[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma.  Nat Genet. 1993;3(2):113-1178098985Google ScholarCrossref
Miyoshi H, Shimizu K, Kozu T.  et al.  t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1.  Proc Natl Acad Sci U S A. 1991;88(23):10431-104341720541Google ScholarCrossref
Nakamura T, Largaespada DA, Lee MP.  et al.  Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia.  Nat Genet. 1996;12(2):154-1588563753Google ScholarCrossref
Villavicencio EH, Walterhouse DO, Iannaccone PM. The sonic hedgehog-patched-gli pathway in human development and disease.  Am J Hum Genet. 2000;67(5):1047-105411001584Google Scholar
Gorlin RJ, Cohen MM, Hennekam RC. Syndromes of the Head and Neck. 4th ed. Oxford, England: Oxford University Press; 2001
Altmann AE, Halliday JL, Giles GG. Associations between congenital malformations and childhood cancer: a register-based case-control study.  Br J Cancer. 1998;78(9):1244-12499820188Google ScholarCrossref
Kobayashi N, Furukawa T, Takatsu T. Congenital anomalies in children with malignancy.  Paediatr Univ Tokyo. 1968;16:31-374305810Google Scholar
Stojimirović E. Results of our study of hereditary factors in children with acute lymphatic leukemia [Serbian].  Srp Arh Celok Lek. 1981;109(10):1275-12866954649Google Scholar
Méhes K, Signer E, Pluss HJ, Muller HJ, Stalder G. Increased prevalence of minor anomalies in childhood malignancy.  Eur J Pediatr. 1985;144(3):243-2544054163Google ScholarCrossref
Méhes K, Szijjarto L, Kajtar P. Family Investigations of Informative Morphogenetic Variants in Childhood Lymphoblastic Leukemia: Dysmorphology and Genetics of Cardiovascular Disorders. Athens, Greece: HTA Med Publication; 1994:177-183
Méhes K, Kajtar P, Sandor G, Scheel-Walter M, Niethammer D. Excess of mild errors of morphogenesis in childhood lymphoblastic leukemia.  Am J Med Genet. 1998;75(1):22-279450852Google ScholarCrossref
Fekete G, Réthy L, Batta I. Occurrence of minor anomalies in children treated for leukemia and malignant tumors [Hungarian].  Orv Hetil. 1987;128(14):725-7283472155Google Scholar
Roganovic J, Radojcic-Badovinac A, Ahel V. Increased prevalence of minor anomalies in children with hematologic malignancies.  Med Pediatr Oncol. 2002;38(2):128-13011813182Google ScholarCrossref
Frias JL, Carey JC. Mild errors of morphogenesis.  Adv Pediatr. 1996;43:27-758794174Google Scholar
Merks JH, Özgen HM, Cluitmans TL.  et al.  Normal values for morphological abnormalities in school children.  Am J Med Genet A. 2006;140(19):2091-210916838341Google Scholar
Geenen MM, Cardous-Ubbink MC, Kremer LC.  et al.  Medical assessment of adverse health outcomes in long-term survivors of childhood cancer.  JAMA. 2007;297(24):2705-271517595271Google ScholarCrossref
Cluitmans TLM, Hooi JD, Nijbroek W, Oosterlee A. Gezondheidsprofiel Kennemerland.  Haarlem, Heemskerk: G.G.D. Kennemerland; 2002
Van Lier A.  Sterfte in Noord-Holland en Flevoland: Analyse van sterftecijfers in de provincies Noord-Holland en Flevoland 1996-2002: regio Kennemerland.  Haarlem, Heemskerk: G.G.D. Noord-Holland en Flevoland; 2005
Aase JM. Diagnostic Dysmorphology. 2nd ed. New York, New York: Plenum Medical Book Co; 1990
Winter RM, Baraitser M. The London Dysmorphology Database. New York, NY: Oxford University Press; 2001
Merks JH, van Karnebeek CD, Caron HN, Hennekam RC. Phenotypic abnormalities: terminology and classification.  Am J Med Genet A. 2003;123(3):211-23014608641Google ScholarCrossref
Marden PM, Smith DW, McDonald MJ. Congenital anomalies in the newborn infant, including minor variations.  J Pediatr. 1964;64(3):357-37114130709Google ScholarCrossref
Opitz JM. Invited editorial comment: study of minor anomalies in childhood malignancy.  Eur J Pediatr. 1985;144:252-254Google ScholarCrossref
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing.  J R Stat Soc Ser B Stat Methodol. 1995;57(1):289-300Google Scholar
Le Cessie S, van Houwelingen JC. Ridge estimators in logistic regression.  J R Stat Soc Ser C Appl Stat. 1992;41(1):191-201Google Scholar
Merks JH, Caron HN, Hennekam RC.  High incidence of malformation syndromes in a series of 1,073 children with cancer.   Am J Med Genet A. 2005;134(2):132-14315712196Google Scholar
Anthony S, Kateman H, Dorrepaal CA, Buitendijk SE.  Aangeboren afwijkingen in Nederland 1996-2000: gebaseerd op de landelijke verloskunde en neonatologie registraties.  Leiden, the Netherlands: TNO-PG; 2003
Stiller CA, Marcos-Gragera R, Ardanaz E.  et al.   Geographical patterns of childhood cancer incidence in Europe, 1988-1997: report from the Automated Childhood Cancer Information System Project.   Eur J Cancer. 2006;42(13):1952-196016919763Google ScholarCrossref
Stiller CA. Epidemiology and genetics of childhood cancer.  Oncogene. 2004;23(38):6429-644415322515Google ScholarCrossref
Tartaglia M, Mehler EL, Goldberg R.  et al.  Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome.  Nat Genet. 2001;29(4):465-46811704759Google ScholarCrossref
Tartaglia M, Niemeyer CM, Fragale A.  et al.   Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.   Nat Genet. 2003;34(2):148-15012717436Google ScholarCrossref
McGregor L, Makela V, Darling SM.  et al.  Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein.  Nat Genet. 2003;34(2):203-20812766769Google ScholarCrossref
Winter RM. Fraser syndrome and mouse 'bleb' mutants.  Clin Genet. 1990;37(6):494-4952166630Google ScholarCrossref
Original Contribution
January 2, 2008

Prevalence and Patterns of Morphological Abnormalities in Patients With Childhood Cancer

Author Affiliations

Author Affiliations: Departments of Pediatric Oncology (Drs Merks and Caron) and Pediatrics (Drs Özgen and Hennekam), Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands; Department of Pediatric Psychiatry, Wilhelmina Children's Hospital, University Medical Center, Utrecht, the Netherlands (Dr Özgen); Institute of Child Health, Great Ormond Street Hospital for Children, University College London, London, England (Dr Hennekam); and Departments of Human Genetics (Dr Koster) and Clinical Epidemiology and Biostatistics (Dr Zwinderman), Academic Medical Center, Amsterdam, the Netherlands.

JAMA. 2008;299(1):61-69. doi:10.1001/jama.2007.66

Context  Constitutional gene defects predispose to cancer in children. Such tumor predisposition syndromes can be recognized by specific patterns of morphological abnormalities.

Objectives To assess the prevalence of morphological abnormalities in a large cohort of patients with childhood cancer and to identify new tumor predisposition syndromes.

Design, Setting, and Participants  Patients were recruited from Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands, between January 2000 and March 2003. A total of 1073 patients underwent a physical examination directed at 683 morphological abnormalities. The patient cohort consisted of 898 long-term survivors of childhood cancer and 175 newly diagnosed pediatric patients with cancer. The control group consisted of 1007 schoolchildren examined in an identical way. Mean ages of patients and controls were 21.2 and 10.4 years, respectively.

Main Outcome Measures Prevalence and patterns of morphological abnormalities in patients compared with controls. To prevent age bias, only age-independent abnormalities were used for overall prevalence analysis. Patients younger than 9 years were excluded from the pattern analysis. The sample was restricted to white patients to prevent ethnicity bias.

Results  Morphological abnormalities were significantly more prevalent in pediatric patients with cancer. Major abnormalities were present in 26.8% of patients vs 15.5% of controls (P < .001) and minor anomalies in 65.1% of patients vs 56.2% of controls (P < .001). Three or more minor anomalies were detected in 15.2% of patients vs 8.3% in controls (P < .001). Forty-two patients were diagnosed with an established tumor predisposition syndrome. Multivariate analyses showed 14 morphological abnormalities to occur significantly more often in the patient group. For 2 of these (blepharophimosis and asymmetric lower limbs), we identified statistically significant patterns of co-occurring morphological abnormalities suggestive of new tumor predisposition syndromes. Thirty-four patients fit 1 of the 2 novel tumor predisposition patterns.

Conclusions Pediatric patients with cancer show a significantly higher prevalence of morphological abnormalities compared with controls. Specific patterns of morphological abnormalities indicate possible unrecognized tumor predisposition syndromes, but validation in an independent sample is needed.