Effect of Perindopril on Large Artery Stiffness and Aortic Root Diameter in Patients With Marfan Syndrome: A Randomized Controlled Trial | Congenital Defects | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Neptune  ER, Frischmeyer  PA, Arking  DE,  et al.  Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome.  Nat Genet. 2003;33(3):407-411. PubMedGoogle ScholarCrossref
2.
Shores  J, Berger  KR, Murphy  EA, Pyeritz  RE.  Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan's syndrome.  N Engl J Med. 1994;330(19):1335-1341. PubMedGoogle ScholarCrossref
3.
Propanolol Aneurysm Trial Investigators.  Propranolol for small abdominal aortic aneurysms: results of a randomized trial.  J Vasc Surg. 2002;35(1):72-79. PubMedGoogle ScholarCrossref
4.
Lindholt  JS, Henneberg  EW, Juul  S, Fasting  H.  Impaired results of a randomised double blinded clinical trial of propranolol versus placebo on the expansion rate of small abdominal aortic aneurysms.  Int Angiol. 1999;18(1):52-57. PubMedGoogle Scholar
5.
Moursi  MM, Beebe  HG, Messina  LM, Welling  TH, Stanley  JC.  Inhibition of aortic aneurysm development in blotchy mice by beta adrenergic blockade independent of altered lysyl oxidase activity.  J Vasc Surg. 1995;21(5):792-799. PubMedGoogle ScholarCrossref
6.
Ahimastos  AA, Natoli  AK, Lawler  A, Blombery  PA, Kingwell  BA.  Ramipril reduces large-artery stiffness in peripheral arterial disease and promotes elastogenic remodeling in cell culture.  Hypertension. 2005;45(6):1194-1199. PubMedGoogle ScholarCrossref
7.
Hackam  DG, Thiruchelvam  D, Redelmeier  DA.  Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study.  Lancet. 2006;368(9536):659-665. PubMedGoogle ScholarCrossref
8.
Liao  S, Miralles  M, Kelley  BJ, Curci  JA, Borhani  M, Thompson  RW.  Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors.  J Vasc Surg. 2001;33(5):1057-1064. PubMedGoogle ScholarCrossref
9.
Nagashima  H, Uto  K, Sakomura  Y,  et al.  An angiotensin-converting enzyme inhibitor, not an angiotensin II type-1 receptor blocker, prevents beta-aminopropionitrile monofumarate-induced aortic dissection in rats.  J Vasc Surg. 2002;36(4):818-823. PubMedGoogle ScholarCrossref
10.
Habashi  JP, Judge  DP, Holm  TM,  et al.  Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome.  Science. 2006;312(5770):117-121. PubMedGoogle ScholarCrossref
11.
Nagashima  H, Sakomura  Y, Aoka  Y,  et al.  Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis in cystic medial degeneration associated with Marfan's syndrome.  Circulation. 2001;104(12)(suppl 1):I282-I287. PubMedGoogle Scholar
12.
Yetman  AT, Bornemeier  RA, McCrindle  BW.  Usefulness of enalapril versus propranolol or atenolol for prevention of aortic dilation in patients with the Marfan syndrome.  Am J Cardiol. 2005;95(9):1125-1127. PubMedGoogle ScholarCrossref
13.
Nataatmadja  M, West  M, West  J,  et al.  Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in Marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm.  Circulation. 2003;108(suppl 1):II329-II334. PubMedGoogle ScholarCrossref
14.
Ikonomidis  JS, Jones  JA, Barbour  JR,  et al.  Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome.  Circulation. 2006;114(1)(suppl):I365-I370. PubMedGoogle Scholar
15.
De Paepe  A, Devereux  RB, Dietz  HC, Hennekam  RC, Pyeritz  RE.  Revised diagnostic criteria for the Marfan syndrome.  Am J Med Genet. 1996;62(4):417-426. PubMedGoogle ScholarCrossref
16.
Liu  Z, Brin  KP, Yin  FC.  Estimation of total arterial compliance: an improved method and evaluation of current methods.  Am J Physiol. 1986;251(3 pt 2):H588-H600. PubMedGoogle Scholar
17.
Cameron  JD, Dart  AM.  Exercise training increases total systemic arterial compliance in humans.  Am J Physiol. 1994;266(2 pt 2):H693-H701. PubMedGoogle Scholar
18.
Mitchell  GF, Izzo  JL  Jr, Lacourciere  Y,  et al.  Omapatrilat reduces pulse pressure and proximal aortic stiffness in patients with systolic hypertension: results of the conduit hemodynamics of omapatrilat international research study.  Circulation. 2002;105(25):2955-2961. PubMedGoogle ScholarCrossref
19.
Kingwell  BA, Berry  KL, Cameron  JD, Jennings  GL, Dart  AM.  Arterial compliance increases after moderate-intensity cycling.  Am J Physiol. 1997;273(5 pt 2):H2186-H2191. PubMedGoogle Scholar
20.
Roman  MJ, Devereux  RB, Kramer-Fox  R, O'Loughlin  J.  Two-dimensional echocardiographic aortic root dimensions in normal children and adults.  Am J Cardiol. 1989;64(8):507-512. PubMedGoogle ScholarCrossref
21.
Perry  GJ, Helmcke  F, Nanda  NC, Byard  C, Soto  B.  Evaluation of aortic insufficiency by Doppler color flow mapping.  J Am Coll Cardiol. 1987;9(4):952-959. PubMedGoogle ScholarCrossref
22.
Levine  RA, Stathogiannis  E, Newell  JB, Harrigan  P, Weyman  AE.  Reconsideration of echocardiographic standards for mitral valve prolapse: lack of association between leaflet displacement isolated to the apical four chamber view and independent echocardiographic evidence of abnormality.  J Am Coll Cardiol. 1988;11(5):1010-1019. PubMedGoogle ScholarCrossref
23.
Jeremy  RW, Huang  H, Hwa  J, McCarron  H, Hughes  CF, Richards  JG.  Relation between age, arterial distensibility, and aortic dilatation in the Marfan syndrome.  Am J Cardiol. 1994;74(4):369-373. PubMedGoogle ScholarCrossref
24.
Gott  VL, Greene  PS, Alejo  DE,  et al.  Replacement of the aortic root in patients with Marfan's syndrome.  N Engl J Med. 1999;340(17):1307-1313. PubMedGoogle ScholarCrossref
25.
Kornbluth  M, Schnittger  I, Eyngorina  I, Gasner  C, Liang  DH.  Clinical outcome in the Marfan syndrome with ascending aortic dilatation followed annually by echocardiography.  Am J Cardiol. 1999;84(6):753-755,A9. PubMedGoogle ScholarCrossref
26.
Rodríguez-Vita  J, Sánchez-López  E, Esteban  V, Rupérez  M, Egido  J, Ruiz-Ortega  M.  Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism.  Circulation. 2005;111(19):2509-2517. PubMedGoogle ScholarCrossref
27.
Dean  JC.  Marfan syndrome: clinical diagnosis and management.  Eur J Hum Genet. 2007;15(7):724-733. PubMedGoogle ScholarCrossref
28.
Cushman  DW, Wang  FL, Fung  WC,  et al.  Comparisons in vitro, ex vivo, and in vivo of the actions of seven structurally diverse inhibitors of angiotensin converting enzyme (ACE).  Br J Clin Pharmacol. 1989;28(suppl 2):115S-130S. PubMedGoogle ScholarCrossref
29.
Asmar  RG, London  GM, O'Rourke  ME, Safar  ME.  Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol.  Hypertension. 2001;38(4):922-926. PubMedGoogle ScholarCrossref
30.
Girerd  X, Giannattasio  C, Moulin  C, Safar  M, Mancia  G, Laurent  S.  Regression of radial artery wall hypertrophy and improvement of carotid artery compliance after long-term antihypertensive treatment in elderly patients.  J Am Coll Cardiol. 1998;31(5):1064-1073. PubMedGoogle ScholarCrossref
31.
Pannier  BM, Guerin  AP, Marchais  SJ, London  GM.  Different aortic reflection wave responses following long-term angiotensin-converting enzyme inhibition and beta-blocker in essential hypertension.  Clin Exp Pharmacol Physiol. 2001;28(12):1074-1077. PubMedGoogle ScholarCrossref
Preliminary Communication
October 3, 2007

Effect of Perindopril on Large Artery Stiffness and Aortic Root Diameter in Patients With Marfan Syndrome: A Randomized Controlled Trial

Author Affiliations

Author Affiliations: Alfred and Baker Medical Unit, Baker Heart Research Institute (Drs Ahimastos, White, Dart, and Kingwell, and Mss D’Orsa and Formosa); Department of Cardiology, Royal Melbourne Hospital (Dr Aggarwal); and Murdoch Children's Research Institute and University of Melbourne (Dr Savarirayan), Melbourne, Australia.

JAMA. 2007;298(13):1539-1547. doi:10.1001/jama.298.13.1539
Abstract

Context  Aortic stiffness is increased in Marfan syndrome contributing to aortic dilatation and rupture, the major cause of premature death in this population. Angiotensin-converting enzyme inhibitors have been shown to reduce arterial stiffness.

Objective  To determine whether perindopril therapy reduces aortic stiffness and attenuates aortic dilatation in patients with Marfan syndrome.

Design, Setting, and Participants  A randomized, double-blind, placebo-controlled trial of 17 patients with Marfan syndrome (mean [SD], 33 [6] years) taking standard β-blocker therapy, initiated in January 2004 and completed in September 2006, at Alfred Hospital Marfan Syndrome Clinic, Melbourne, Australia.

Intervention  Patients were administered 8 mg/d of perindopril (n = 10) or placebo (n = 7) for 24 weeks.

Main Outcome Measures  Indices of arterial stiffness were assessed via systemic arterial compliance, and central and peripheral pulse wave velocities. Aortic root diameters were assessed at 4 sites via transthoracic echocardiography.

Results  Perindopril reduced arterial stiffness as indicated by increased systemic arterial compliance (mean [SEM], 0.33 [0.01] mL/mm Hg at baseline to 0.54 [0.04] mL/mm Hg at 24 weeks in perindopril group vs 0.30 [0.01] mL/mm Hg to 0.29 [0.01] mL/mm Hg in placebo group, P = .004), and reduced central (7.6 [0.4] m/s to 5.9 [0.3] m/s in perindopril group, P < .001 vs placebo) and peripheral (10.9 [0.4] m/s to 8.7 [0.4] m/s in perindopril group, P < .001 vs placebo) pulse wave velocities. In addition, perindopril significantly reduced aortic root diameters relative to placebo in both end-systole and end-diastole (P<.01 to P < .001 for all comparisons between groups). Although perindopril marginally reduced mean arterial pressure (from 81 [2] mm Hg to 80 [1] mm Hg in perindopril group vs 83 [2] mm Hg to 84 [3] mm Hg in placebo group, P = .004), the observed changes in both stiffness and left ventricular outflow tract diameter remained significant when mean arterial pressure was included as a covariate. Transforming growth factor β (TGF-β), which contributes to aortic degeneration in Marfan syndrome, was reduced by perindopril compared with placebo in both latent (59 [6] ng/mL to 45 [3] ng/mL in perindopril group, P = .01 vs placebo) and active (46 [2] ng/mL to 42 [1] ng/mL in perindopril group, P = .02 vs placebo) forms.

Conclusions  Perindopril reduced both aortic stiffness and aortic root diameter in patients with Marfan syndrome taking standard β-blocker therapy, possibly through attenuation of TGF-β signaling. Large clinical trials are needed to assess the clinical benefit of angiotensin II blockade in Marfan syndrome.

Trial Registration  clinicaltrials.gov Identifier: NCT00485368

×