ADHD Medications and Risk of Serious Cardiovascular Events in Young and Middle-aged Adults | Attention Deficit/Hyperactivity Disorders | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
 New Report: America's State of Mind. Medco Web site. 2011. Accessed November 16, 2011
Food and Drug Administration.  Drug Safety and Risk Management Advisory Committee meeting. Food and Drug Administration Web site. February 9-10, 2006. Accessed November 21, 2011
Montejano L, Sasané R, Hodgkins P, Russo L, Huse D. Adult ADHD: prevalence of diagnosis in a US population with employer health insurance.  Curr Med Res Opin. 2011;27:(suppl 2)  5-1121973227PubMedGoogle ScholarCrossref
Wilens TE, Morrison NR, Prince J. An update on the pharmacotherapy of attention-deficit/hyperactivity disorder in adults.  Expert Rev Neurother. 2011;11(10):1443-146521955201PubMedGoogle ScholarCrossref
Challman TD, Lipsky JJ. Methylphenidate: its pharmacology and uses.  Mayo Clin Proc. 2000;75(7):711-72110907387PubMedGoogle Scholar
Leddy JJ, Epstein LH, Jaroni JL,  et al.  Influence of methylphenidate on eating in obese men.  Obes Res. 2004;12(2):224-23214981214PubMedGoogle ScholarCrossref
Frierson RL, Wey JJ, Tabler JB. Psychostimulants for depression in the medically ill.  Am Fam Physician. 1991;43(1):163-1701986485PubMedGoogle Scholar
Tharwani HM, Yerramsetty P, Mannelli P, Patkar A, Masand P. Recent advances in poststroke depression.  Curr Psychiatry Rep. 2007;9(3):225-23117521519PubMedGoogle ScholarCrossref
Warden DL, Gordon B, McAllister TW,  et al; Neurobehavioral Guidelines Working Group.  Guidelines for the pharmacologic treatment of neurobehavioral sequelae of traumatic brain injury.  J Neurotrauma. 2006;23(10):1468-150117020483PubMedGoogle ScholarCrossref
Hammerness PG, Surman CB, Chilton A. Adult attention-deficit/hyperactivity disorder treatment and cardiovascular implications.  Curr Psychiatry Rep. 2011;13(5):357-36321698412PubMedGoogle ScholarCrossref
Stiefel G, Besag FM. Cardiovascular effects of methylphenidate, amphetamines and atomoxetine in the treatment of attention-deficit hyperactivity disorder.  Drug Saf. 2010;33(10):821-84220812768PubMedGoogle ScholarCrossref
Lewington S, Clarke R, Qizilbash N, Peto R, Collins R.Prospective Studies Collaboration.  Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.  Lancet. 2002;360(9349):1903-191312493255PubMedGoogle ScholarCrossref
Gould MS, Walsh BT, Munfakh JL,  et al.  Sudden death and use of stimulant medications in youths.  Am J Psychiatry. 2009;166(9):992-100119528194PubMedGoogle ScholarCrossref
Winterstein AG, Gerhard T, Shuster J, Johnson M, Zito JM, Saidi A. Cardiac safety of central nervous system stimulants in children and adolescents with attention-deficit/hyperactivity disorder.  Pediatrics. 2007;120(6):e1494-e150118055666PubMedGoogle ScholarCrossref
Schelleman H, Bilker WB, Strom BL,  et al.  Cardiovascular events and death in children exposed and unexposed to ADHD agents.  Pediatrics. 2011;127(6):1102-111021576311PubMedGoogle ScholarCrossref
Winterstein AG, Gerhard T, Shuster J, Saidi A. Cardiac safety of methylphenidate versus amphetamine salts in the treatment of ADHD.  Pediatrics. 2009;124(1):e75-e8019564272PubMedGoogle ScholarCrossref
Holick CN, Turnbull BR, Jones ME, Chaudhry S, Bangs ME, Seeger JD. Atomoxetine and cerebrovascular outcomes in adults.  J Clin Psychopharmacol. 2009;29(5):453-46019745645PubMedGoogle ScholarCrossref
McCarthy S, Cranswick N, Potts L, Taylor E, Wong IC. Mortality associated with attention-deficit hyperactivity disorder (ADHD) drug treatment: a retrospective cohort study of children, adolescents and young adults using the general practice research database.  Drug Saf. 2009;32(11):1089-109619810780PubMedGoogle ScholarCrossref
Cooper WO, Habel LA, Sox CM,  et al.  ADHD drugs and serious cardiovascular events in children and young adults.  N Engl J Med. 2011;365(20):1896-190422043968PubMedGoogle ScholarCrossref
Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction.  J Am Coll Cardiol. 2000;36(3):959-96910987628PubMedGoogle ScholarCrossref
Meier MA, Al-Badr WH, Cooper JV,  et al.  The new definition of myocardial infarction: diagnostic and prognostic implications in patients with acute coronary syndromes.  Arch Intern Med. 2002;162(14):1585-158912123401PubMedGoogle ScholarCrossref
Chung CP, Murray KT, Stein CM, Hall K, Ray WA. A computer case definition for sudden cardiac death.  Pharmacoepidemiol Drug Saf. 2010;19(6):563-57220029823PubMedGoogle ScholarCrossref
Miettinen OS. Stratification by a multivariate confounder score.  Am J Epidemiol. 1976;104(6):609-620998608PubMedGoogle Scholar
Arbogast PG, Ray WA. Use of disease risk scores in pharmacoepidemiologic studies.  Stat Methods Med Res. 2009;18(1):67-8018562398PubMedGoogle ScholarCrossref
Glynn RJ, Schneeweiss S, Stürmer T. Indications for propensity scores and review of their use in pharmacoepidemiology.  Basic Clin Pharmacol Toxicol. 2006;98(3):253-25916611199PubMedGoogle ScholarCrossref
Suissa S, Edwardes MD. Adjusted odds ratios for case-control studies with missing confounder data in controls.  Epidemiology. 1997;8(3):275-2809115022PubMedGoogle ScholarCrossref
Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics.  Pharmacoepidemiol Drug Saf. 2006;15(5):291-30316447304PubMedGoogle ScholarCrossref
Schneeweiss S, Glynn RJ, Tsai EH, Avorn J, Solomon DH. Adjusting for unmeasured confounders in pharmacoepidemiologic claims data using external information: the example of COX2 inhibitors and myocardial infarction.  Epidemiology. 2005;16(1):17-2415613941PubMedGoogle ScholarCrossref
Ray WA. Evaluating medication effects outside of clinical trials: new-user designs.  Am J Epidemiol. 2003;158(9):915-92014585769PubMedGoogle ScholarCrossref
West SL, Strom BL, Polle C. Validity of pharmacoepidemiologic drug and diagnosis data. In: Strom BL, ed. Pharmacoepidemiology. Philadelphia, PA: John Wiley & Sons Ltd; 2005:709-765
de Burgos-Lunar C, Salinero-Fort MA, Cárdenas-Valladolid J,  et al.  Validation of diabetes mellitus and hypertension diagnosis in computerized medical records in primary health care.  BMC Med Res Methodol. 2011;11:14622035202PubMedGoogle ScholarCrossref
Thygesen SK, Christiansen CF, Christensen S, Lash TL, Sørensen HT. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients.  BMC Med Res Methodol. 2011;11:8321619668PubMedGoogle ScholarCrossref
Grijalva CG, Chung CP, Stein CM,  et al.  Computerized definitions showed high positive predictive values for identifying hospitalizations for congestive heart failure and selected infections in Medicaid enrollees with rheumatoid arthritis.  Pharmacoepidemiol Drug Saf. 2008;17(9):890-89518543352PubMedGoogle ScholarCrossref
Adler LA, Zimmerman B, Starr HL,  et al.  Efficacy and safety of OROS methylphenidate in adults with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, double-blind, parallel group, dose-escalation study.  J Clin Psychopharmacol. 2009;29(3):239-24719440077PubMedGoogle ScholarCrossref
Peterson K, McDonagh MS, Fu R. Comparative benefits and harms of competing medications for adults with attention-deficit hyperactivity disorder: a systematic review and indirect comparison meta-analysis.  Psychopharmacology (Berl). 2008;197(1):1-1118026719PubMedGoogle ScholarCrossref
Cohen AL, Jhung MA, Budnitz DS. Stimulant medications and attention deficit-hyperactivity disorder.  N Engl J Med. 2006;354(21):2294-229516723627PubMedGoogle ScholarCrossref
Original Contribution
December 28, 2011

ADHD Medications and Risk of Serious Cardiovascular Events in Young and Middle-aged Adults

Author Affiliations

Author Affiliations: Division of Research, Kaiser Permanente Northern California, Oakland (Drs Habel, Go, Sidney, Nguyen-Huynh, and Selby, Mr Fireman, and Mss Achacoso and Uratsu); Department of Pediatrics (Dr Cooper), Division of Pharmacoepidemiology, Department of Preventive Medicine (Drs Cooper and Ray), and Department of Biostatistics (Dr Arbogast), Vanderbilt University, Nashville, Tennessee; Harvard Pilgrim Health Care Institute, Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, and Department of Pediatrics, Boston University School of Medicine, Boston (Dr Sox); OptumInsight Epidemiology, Waltham, Massachusetts (Dr Chan); Pharmacy Analytical Service, Kaiser Permanente Southern California, Downy (Dr Cheetham); Research and Evaluation Department, Kaiser Permanente Southern California, Pasadena (Drs Cheetham and Quinn); Group Health Research Institute, Seattle, Washington (Drs Dublin and Boudreau); Departments of Epidemiology (Dr Dublin) and Pharmacy (Dr Boudreau), University of Washington, Seattle; Meyers Primary Care Institute, Worcester, Massachusetts (Dr Andrade); HealthPartners Research Foundation, Bloomington, Minnesota (Dr Pawloski); Institute for Health Research, Kaiser Permanente Colorado, and School of Pharmacy, University of Colorado at Denver (Dr Raebel); Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon (Dr Smith); and Departments of Epidemiology, Biostatistics and Medicine, University of California, San Francisco (Dr Sidney).

JAMA. 2011;306(24):2673-2683. doi:10.1001/jama.2011.1830

Context More than 1.5 million US adults use stimulants and other medications labeled for treatment of attention-deficit/hyperactivity disorder (ADHD). These agents can increase heart rate and blood pressure, raising concerns about their cardiovascular safety.

Objective To examine whether current use of medications prescribed primarily to treat ADHD is associated with increased risk of serious cardiovascular events in young and middle-aged adults.

Design, Setting, and Participants Retrospective, population-based cohort study using electronic health care records from 4 study sites (OptumInsight Epidemiology, Tennessee Medicaid, Kaiser Permanente California, and the HMO Research Network), starting in 1986 at 1 site and ending in 2005 at all sites, with additional covariate assessment using 2007 survey data. Participants were adults aged 25 through 64 years with dispensed prescriptions for methylphenidate, amphetamine, or atomoxetine at baseline. Each medication user (n = 150 359) was matched to 2 nonusers on study site, birth year, sex, and calendar year (443 198 total users and nonusers).

Main Outcome Measures Serious cardiovascular events, including myocardial infarction (MI), sudden cardiac death (SCD), or stroke, with comparison between current or new users and remote users to account for potential healthy-user bias.

Results During 806 182 person-years of follow-up (median, 1.3 years per person), 1357 cases of MI, 296 cases of SCD, and 575 cases of stroke occurred. There were 107 322 person-years of current use (median, 0.33 years), with a crude incidence per 1000 person-years of 1.34 (95% CI, 1.14-1.57) for MI, 0.30 (95% CI, 0.20-0.42) for SCD, and 0.56 (95% CI, 0.43-0.72) for stroke. The multivariable-adjusted rate ratio (RR) of serious cardiovascular events for current use vs nonuse of ADHD medications was 0.83 (95% CI, 0.72-0.96). Among new users of ADHD medications, the adjusted RR was 0.77 (95% CI, 0.63-0.94). The adjusted RR for current use vs remote use was 1.03 (95% CI, 0.86-1.24); for new use vs remote use, the adjusted RR was 1.02 (95% CI, 0.82-1.28); the upper limit of 1.28 corresponds to an additional 0.19 events per 1000 person-years at ages 25-44 years and 0.77 events per 1000 person-years at ages 45-64 years.

Conclusions Among young and middle-aged adults, current or new use of ADHD medications, compared with nonuse or remote use, was not associated with an increased risk of serious cardiovascular events. Apparent protective associations likely represent healthy-user bias.