[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Sydow M, Neumann P. Sedation for the critically ill.  Intensive Care Med. 1999;25(6):634-63610416920PubMedGoogle ScholarCrossref
Kollef MH, Levy NT, Ahrens TS, Schaiff R, Prentice D, Sherman G. The use of continuous i.v. sedation is associated with prolongation of mechanical ventilation.  Chest. 1998;114(2):541-5489726743PubMedGoogle ScholarCrossref
Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation.  N Engl J Med. 2000;342(20):1471-147710816184PubMedGoogle ScholarCrossref
Pandharipande P, Shintani A, Peterson J,  et al.  Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients.  Anesthesiology. 2006;104(1):21-2616394685PubMedGoogle ScholarCrossref
Jones C, Bäckman C, Capuzzo M, Flaatten H, Rylander C, Griffiths RD. Precipitants of post-traumatic stress disorder following intensive care: a hypothesis generating study of diversity in care.  Intensive Care Med. 2007;33(6):978-98517384929PubMedGoogle ScholarCrossref
Kress JP, Gehlbach B, Lacy M, Pliskin N, Pohlman AS, Hall JB. The long-term psychological effects of daily sedative interruption on critically ill patients.  Am J Respir Crit Care Med. 2003;168(12):1457-146114525802PubMedGoogle ScholarCrossref
Girard TD, Jackson JC, Pandharipande PP,  et al.  Delirium as a predictor of long-term cognitive impairment in survivors of critical illness.  Crit Care Med. 2010;38(7):1513-152020473145PubMedGoogle ScholarCrossref
Brook AD, Ahrens TS, Schaiff R,  et al.  Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation.  Crit Care Med. 1999;27(12):2609-261510628598PubMedGoogle ScholarCrossref
Girard TD, Kress JP, Fuchs BD,  et al.  Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial.  Lancet. 2008;371(9607):126-13418191684PubMedGoogle ScholarCrossref
Schweickert WD, Pohlman MC, Pohlman AS,  et al.  Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial.  Lancet. 2009;373(9678):1874-188219446324PubMedGoogle ScholarCrossref
Strøm T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial.  Lancet. 2010;375(9713):475-48020116842PubMedGoogle ScholarCrossref
Swart EL, Zuideveld KP, de Jongh J, Danhof M, Thijs LG, Strack van Schijndel RM. Population pharmacodynamic modelling of lorazepam- and mid azolam-induced sedation upon long-term continuous infusion in critically ill patients.  Eur J Clin Pharmacol. 2006;62(3):185-19416425056PubMedGoogle ScholarCrossref
Barr J, Egan TD, Sandoval NF,  et al.  Propofol dosing regimens for ICU sedation based upon an integrated pharmacokinetic-pharmacodynamic model.  Anesthesiology. 2001;95(2):324-33311506101PubMedGoogle ScholarCrossref
Roberts RJ, Barletta JF, Fong JJ,  et al.  Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study.  Crit Care. 2009;13(5):R16919874582PubMedGoogle ScholarCrossref
Pandharipande PP, Pun BT, Herr DL,  et al.  Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial.  JAMA. 2007;298(22):2644-265318073360PubMedGoogle ScholarCrossref
Ruokonen E, Parviainen I, Jakob SM,  et al; “Dexmedetomidine for Continuous Sedation” Investigators.  Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation.  Intensive Care Med. 2009;35(2):282-29018795253PubMedGoogle ScholarCrossref
Riker RR, Shehabi Y, Bokesch PM,  et al;  SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group.  Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial.  JAMA. 2009;301(5):489-49919188334PubMedGoogle ScholarCrossref
Tan JA, Ho KM. Use of dexmedetomidine as a sedative and analgesic agent in critically ill adult patients: a meta-analysis.  Intensive Care Med. 2010;36(6):926-93920376429PubMedGoogle ScholarCrossref
Sessler CN, Gosnell MS, Grap MJ,  et al.  The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients.  Am J Respir Crit Care Med. 2002;166(10):1338-134412421743PubMedGoogle ScholarCrossref
Vincent JL, Moreno R, Takala J,  et al.  The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure.  Intensive Care Med. 1996;22(7):707-7108844239PubMedGoogle ScholarCrossref
Ely EW, Inouye SK, Bernard GR,  et al.  Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU).  JAMA. 2001;286(21):2703-271011730446PubMedGoogle ScholarCrossref
Carson SS, Kress JP, Rodgers JE,  et al.  A randomized trial of intermittent lorazepam versus propofol with daily interruption in mechanically ventilated patients.  Crit Care Med. 2006;34(5):1326-133216540958PubMedGoogle ScholarCrossref
Mirski MA, Lewin JJ III, Ledroux S,  et al.  Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: the Acute Neurological ICU Sedation Trial (ANIST).  Intensive Care Med. 2010;36(9):1505-151320376430PubMedGoogle ScholarCrossref
Mehta S, Meade MO, Hynes P,  et al.  A multicenter survey of Ontario intensive care unit nurses regarding the use of sedatives and analgesics for adults receiving mechanical ventilation.  J Crit Care. 2007;22(3):191-19617869968PubMedGoogle ScholarCrossref
Payen JF, Chanques G, Mantz J,  et al.  Current practices in sedation and analgesia for mechanically ventilated critically ill patients: a prospective multicenter patient-based study.  Anesthesiology. 2007;106(4):687-69517413906PubMedGoogle ScholarCrossref
Caring for the Critically Ill Patient
March 21, 2012

Dexmedetomidine vs Midazolam or Propofol for Sedation During Prolonged Mechanical Ventilation: Two Randomized Controlled Trials

Author Affiliations

Author Affiliations: Department of Intensive Care Medicine, Bern University Hospital and University of Bern, Bern, Switzerland (Drs Jakob and Takala); Department of Anesthesiology and Intensive Care Medicine, Kuopio University Hospital, Kuopio, Finland (Dr Ruokonen); Adult Intensive Care Unit, St James Wing, St George's Hospital, London, United Kingdom (Dr Grounds); Orion Pharma, Espoo, Finland (Messrs Sarapohja, Garratt, and Bratty); and Medical Statistics Department, London School of Hygiene and Tropical Medicine, London, United Kingdom (Dr Pocock).

JAMA. 2012;307(11):1151-1160. doi:10.1001/jama.2012.304

Context Long-term sedation with midazolam or propofol in intensive care units (ICUs) has serious adverse effects. Dexmedetomidine, an α2-agonist available for ICU sedation, may reduce the duration of mechanical ventilation and enhance patient comfort.

Objective To determine the efficacy of dexmedetomidine vs midazolam or propofol (preferred usual care) in maintaining sedation; reducing duration of mechanical ventilation; and improving patients' interaction with nursing care.

Design, Setting, and Patients Two phase 3 multicenter, randomized, double-blind trials carried out from 2007 to 2010. The MIDEX trial compared midazolam with dexmedetomidine in ICUs of 44 centers in 9 European countries; the PRODEX trial compared propofol with dexmedetomidine in 31 centers in 6 European countries and 2 centers in Russia. Included were adult ICU patients receiving mechanical ventilation who needed light to moderate sedation for more than 24 hours (midazolam, n = 251, vs dexmedetomidine, n = 249; propofol, n = 247, vs dexmedetomidine, n = 251).

Interventions Sedation with dexmedetomidine, midazolam, or propofol; daily sedation stops; and spontaneous breathing trials.

Main Outcome Measures For each trial, we tested whether dexmedetomidine was noninferior to control with respect to proportion of time at target sedation level (measured by Richmond Agitation-Sedation Scale) and superior to control with respect to duration of mechanical ventilation. Secondary end points were patients' ability to communicate pain (measured using a visual analogue scale [VAS]) and length of ICU stay. Time at target sedation was analyzed in per-protocol population (midazolam, n = 233, vs dexmedetomidine, n = 227; propofol, n = 214, vs dexmedetomidine, n = 223).

Results Dexmedetomidine/midazolam ratio in time at target sedation was 1.07 (95% CI, 0.97-1.18) and dexmedetomidine/propofol, 1.00 (95% CI, 0.92-1.08). Median duration of mechanical ventilation appeared shorter with dexmedetomidine (123 hours [IQR, 67-337]) vs midazolam (164 hours [IQR, 92-380]; P = .03) but not with dexmedetomidine (97 hours [IQR, 45-257]) vs propofol (118 hours [IQR, 48-327]; P = .24). Patients' interaction (measured using VAS) was improved with dexmedetomidine (estimated score difference vs midazolam, 19.7 [95% CI, 15.2-24.2]; P < .001; and vs propofol, 11.2 [95% CI, 6.4-15.9]; P < .001). Length of ICU and hospital stay and mortality were similar. Dexmedetomidine vs midazolam patients had more hypotension (51/247 [20.6%] vs 29/250 [11.6%]; P = .007) and bradycardia (35/247 [14.2%] vs 13/250 [5.2%]; P < .001).

Conclusions Among ICU patients receiving prolonged mechanical ventilation, dexmedetomidine was not inferior to midazolam and propofol in maintaining light to moderate sedation. Dexmedetomidine reduced duration of mechanical ventilation compared with midazolam and improved patients' ability to communicate pain compared with midazolam and propofol. More adverse effects were associated with dexmedetomidine.

Trial Registration clinicaltrials.gov Identifiers: NCT00481312, NCT00479661