[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.238.190.122. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake.  J Nutr. 1986;116:641-6543958810Google Scholar
2.
Roth GS, Ingram DK, Black A, Lane MA. Effects of reduced energy intake on the biology of aging: the primate model.  Eur J Clin Nutr. 2000;54:(suppl 3)  S15-S2011041070Google ScholarCrossref
3.
Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK. Aging in rhesus monkeys: relevance to human health interventions.  Science. 2004;305:1423-142615353793Google ScholarCrossref
4.
Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans.  Am J Clin Nutr. 2003;78:361-36912936916Google Scholar
5.
Ravussin E, Bogardus C. Relationship of genetics, age, and physical fitness to daily energy expenditure and fuel utilization.  Am J Clin Nutr. 1989;49:(suppl 5)  968-9752655422Google Scholar
6.
Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight.  N Engl J Med. 1995;332:621-6287632212Google ScholarCrossref
7.
Blanc S, Schoeller D, Kemnitz J.  et al.  Energy expenditure of rhesus monkeys subjected to 11 years of dietary restriction.  J Clin Endocrinol Metab. 2003;88:16-2312519821Google ScholarCrossref
8.
DeLany JP, Hansen BC, Bodkin NL, Hannah J, Bray GA. Long-term calorie restriction reduces energy expenditure in aging monkeys.  J Gerontol A Biol Sci Med Sci. 1999;54:B5-B1110026648Google ScholarCrossref
9.
Ballor DL. Effect of dietary restriction and/or exercise on 23-h metabolic rate and body composition in female rats.  J Appl Physiol. 1991;71:801-8061757316Google Scholar
10.
Dulloo AG, Girardier L. 24 hour energy expenditure several months after weight loss in the underfed rat: evidence for a chronic increase in whole-body metabolic efficiency.  Int J Obes Relat Metab Disord. 1993;17:115-1238384165Google Scholar
11.
McCarter R, Masoro EJ, Yu BP. Does food restriction retard aging by reducing the metabolic rate?  Am J Physiol. 1985;248:E488-E4903157325Google Scholar
12.
McCarter RJ, Palmer J. Energy metabolism and aging: a lifelong study of Fischer 344 rats.  Am J Physiol. 1992;263:E448-E4521415524Google Scholar
13.
Selman C, Phillips T, Staib JL, Duncan JS, Leeuwenburgh C, Speakman JR. Energy expenditure of calorically restricted rats is higher than predicted from their altered body composition.  Mech Ageing Dev. 2005;126:783-79315888333Google ScholarCrossref
14.
Harman D. Aging: a theory based on free radical radiation chemistry.  J Gerontol. 1956;11:298-30013332224Google ScholarCrossref
15.
Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs.  Physiol Rev. 1979;59:527-60537532Google Scholar
16.
St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain.  J Biol Chem. 2002;277:44784-4479012237311Google ScholarCrossref
17.
Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. New York, NY: Oxford University Press; 1999
18.
de Oliveira SL, Diniz DB, Amaya-Farfan J. Carbohydrate-energy restriction may protect the rat brain against oxidative damage and improve physical performance.  Br J Nutr. 2003;89:89-9612568668Google ScholarCrossref
19.
Drew B, Phaneuf S, Dirks A.  et al.  Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart.  Am J Physiol Regul Integr Comp Physiol. 2003;284:R474-R48012388443Google Scholar
20.
Dubey A, Forster MJ, Lal H, Sohal RS. Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse.  Arch Biochem Biophys. 1996;333:189-1978806770Google ScholarCrossref
21.
Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice.  Mech Ageing Dev. 1994;76:215-2247885066Google ScholarCrossref
22.
Zainal TA, Oberley TD, Allison DB, Szweda LI, Weindruch R. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle.  FASEB J. 2000;14:1825-183610973932Google ScholarCrossref
23.
Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction.  Science. 1999;285:1390-139310464095Google ScholarCrossref
24.
Kayo T, Allison DB, Weindruch R, Prolla TA. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys.  Proc Natl Acad Sci U S A. 2001;98:5093-509811309484Google ScholarCrossref
25.
Lane MA, Baer DJ, Tilmont EM.  et al.  Energy balance in rhesus monkeys (Macaca mulatta) subjected to long-term dietary restriction.  J Gerontol A Biol Sci Med Sci. 1995;50:B295-B3027671021Google ScholarCrossref
26.
Roth GS, Lane MA, Ingram DK.  et al.  Biomarkers of caloric restriction may predict longevity in humans.  Science. 2002;297:81112161648Google ScholarCrossref
27.
Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans.  Proc Natl Acad Sci U S A. 2004;101:6659-666315096581Google ScholarCrossref
28.
DeLany JP, Schoeller DA, Hoyt RW, Askew EW, Sharp MA. Field use of D2 18O to measure energy expenditure of soldiers at different energy intakes.  J Appl Physiol. 1989;67:1922-19292600025Google Scholar
29.
Schoeller DA. Measurement of energy expenditure in free-living humans by using doubly labeled water.  J Nutr. 1988;118:1278-12893142975Google Scholar
30.
Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial.  Biometrics. 1975;31:103-1151100130Google ScholarCrossref
31.
Mates JM, Perez-Gomez C, Olalla L, Segura JM, Blanca M. Allergy to drugs: antioxidant enzymic activities, lipid peroxidation and protein oxidative damage in human blood.  Cell Biochem Funct. 2000;18:77-8410814964Google ScholarCrossref
32.
Nguyen T, de Jonge L, Smith SR, Bray GA. Chamber for indirect calorimetry with accurate measurement and time discrimination of metabolic plateaus of over 20 min.  Med Biol Eng Comput. 2003;41:572-57814572008Google ScholarCrossref
33.
Acheson KJ, Schutz Y, Bessard T, Flatt JP, Jequier E. Carbohydrate metabolism and de novo lipogenesis in human obesity.  Am J Clin Nutr. 1987;45:78-853799507Google Scholar
34.
Rising R, Fontvieille AM, Larson DE, Spraul M, Bogardus C, Ravussin E. Racial difference in body core temperature between Pima Indian and Caucasian men.  Int J Obes Relat Metab Disord. 1995;19:1-57719384Google Scholar
35.
Deutsch WA, Kukreja A, Shane B, Hegde V. Phenobarbital, oxazepam and Wyeth 14,643 cause DNA damage as measured by the Comet assay.  Mutagenesis. 2001;16:439-44211507244Google ScholarCrossref
36.
Weyer C, Snitker S, Rising R, Bogardus C, Ravussin E. Determinants of energy expenditure and fuel utilization in man: effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects.  Int J Obes Relat Metab Disord. 1999;23:715-72210454105Google ScholarCrossref
37.
McCay CCM, Maynard LA. The effect of retarded growth upon the length of the lifespan and upon the ultimate body size.  J Nutr. 1935;10:63-79Google Scholar
38.
Ramsey JJ, Harper ME, Weindruch R. Restriction of energy intake, energy expenditure, and aging.  Free Radic Biol Med. 2000;29:946-96811084284Google ScholarCrossref
39.
Keys A, Brozek J, Henschel A, Michelson O, Taylor H. The Biology of Human Starvation. Minneapolis: University of Minnesota Press; 1950
40.
Rising R, Keys A, Ravussin E, Bogardus C. Concomitant interindividual variation in body temperature and metabolic rate.  Am J Physiol. 1992;263:E730-E7341415692Google Scholar
41.
Weyer C, Walford RL, Harper IT.  et al.  Energy metabolism after 2 y of energy restriction: the Biosphere 2 experiment.  Am J Clin Nutr. 2000;72:946-95311010936Google Scholar
42.
Weinsier RL, Hunter GR, Zuckerman PA.  et al.  Energy expenditure and free-living physical activity in black and white women: comparison before and after weight loss.  Am J Clin Nutr. 2000;71:1138-114610799376Google Scholar
43.
Toubro S, Sorensen TI, Ronn B, Christensen NJ, Astrup A. Twenty-four-hour energy expenditure: the role of body composition, thyroid status, sympathetic activity, and family membership.  J Clin Endocrinol Metab. 1996;81:2670-26748675595Google ScholarCrossref
44.
Tataranni PA, Larson DE, Snitker S, Ravussin E. Thermic effect of food in humans: methods and results from use of a respiratory chamber.  Am J Clin Nutr. 1995;61:1013-10197733021Google Scholar
45.
Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging.  Science. 1996;273:59-638658196Google ScholarCrossref
46.
Sohal RS, Svensson I, Brunk UT. Hydrogen peroxide production by liver mitochondria in different species.  Mech Ageing Dev. 1990;53:209-2152115947Google ScholarCrossref
47.
Dandona P, Mohanty P, Ghanim H.  et al.  The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation.  J Clin Endocrinol Metab. 2001;86:355-36211232024Google ScholarCrossref
48.
Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria.  Am J Physiol Endocrinol Metab. 2005;289:E429-E43815886224Google ScholarCrossref
Original Contribution
April 5, 2006

Effect of 6-Month Calorie Restriction on Biomarkers of Longevity, Metabolic Adaptation, and Oxidative Stress in Overweight Individuals: A Randomized Controlled Trial

Author Affiliations
 

Author Affiliations: Pennington Biomedical Research Center, Louisiana State University, Baton Rouge; and Garvan Institute for Medical Research, Darlinghurst, Australia (Dr Heilbronn).

JAMA. 2006;295(13):1539-1548. doi:10.1001/jama.295.13.1539
Abstract

Context Prolonged calorie restriction increases life span in rodents. Whether prolonged calorie restriction affects biomarkers of longevity or markers of oxidative stress, or reduces metabolic rate beyond that expected from reduced metabolic mass, has not been investigated in humans.

Objective To examine the effects of 6 months of calorie restriction, with or without exercise, in overweight, nonobese (body mass index, 25 to <30) men and women.

Design, Setting, and Participants Randomized controlled trial of healthy, sedentary men and women (N = 48) conducted between March 2002 and August 2004 at a research center in Baton Rouge, La.

Intervention Participants were randomized to 1 of 4 groups for 6 months: control (weight maintenance diet); calorie restriction (25% calorie restriction of baseline energy requirements); calorie restriction with exercise (12.5% calorie restriction plus 12.5% increase in energy expenditure by structured exercise); very low-calorie diet (890 kcal/d until 15% weight reduction, followed by a weight maintenance diet).

Main Outcome Measures Body composition; dehydroepiandrosterone sulfate (DHEAS), glucose, and insulin levels; protein carbonyls; DNA damage; 24-hour energy expenditure; and core body temperature.

Results Mean (SEM) weight change at 6 months in the 4 groups was as follows: controls, −1.0% (1.1%); calorie restriction, −10.4% (0.9%); calorie restriction with exercise, −10.0% (0.8%); and very low-calorie diet, −13.9% (0.7%). At 6 months, fasting insulin levels were significantly reduced from baseline in the intervention groups (all P<.01), whereas DHEAS and glucose levels were unchanged. Core body temperature was reduced in the calorie restriction and calorie restriction with exercise groups (both P<.05). After adjustment for changes in body composition, sedentary 24-hour energy expenditure was unchanged in controls, but decreased in the calorie restriction (−135 kcal/d [42 kcal/d]), calorie restriction with exercise (−117 kcal/d [52 kcal/d]), and very low-calorie diet (−125 kcal/d [35 kcal/d]) groups (all P<.008). These “metabolic adaptations” (~ 6% more than expected based on loss of metabolic mass) were statistically different from controls (P<.05). Protein carbonyl concentrations were not changed from baseline to month 6 in any group, whereas DNA damage was also reduced from baseline in all intervention groups (P <.005).

Conclusions Our findings suggest that 2 biomarkers of longevity (fasting insulin level and body temperature) are decreased by prolonged calorie restriction in humans and support the theory that metabolic rate is reduced beyond the level expected from reduced metabolic body mass. Studies of longer duration are required to determine if calorie restriction attenuates the aging process in humans.

Trial Registration ClinicalTrials.gov Identifier: NCT00099151

×