Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma | Emergency Medicine | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
World Health Organization.  The Global Burden of Disease: 2004 Update. Geneva, Switzerland: World Health Organization Press; 2008
2.
Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E. Incidence and lifetime costs of injuries in the United States.  Inj Prev. 2006;12(4):212-21816887941PubMedGoogle ScholarCrossref
3.
Thomas SH, Cheema F, Wedel SK, Thomson D. Trauma helicopter emergency medical services transport: annotated review of selected outcomes-related literature.  Prehosp Emerg Care. 2002;6(3):359-37112109585PubMedGoogle ScholarCrossref
4.
Thomas SH, Biddinger PD. Helicopter trauma transport: an overview of recent outcomes and triage literature.  Curr Opin Anaesthesiol. 2003;16(2):153-15817021454PubMedGoogle ScholarCrossref
5.
Ringburg AN, Thomas SH, Steyerberg EW, van Lieshout EM, Patka P, Schipper IB. Lives saved by helicopter emergency medical services: an overview of literature.  Air Med J. 2009;28(6):298-30219896582PubMedGoogle ScholarCrossref
6.
Bledsoe BE, Wesley AK, Eckstein M, Dunn TM, O'Keefe MF. Helicopter scene transport of trauma patients with nonlife-threatening injuries: a meta-analysis.  J Trauma. 2006;60(6):1257-126516766969PubMedGoogle ScholarCrossref
7.
Bledsoe BE. EMS myth #6: air medical helicopters save lives and are cost-effective.  Emerg Med Serv. 2003;32(8):88-9012942916PubMedGoogle Scholar
8.
Mitchell AD, Tallon JM, Sealy B. Air versus ground transport of major trauma patients to a tertiary trauma centre: a province-wide comparison using TRISS analysis.  Can J Surg. 2007;50(2):129-13317550717PubMedGoogle Scholar
9.
Brown JB, Stassen NA, Bankey PE, Sangosanya AT, Cheng JD, Gestring ML. Helicopters and the civilian trauma system: national utilization patterns demonstrate improved outcomes after traumatic injury.  J Trauma. 2010;69(5):1030-103421068607PubMedGoogle ScholarCrossref
10.
Sullivent EE, Faul M, Wald MM. Reduced mortality in injured adults transported by helicopter emergency medical services.  Prehosp Emerg Care. 2011;15(3):295-30221524205PubMedGoogle ScholarCrossref
11.
Stewart KE, Cowan LD, Thompson DM, Sacra  JC, Albrecht R. Association of direct helicopter versus ground transport and in-hospital mortality in trauma patients: a propensity score analysis.  Acad Emerg Med. 2011;18(11):1208-121622092906PubMedGoogle ScholarCrossref
12.
American College of Surgeons.  National Trauma Data Bank: NTDB Research Data Set Admission Year 2007, Annual Report. Chicago, IL: American College of Surgeons; 2007
13.
Haider AH, Saleem T, Leow JJ,  et al.  Influence of the National Trauma Data Bank on the study of trauma outcomes: is it time to set research best practices to further enhance its impact [published online February 7, 2012]?  J Am Coll Surg22321521PubMedGoogle Scholar
14.
Baker SP, O’Neill B. The injury severity score: an update.  J Trauma. 1976;16(11):882-885994270PubMedGoogle ScholarCrossref
15.
Kane G, Engelhardt R, Celentano J,  et al.  Empirical development and evaluation of prehospital trauma triage instruments.  J Trauma. 1985;25(6):482-4894009748PubMedGoogle ScholarCrossref
16.
McCowan CL, Swanson ER, Thomas F, Handrahan DL. Outcomes of blunt trauma victims transported by HEMS from rural and urban scenes.  Prehosp Emerg Care. 2007;11(4):383-38817907020PubMedGoogle ScholarCrossref
17.
Oyetunji TA, Crompton JG, Efron DT,  et al.  Simplifying physiologic injury severity measurement for predicting trauma outcomes.  J Surg Res. 2010;159(2):627-63220036392PubMedGoogle ScholarCrossref
18.
Little RJ, Rubin DB. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches.  Annu Rev Public Health. 2000;21:121-14510884949PubMedGoogle ScholarCrossref
19.
Schafer JL, Kang J. Average causal effects from nonrandomized studies: a practical guide and simulated example.  Psychol Methods. 2008;13(4):279-31319071996PubMedGoogle ScholarCrossref
20.
D’Agostino RB Jr, D’Agostino RB Sr. Estimating treatment effects using observational data.  JAMA. 2007;297(3):314-31617227985PubMedGoogle ScholarCrossref
21.
Rubin DB. Estimating causal effects from large data sets using propensity scores.  Ann Intern Med. 1997;127(8 pt 2):757-7639382394PubMedGoogle ScholarCrossref
22.
Rubin DB. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials.  Stat Med. 2007;26(1):20-3617072897PubMedGoogle ScholarCrossref
23.
Oyetunji TA, Crompton JG, Ehanire ID,  et al.  Multiple imputation in trauma disparity research.  J Surg Res. 2011;165(1):e37-e4121067775PubMedGoogle ScholarCrossref
24.
Stuart EA. Matching methods for causal inference: a review and a look forward.  Stat Sci. 2010;25(1):1-2120871802PubMedGoogle ScholarCrossref
25.
Lindenauer PK, Pekow P, Wang K, Gutierrez B, Benjamin EM. Lipid-lowering therapy and in-hospital mortality following major noncardiac surgery.  JAMA. 2004;291(17):2092-209915126437PubMedGoogle ScholarCrossref
26.
Frankema SPG, Ringburg AN, Steyerberg EW, Edwards MJR, Schipper IB, van Vugt AB. Beneficial effect of helicopter emergency medical services on survival of severely injured patients.  Br J Surg. 2004;91(11):1520-152615455361PubMedGoogle ScholarCrossref
27.
Thomas SH, Harrison TH, Buras WR, Ahmed W, Cheema F, Wedel SK. Helicopter transport and blunt trauma mortality: a multicenter trial.  J Trauma. 2002;52(1):136-14511791064PubMedGoogle ScholarCrossref
28.
Braitman LE, Rosenbaum PR. Rare outcomes, common treatments: analytic strategies using propensity scores.  Ann Intern Med. 2002;137(8):693-69512379071PubMedGoogle ScholarCrossref
29.
Hemmila MR, Birkmeyer NJ, Arbabi S, Osborne NH, Wahl WL, Dimick JB. Introduction to propensity scores: a case study on the comparative effectiveness of laparoscopic vs open appendectomy.  Arch Surg. 2010;145(10):939-94520956761PubMedGoogle ScholarCrossref
30.
Roudsari B, Field C, Caetano R. Clustered and missing data in the US National Trauma Data Bank: implications for analysis.  Inj Prev. 2008;14(2):96-10018388229PubMedGoogle ScholarCrossref
31.
Stuart EA, Azur M, Frangakis C, Leaf P. Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative.  Am J Epidemiol. 2009;169(9):1133-113919318618PubMedGoogle ScholarCrossref
32.
Rubin DB. Multiple imputation after 18+ years.  J Am Stat Assoc. 1996;91(434):473-489Google ScholarCrossref
33.
Arnold AM, Kronmal RA. Multiple imputation of baseline data in the cardiovascular health study.  Am J Epidemiol. 2003;157(1):74-8412505893PubMedGoogle ScholarCrossref
34.
Moore L, Hanley JA, Lavoie A, Turgeon A. Evaluating the validity of multiple imputation for missing physiological data in the national trauma data bank.  J Emerg Trauma Shock. 2009;2(2):73-7919561964PubMedGoogle ScholarCrossref
35.
Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist's dream?  Epidemiology. 2006;17(4):360-37216755261PubMedGoogle ScholarCrossref
36.
Iirola TT, Laaksonen MI, Vahlberg TJ, Pälve HK. Effect of physician-staffed helicopter emergency medical service on blunt trauma patient survival and prehospital care.  Eur J Emerg Med. 2006;13(6):335-33917091054PubMedGoogle ScholarCrossref
37.
Stewart KE, Cowan LD, Thompson DM, Sacra JC. Factors at the scene of injury associated with air versus ground transport to definitive care in a state with a large rural population.  Prehosp Emerg Care. 2011;15(2):193-20221208038PubMedGoogle ScholarCrossref
38.
Galvagno SM Jr. Assessing health-related quality of life with the EQ-5D: is this the best instrument to assess trauma outcomes?  Air Med J. 2011;30(5):258-26321930080PubMedGoogle ScholarCrossref
39.
Taylor CB, Stevenson M, Jan S, Middleton PM, Fitzharris M, Myburgh JA. A systematic review of the costs and benefits of helicopter emergency medical services.  Injury. 2010;41(1):10-2019853251PubMedGoogle ScholarCrossref
40.
Salamon SJ, Cowdry RW. Air Ambulance Study: Required Under Senate Bill 770. Annapolis: Maryland Health Care Commission; 2006
Original Contribution
April 18, 2012

Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma

Author Affiliations

Author Affiliations: Division of Trauma Anesthesiology, Shock Trauma Center, Program in Trauma, Department of Anesthesiology, University of Maryland School of Medicine, University of Maryland Medical Center, Baltimore (Dr Galvagno); Departments of Surgery (Drs Haut, Efron, and Haider), Anesthesiology and Critical Care Medicine (Drs Haut and Pronovost), Emergency Medicine (Drs Haut and Millin), Nursing (Dr Pronovost), Division of Acute Care Surgery, Trauma, Emergency Surgery, and Critical Care (Drs Haut, Millin, and Haider), Center for Innovation in Quality Patient Care, Safety Research Group (Dr Pronovost), and Center for Surgery Trials and Outcomes Research (Dr Haider), Johns Hopkins University School of Medicine, and Graduate Training Program in Clinical Investigation (Dr Haut), Johns Hopkins Bloomberg School of Public Health (Ms Baker and Drs Bowman, Pronovost, and Haider), Baltimore, Maryland; Department of Surgery, Aga Khan University, Karachi, Pakistan (Dr Zafar); and Department of Surgery, Division of Acute Care Surgery, Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania (Dr Koenig).

JAMA. 2012;307(15):1602-1610. doi:10.1001/jama.2012.467
Abstract

Context Helicopter emergency medical services and their possible effect on outcomes for traumatically injured patients remain a subject of debate. Because helicopter services are a limited and expensive resource, a methodologically rigorous investigation of its effectiveness compared with ground emergency medical services is warranted.

Objective To assess the association between the use of helicopter vs ground services and survival among adults with serious traumatic injuries.

Design, Setting, and Participants Retrospective cohort study involving 223 475 patients older than 15 years, having an injury severity score higher than 15, and sustaining blunt or penetrating trauma that required transport to US level I or II trauma centers and whose data were recorded in the 2007-2009 versions of the American College of Surgeons National Trauma Data Bank.

Interventions Transport by helicopter or ground emergency services to level I or level II trauma centers.

Main Outcome Measures Survival to hospital discharge and discharge disposition.

Results A total of 61 909 patients were transported by helicopter and 161 566 patients were transported by ground. Overall, 7813 patients (12.6%) transported by helicopter died compared with 17 775 patients (11%) transported by ground services. Before propensity score matching, patients transported by helicopter to level I and level II trauma centers had higher Injury Severity Scores. In the propensity score–matched multivariable regression model, for patients transported to level I trauma centers, helicopter transport was associated with an improved odds of survival compared with ground transport (odds ratio [OR], 1.16; 95% CI, 1.14-1.17; P < .001; absolute risk reduction [ARR], 1.5%). For patients transported to level II trauma centers, helicopter transport was associated with an improved odds of survival (OR, 1.15; 95% CI, 1.13-1.17; P < .001; ARR, 1.4%). A greater proportion (18.2%) of those transported to level I trauma centers by helicopter were discharged to rehabilitation compared with 12.7% transported by ground services (P < .001), and 9.3% transported by helicopter were discharged to intermediate facilities compared with 6.5% by ground services (P < .001). Fewer patients transported by helicopter left level II trauma centers against medical advice (0.5% vs 1.0%, P < .001).

Conclusion Among patients with major trauma admitted to level I or level II trauma centers, transport by helicopter compared with ground services was associated with improved survival to hospital discharge after controlling for multiple known confounders.

×