Serum Micronutrient Concentrations and Decline in Physical Function Among Older Persons | Geriatrics | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Manton KG, Gu X, Lamb VL. Change in chronic disability from 1982 to 2004/2005 as measured by long-term changes in function and health in the US elderly population.  Proc Natl Acad Sci U S A. 2006;103(48):18374-1837917101963Google ScholarCrossref
2.
  Annual projections of the resident population by age. sex, race, and Hispanic origin: lowest, middle, highest series and zero international migration series, 1999 to 2100 Table NP-D1-A.   Washington, DC: US Census Bureau; 2000. http://www.census.gov/population/www/projections/natdet.html
3.
Guralnik JM, Alecxih L, Branch LG, Wiener JM. Medical and long-term care costs when older persons become more dependent.  Am J Public Health. 2002;92(8):1244-124512144976Google ScholarCrossref
4.
Ebrahim S. Disability in older people: a mass problem requiring mass solutions.  Lancet. 1999;353(9169):1990-199210376611Google ScholarCrossref
5.
Applegate WB, Blass JP, Williams TF. Instruments for the functional assessment of older patients.  N Engl J Med. 1990;322(17):1207-12142183053Google ScholarCrossref
6.
Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability.  N Engl J Med. 1995;332(9):556-5617838189Google ScholarCrossref
7.
Esposito K, Marfella R, Ciotola M.  et al.  Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial.  JAMA. 2004;292(12):1440-144615383514Google ScholarCrossref
8.
Mecocci P, Fano G, Fulle S.  et al.   Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle.   Free Radic Biol Med. 1999;26(3-4):303-3089895220Google ScholarCrossref
9.
Coyle JT, Puttfarken P. Oxidative stress, glutamate, and neurodegenerative disorders.  Science. 1993;262(5134):689-6957901908Google ScholarCrossref
10.
Cesari M, Kritchevsky SB, Nicklas BJ.  et al.  Lipoprotein peroxidation and mobility limitation: results from the Health, Aging, and Body Composition Study.  Arch Intern Med. 2005;165(18):2148-215416217006Google ScholarCrossref
11.
Lu T, Pan Y, Kao SY.  et al.  Gene regulation and DNA damage in the ageing human brain.  Nature. 2004;429(6994):883-89115190254Google ScholarCrossref
12.
Snowdon DA, Gross MD, Butler SM.  Antioxidants and reduced functional capacity in the elderly: findings from the Nun Study.   J Gerontol A Biol Sci Med Sci. 1996;51:10-1615190254Google ScholarCrossref
13.
Cesari M, Pahor M, Bartali B.  et al.  Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study.  Am J Clin Nutr. 2004;79(2):289-29414749236Google Scholar
14.
Bartali B, Frongillo EA, Bandinelli S.  et al.  Low nutrient intake is an essential component of frailty in older persons.  J Gerontol A Biol Sci Med Sci. 2006;61(6):589-59316799141Google ScholarCrossref
15.
Ble A, Cherubini A, Volpato S.  et al.  Lower plasma vitamin E levels are associated with the frailty syndrome: the InCHIANTI study.  J Gerontol A Biol Sci Med Sci. 2006;61(3):278-28316567378Google ScholarCrossref
16.
Bartali B, Semba RD, Frongillo EA.  et al.  Low micronutrient levels as a predictor of incident disability in older women.  Arch Intern Med. 2006;166(21):2335-234017130386Google ScholarCrossref
17.
Ferrucci L, Bandinelli S, Benvenuti E.  et al.   Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study.   J Am Geriatr Soc. 2000;48(12):1618-162511129752Google Scholar
18.
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician.  J Psychiatr Res. 1975;12(3):189-1981202204Google ScholarCrossref
19.
Irwin M, Artin KH, Oxman MN. Screening for depression in the older adult: criterion validity of the 10-item Center for Epidemiological Studies Depression Scale (CES-D).  Arch Intern Med. 1999;159(15):1701-170410448771Google ScholarCrossref
20.
Pisani P, Faggiano F, Krogh V, Palli D, Vineis P, Berrino F. Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres.  Int J Epidemiol. 1997;26:(suppl 1)  S152-S1609126543Google ScholarCrossref
21.
Guralnik JM, Fried LP, Simonsick EM, Kasper D, Lafferty ME. The Women's Health and Aging Study: Health and Social Characteristics of Older Women With Disability. Bethesda, MD: National Institute on Aging; 1995. NIH publication no. 95-4009
22.
Ostir GV, Volpato S, Fried LP, Chaves P, Guralnik JM. Reliability and sensitivity to change assessed for a summary measure of lower body function: results from the Women's Health and Aging Study.  J Clin Epidemiol. 2002;55(9):916-92112393080Google ScholarCrossref
23.
Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults.  J Am Geriatr Soc. 2006;54(5):743-74916696738Google ScholarCrossref
24.
Pahor M, Blair SN, Espeland M.  et al.  Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study.  J Gerontol A Biol Sci Med Sci. 2006;61(11):1157-116517167156Google ScholarCrossref
25.
Food and Nutrition Board.  Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: National Academy of Sciences; 2006
26.
Traber MG, Jialal I. Measurement of lipid-soluble vitamins—further adjustment needed?  Lancet. 2000;355(9220):2013-201410885350Google ScholarCrossref
27.
Allore H, Tinetti ME, Araujo KL, Hardy S, Peduzzi P. A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores.  J Clin Epidemiol. 2005;58(2):154-16115680749Google ScholarCrossref
28.
 Data Analysis Products Division. Vol 1. Seattle, WA: MathSoft; 1999. S-PLUS 2000 Guide to Statistics
29.
 SAS Procedure Guide [computer program]  , Version 8.1. Cary, NC: SAS Institute Inc; 2000
30.
Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging.  Free Radic Biol Med. 2000;29(3-4):222-23011035250Google ScholarCrossref
31.
Diaz MN, Frei B, Vita JA, Keaney JFJ. Antioxidants and atherosclerotic heart disease.  N Engl J Med. 1997;337(6):408-4169241131Google ScholarCrossref
32.
Finaud J, Lac G, Filaire E. Oxidative stress: relationship with exercise and training.  Sports Med. 2006;36(4):327-35816573358Google ScholarCrossref
33.
Fanò G, Mecocci P, Vecchiet J.  et al.  Age and sex influence on oxidative damage and functional status in human skeletal muscle.  J Muscle Res Cell Motil. 2001;22(4):345-35111808774Google ScholarCrossref
34.
Pette D, Spamer C. Metabolic properties of muscle fibers.  Fed Proc. 1986;45(13):2910-29143536589Google Scholar
35.
Evans WJ. Vitamin E, vitamin C, and exercise.  Am J Clin Nutr. 2000;72:(2 suppl)  647S-652SGoogle Scholar
36.
Traber MG, Sies H. Vitamin E in humans: demand and delivery.  Annu Rev Nutr. 1996;16:321-3478839930Google ScholarCrossref
37.
Liu IY, Anthony JC. Using the “Mini-Mental State” examination to predict elderly subjects' completion of a follow-up interview.  Am J Epidemiol. 1989;130(2):416-4222750737Google Scholar
38.
Deeg DJ, van Tilburg T, Smit JH, de Leeuw ED. Attrition in the Longitudinal Aging Study Amsterdam: the effect of differential inclusion in side studies.  J Clin Epidemiol. 2002;55(4):319-32811927198Google ScholarCrossref
39.
Radimer K, Bindewald B, Hughes J, Ervin B, Swanson C, Picciano MF. Dietary supplement use by US adults: data from the National Health and Nutrition Examination Survey, 1999–2000.  Am J Epidemiol. 2004;160(4):339-34915286019Google ScholarCrossref
Original Contribution
January 23, 2008

Serum Micronutrient Concentrations and Decline in Physical Function Among Older Persons

Author Affiliations
 

Author Affiliations: Division of Nutritional Sciences, Cornell University, Ithaca, New York (Drs Bartali, Frongillo, and Stipanuk); Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (Drs Bartali, Allore, and Gill); Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia (Dr Frongillo); Laboratory of Epidemiology, Demography, and Biometry (Dr Guralnik) and Longitudinal Studies Section, Clinical Research Branch (Dr Ferrucci), National Institute on Aging, Bethesda, Maryland; Institute of Gerontology and Geriatrics, University of Perugia, Medical School Policlinico Monteluce, Perugia, Italy (Dr Cherubini); and Azienda Sanitaria Firenze, Florence, Italy (Dr Bandinelli).

JAMA. 2008;299(3):308-315. doi:10.1001/jama.299.3.308
Abstract

Context Maintaining independence of older persons is a public health priority, and identifying the factors that contribute to decline in physical function is needed to prevent or postpone the disablement process. The potential deleterious effect of poor nutrition on decline in physical function in older persons is unclear.

Objective To determine whether a low serum concentration of micronutrients is associated with subsequent decline in physical function among older men and women living in the community.

Design, Setting, and Participants Longitudinal study of 698 community-living persons 65 years or older who were randomly selected from a population registry in Tuscany, Italy. Participants completed the baseline examination from November 1, 1998, through May 28, 2000, and the 3-year follow-up assessments from November 1, 2001, through March 30, 2003.

Main Outcome Measure Decline in physical function was defined as a loss of at least 1 point in the Short Physical Performance Battery during the 3-year follow-up. Odds ratios (ORs) were calculated for the lowest quartile of each nutrient using the other 3 quartiles combined as the reference group. Two additional and complementary analytical approaches were used to confirm the validity of the results.

Results  The mean decline in the Short Physical Performance Battery score was 1.1 point. In a logistic regression analysis that was adjusted for potential confounders, only a low concentration of vitamin E (<1.1 μg/mL [<24.9 μmol/L]) was significantly associated with subsequent decline in physical function (OR, 1.62; 95% confidence interval, 1.11-2.36; P = .01 for association of lowest α-tocopherol quartile with at least a 1-point decline in physical function). In a general linear model, the concentration of vitamin E at baseline, when analyzed as a continuous measure, was significantly associated with the Short Physical Performance Battery score at follow-up after adjustment for potential confounders and Short Physical Performance Battery score at baseline (β = .023; P = .01). In a classification and regression tree analysis, age older than 81 years and vitamin E (in participants aged 70-80 years) were identified as the strongest determinants of decline in physical function (physical decline in 84% and 60%, respectively; misclassification error rate, 0.33).

Conclusions These results provide empirical evidence that a low serum concentration of vitamin E is associated with subsequent decline in physical function among community-living older adults. Clinical trials may be warranted to determine whether an optimal concentration of vitamin E reduces functional decline and the onset of disability in older persons.

×