate systemic inflammatory response and improve oxygenation and outcomes in patients with acute lung injury.

Objective To determine if dietary supplementation of these substances to patients with acute lung injury would increase ventilator-free days to study day 28.

Design, Setting, and Participants The OMEGA study, a randomized, double-blind, placebo-controlled, multicenter trial conducted from January 2, 2008, through February 21, 2009. Participants were 272 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. All participants had complete follow-up.

Interventions Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants compared with an isocaloric control. Enteral nutrition, directed by a protocol, was delivered separately from the study supplement.

Main Outcome Measure Ventilator-free days to study day 28.

Results The study was stopped early for futility after 143 and 129 patients were enrolled in the n-3 and control groups. Despite an 8-fold increase in plasma eicosapentaenoic acid levels, patients receiving the n-3 supplement had fewer ventilator-free days (14.0 vs 17.2; P = .02) (difference, −3.2 [95% CI, −5.8 to −0.7]) and intensive care unit–free days (14.0 vs 16.7; P = .04). Patients in the n-3 group also had fewer nonpulmonary organ failure–free days (12.3 vs 15.5; P = .02). Sixty-day hospital mortality was 26.6% in the n-3 group vs 16.3% in the control group (P = .054), and adjusted 60-day mortality was 25.1% and 17.6% in the n-3 and control groups, respectively (P = .11). Use of the n-3 supplement resulted in more days with diarrhea (29% vs 21%; P = .001).

Conclusions Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants did not improve the primary end point of ventilator-free days or other clinical outcomes in patients with acute lung injury and may be harmful.

Trial Registration clinicaltrials.gov Identifier: NCT00609180