[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.240.35. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
 Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S).  Lancet. 1994;344(8934):1383-13897968073PubMedGoogle Scholar
2.
Long-Term Intervention With Pravastatin in Ischaemic Disease (LIPID) Study Group.  Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels.  N Engl J Med. 1998;339(19):1349-13579841303PubMedGoogle ScholarCrossref
3.
Heart Protection Study Collaborative Group.  MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebo-controlled trial.  Lancet. 2002;360(9326):7-2212114036PubMedGoogle ScholarCrossref
4.
Downs JR, Clearfield M, Weis S,  et al.  Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS.  JAMA. 1998;279(20):1615-16229613910PubMedGoogle ScholarCrossref
5.
Sacks FM, Pfeffer MA, Moye LA,  et al; Cholesterol and Recurrent Events Trial investigators.  The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels.  N Engl J Med. 1996;335(14):1001-10098801446PubMedGoogle ScholarCrossref
6.
Shepherd J, Cobbe SM, Ford I,  et al; West of Scotland Coronary Prevention Study Group.  Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia.  N Engl J Med. 1995;333(20):1301-13077566020PubMedGoogle ScholarCrossref
7.
Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study.  Lancet. 1997;349(9064):1498-15049167458PubMedGoogle ScholarCrossref
8.
Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study.  Am J Med. 1977;62(5):707-714193398PubMedGoogle ScholarCrossref
9.
Barter PJ, Caulfield M, Eriksson M,  et al;  ILLUMINATE Investigators.  Effects of torcetrapib in patients at high risk for coronary events.  N Engl J Med. 2007;357(21):2109-212217984165PubMedGoogle ScholarCrossref
10.
Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis.  Arterioscler Thromb Vasc Biol. 2003;23(2):160-16712588754PubMedGoogle ScholarCrossref
11.
Okamoto H, Yonemori F, Wakitani K, Minowa  T, Maeda K, Shinkai H. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits.  Nature. 2000;406(6792):203-20710910363PubMedGoogle ScholarCrossref
12.
Cao G, Beyer TP, Zhang Y,  et al.  Evacetrapib is a novel, potent and selective inhibitor of cholesteryl ester transfer protein that elevates high-density lipoprotein cholesterol without inducing aldosterone or increasing blood pressure [published online ahead of print September 25, 2011].  J Lipid Res21957197PubMedGoogle Scholar
13.
Nicholls SJ. HDL: still a target for new therapies?  Curr Opin Investig Drugs. 2008;9(9):950-95618729001PubMedGoogle Scholar
14.
Grundy SM, Cleeman JI, Merz CN,  et al; National Heart, Lung, and Blood Institute; American College of Cardiology Foundation; American Heart Association.  Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines.  Circulation. 2004;110(2):227-23915249516PubMedGoogle ScholarCrossref
15.
Reiner Z, Catapano AL, De Backer G,  et al; European Association for Cardiovascular Prevention and Rehabilitation; ESC Committee for Practice Guidelines 2008-2010 and 2010-2012 Committees.  ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS).  Eur Heart J. 2011;32(14):1769-181821712404PubMedGoogle ScholarCrossref
16.
Libby P. The forgotten majority: unfinished business in cardiovascular risk reduction.  J Am Coll Cardiol. 2005;46(7):1225-122816198835PubMedGoogle ScholarCrossref
17.
Bots ML, Visseren FL, Evans GW,  et al; RADIANCE 2 Investigators.  Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial.  Lancet. 2007;370(9582):153-16017630038PubMedGoogle ScholarCrossref
18.
Kastelein JJ, van Leuven SI, Burgess L,  et al; RADIANCE 1 Investigators.  Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia.  N Engl J Med. 2007;356(16):1620-163017387131PubMedGoogle ScholarCrossref
19.
Nissen SE, Tardif JC, Nicholls SJ,  et al;  ILLUSTRATE Investigators.  Effect of torcetrapib on the progression of coronary atherosclerosis.  N Engl J Med. 2007;356(13):1304-131617387129PubMedGoogle ScholarCrossref
20.
Nicholls SJ. Exposing the complexity of HDL.  Cleve Clin J Med. 2007;74(10):709-710, 71217941291PubMedGoogle ScholarCrossref
21.
Vergeer M, Stroes ES. The pharmacology and off-target effects of some cholesterol ester transfer protein inhibitors.  Am J Cardiol. 2009;104(10):(suppl)  32E-38E19895942PubMedGoogle ScholarCrossref
22.
Yvan-Charvet L, Matsuura F, Wang N,  et al.  Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL.  Arterioscler Thromb Vasc Biol. 2007;27(5):1132-113817322101PubMedGoogle ScholarCrossref
23.
Brewer HB Jr. HDL metabolism and the role of HDL in the treatment of high-risk patients with cardiovascular disease.  Curr Cardiol Rep. 2007;9(6):486-49217999874PubMedGoogle ScholarCrossref
24.
Cannon CP, Shah S, Dansky HM,  et al; Determining the Efficacy and Tolerability Investigators.  Safety of anacetrapib in patients with or at high risk for coronary heart disease.  N Engl J Med. 2010;363(25):2406-241521082868PubMedGoogle ScholarCrossref
25.
Vasan RS, Pencina MJ, Robins SJ,  et al.  Association of circulating cholesteryl ester transfer protein activity with incidence of cardiovascular disease in the community.  Circulation. 2009;120(24):2414-242019948972PubMedGoogle ScholarCrossref
26.
Ritsch A, Scharnagl H, Eller P,  et al.  Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the Ludwigshafen Risk and Cardiovascular Health Study.  Circulation. 2010;121(3):366-37420065167PubMedGoogle ScholarCrossref
27.
Sugano M, Makino N, Sawada S,  et al.  Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits.  J Biol Chem. 1998;273(9):5033-50369478952PubMedGoogle ScholarCrossref
28.
Rittershaus CW, Miller DP, Thomas LJ,  et al.  Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis.  Arterioscler Thromb Vasc Biol. 2000;20(9):2106-211210978256PubMedGoogle ScholarCrossref
29.
Nicholls SJ, Tuzcu EM, Brennan DM, Tardif JC, Nissen SE. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation).  Circulation. 2008;118(24):2506-251419029466PubMedGoogle ScholarCrossref
30.
Barter P. Lessons learned from the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial.  Am J Cardiol. 2009;104(10):(suppl)  10E-15E19895939PubMedGoogle ScholarCrossref
31.
Niesor EJ, Magg C, Ogawa N,  et al.  Modulating cholesteryl ester transfer protein activity maintains efficient pre-β-HDL formation and increases reverse cholesterol transport.  J Lipid Res. 2010;51(12):3443-345420861162PubMedGoogle ScholarCrossref
Original Contribution
November 16, 2011

Effects of the CETP Inhibitor Evacetrapib Administered as Monotherapy or in Combination With Statins on HDL and LDL Cholesterol: A Randomized Controlled Trial

Author Affiliations

Author Affiliations: Cleveland Clinic Coordinating Center for Clinical Research (Drs Nicholls and Nissen, Mr Shao, and Ms McErlean) and Department of Quantitative Health Sciences (Dr Hu), Cleveland Clinic, Cleveland, Ohio; Medstar Research Institute, Washington, DC (Dr Brewer); Academic Medical Center, Amsterdam, the Netherlands (Dr Kastelein); and Eli Lilly, Indianapolis, Indiana (Drs Krueger and Wang).

JAMA. 2011;306(19):2099-2109. doi:10.1001/jama.2011.1649
Abstract

Context Interest remains high in cholesteryl ester transfer protein (CETP) inhibitors as cardioprotective agents. Few studies have documented the efficacy and safety of CETP inhibitors in combination with commonly used statins.

Objective To examine the biochemical effects, safety, and tolerability of evacetrapib, as monotherapy and in combination with statins, in patients with dyslipidemia.

Design, Setting, and Participants Randomized controlled trial conducted among 398 patients with elevated low-density lipoprotein cholesterol (LDL-C) or low high-density lipoprotein cholesterol (HDL-C) levels from April 2010 to January 2011 at community and academic centers in the United States and Europe.

Interventions Following dietary lead-in, patients were randomly assigned to receive placebo (n = 38); evacetrapib monotherapy, 30 mg/d (n = 40), 100 mg/d (n = 39), or 500 mg/d (n = 42); or statin therapy (n = 239) (simvastatin, 40 mg/d; atorvastatin, 20 mg/d; or rosuvastatin, 10 mg/d) with or without evacetrapib, 100 mg/d, for 12 weeks.

Main Outcome Measures The co–primary end points were percentage changes from baseline in HDL-C and LDL-C after 12 weeks of treatment.

Results The mean baseline HDL-C level was 55.1 (SD, 15.3) mg/dL and the mean baseline LDL-C level was 144.3 (SD, 26.6) mg/dL. As monotherapy, evacetrapib produced dose-dependent increases in HDL-C of 30.0 to 66.0 mg/dL (53.6% to 128.8%) compared with a decrease with placebo of −0.7 mg/dL (−3.0%; P < .001 for all compared with placebo) and decreases in LDL-C of −20.5 to −51.4 mg/dL (−13.6% to −35.9%) compared with an increase with placebo of 7.2 mg/dL (3.9%; P < .001 for all compared with placebo). In combination with statin therapy, evacetrapib, 100 mg/d, produced increases in HDL-C of 42.1 to 50.5 mg/dL (78.5% to 88.5%; P < .001 for all compared with statin monotherapy) and decreases in LDL-C of −67.1 to −75.8 mg/dL (−11.2% to −13.9%; P < .001 for all compared with statin monotherapy). Compared with evacetrapib monotherapy, the combination of statins and evacetrapib resulted in greater reductions in LDL-C (P <.001) but no greater increase in HDL-C (P =.39). Although the study was underpowered, no adverse effects were observed.

Conclusions Compared with placebo or statin monotherapy, evacetrapib as monotherapy or in combination with statins increased HDL-C levels and decreased LDL-C levels. The effects on cardiovascular outcomes require further investigation.

Trial Registration clinicaltrials.gov Identifier: NCT01105975

×