Monosomy of Chromosome 10 Associated With Dysregulation of Epidermal Growth Factor Signaling in Glioblastomas | Genetics and Genomics | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.238.77. Please contact the publisher to request reinstatement.
1.
Duesberg P, Li R. Multistep carcinogenesis: a chain reaction of aneuploidizations.  Cell Cycle. 2003;2(3):202-21012734426PubMedGoogle ScholarCrossref
2.
Bredel M, Scholtens DM, Harsh GR,  et al.  A network model of a cooperative genetic landscape in brain tumors.  JAMA. 2009;302(3):261-275Google ScholarCrossref
3.
Furge LL, Chen K, Cohen S. Annexin VII and annexin XI are tyrosine phosphorylated in peroxovanadate-treated dogs and in platelet-derived growth factor-treated rat vascular smooth muscle cells.  J Biol Chem. 1999;274(47):33504-3350910559235PubMedGoogle ScholarCrossref
4.
Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+ signalling to membrane dynamics.  Nat Rev Mol Cell Biol. 2005;6(6):449-46115928709PubMedGoogle ScholarCrossref
5.
Shirvan A, Srivastava M, Wang MG,  et al.  Divergent structure of the human synexin (annexin VII) gene and assignment to chromosome 10.  Biochemistry. 1994;33(22):6888-69017515686PubMedGoogle ScholarCrossref
6.
Srivastava M, Bubendorf L, Srikantan V,  et al.  ANX7, a candidate tumor suppressor gene for prostate cancer.  Proc Natl Acad Sci U S A. 2001;98(8):4575-458011287641PubMedGoogle ScholarCrossref
7.
Leighton X, Srikantan V, Pollard HB, Sukumar S, Srivastava M. Significant allelic loss of ANX7region (10q21) in hormone receptor negative breast carcinomas.  Cancer Lett. 2004;210(2):239-24415183540PubMedGoogle ScholarCrossref
8.
Srivastava M, Bubendorf L, Raffeld M,  et al.  Prognostic impact of ANX7-GTPase in metastatic and HER2-negative breast cancer patients.  Clin Cancer Res. 2004;10(7):2344-235015073110PubMedGoogle ScholarCrossref
9.
Srivastava M, Torosyan Y, Raffeld M, Eidelman O, Pollard HB, Bubendorf L. ANXA7 expression represents hormone-relevant tumor suppression in different cancers.  Int J Cancer. 2007;121(12):2628-263617708571PubMedGoogle ScholarCrossref
10.
Torosyan Y, Dobi A, Naga S,  et al.  Distinct effects of annexin A7 and p53 on arachidonate lipoxygenation in prostate cancer cells involve 5-lipoxygenase transcription.  Cancer Res. 2006;66(19):9609-961617018618PubMedGoogle ScholarCrossref
11.
Srivastava M, Montagna C, Leighton X,  et al.  Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/−) mouse.  Proc Natl Acad Sci U S A. 2003;100(24):14287-1429214608035PubMedGoogle ScholarCrossref
12.
Deutschbauer AM, Jaramillo DF, Proctor M,  et al.  Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast.  Genetics. 2005;169(4):1915-192515716499PubMedGoogle ScholarCrossref
13.
Smilenov LB. Tumor development: haploinsufficiency and local network assembly.  Cancer Lett. 2006;240(1):17-2816223564PubMedGoogle ScholarCrossref
14.
Louis DN, Ohgaki H, Wiestler OD,  et al.  The 2007 WHO classification of tumours of the central nervous system.  Acta Neuropathol. 2007;114(2):97-10917618441PubMedGoogle ScholarCrossref
15.
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data.  Nucleic Acids Res. 2003;31(4):e1512582260PubMedGoogle ScholarCrossref
16.
McLendon R, Friedman A, Bigner D,  et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways [published online ahead of print September 4, 2008].  Nature. 2008;455(7216):1061-106818772890PubMedGoogle ScholarCrossref
17.
Lee Y, Scheck AC, Cloughesy TF,  et al.  Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age.  BMC Med Genomics. 2008;1(1):5218940004PubMedGoogle ScholarCrossref
18.
Phillips HS, Kharbanda S, Chen R,  et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.  Cancer Cell. 2006;9(3):157-17316530701PubMedGoogle ScholarCrossref
19.
Freije WA, Castro-Vargas FE, Fang Z,  et al.  Gene expression profiling of gliomas strongly predicts survival.  Cancer Res. 2004;64(18):6503-651015374961PubMedGoogle ScholarCrossref
20.
Wright LS, Prowse KR, Wallace K, Linskens MH, Svendsen CN. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro.  Exp Cell Res. 2006;312(11):2107-212016631163PubMedGoogle ScholarCrossref
21.
Pfisterer WK, Hank NC, Preul MC,  et al.  Diagnostic and prognostic significance of genetic regional heterogeneity in meningiomas.  Neuro Oncol. 2004;6(4):290-29915494096PubMedGoogle ScholarCrossref
22.
Jarvius M, Paulsson J, Weibrecht I,  et al.  In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method.  Mol Cell Proteomics. 2007;6(9):1500-150917565975PubMedGoogle ScholarCrossref
23.
Söderberg O, Gullberg M, Jarvius M,  et al.  Direct observation of individual endogenous protein complexes in situ by proximity ligation.  Nat Methods. 2006;3(12):995-100017072308PubMedGoogle ScholarCrossref
24.
Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate.  Science. 1998;281(5375):363, 3659705713PubMedGoogle ScholarCrossref
25.
Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara  EH, Issa JP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements.  Nucleic Acids Res. 2004;32(3):e3814973332PubMedGoogle ScholarCrossref
26.
Dimri GP, Itahana K, Acosta M, Campisi J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor.  Mol Cell Biol. 2000;20(1):273-28510594030PubMedGoogle ScholarCrossref
27.
Pear WS, Nolan GP, Scott ML, Baltimore D. Production of high-titer helper-free retroviruses by transient transfection.  Proc Natl Acad Sci U S A. 1993;90(18):8392-83967690960PubMedGoogle ScholarCrossref
28.
Parsons DW, Jones S, Zhang X,  et al.  An integrated genomic analysis of human glioblastoma multiforme [published online ahead of print September 4, 2008].  Science. 2008;321(5897):1807-181218772396PubMedGoogle ScholarCrossref
29.
Clark AJ, Ishii S, Richert N, Merlino GT, Pastan I. Epidermal growth factor regulates the expression of its own receptor.  Proc Natl Acad Sci U S A. 1985;82(24):8374-83783001700PubMedGoogle ScholarCrossref
30.
Earp HS, Austin KS, Blaisdell J,  et al.  Epidermal growth factor (EGF) stimulates EGF receptor synthesis.  J Biol Chem. 1986;261(11):4777-47802420792PubMedGoogle Scholar
31.
Jinno Y, Merlino GT, Pastan I. A novel effect of EGF on mRNA stability.  Nucleic Acids Res. 1988;16(11):4957-49663260374PubMedGoogle ScholarCrossref
32.
Martin V, Mazzucchelli L, Frattini M. An overview of the epidermal growth factor receptor fluorescence in situ hybridisation challenge in tumour pathology.  J Clin Pathol. 2009;62(4):314-32419052028PubMedGoogle ScholarCrossref
33.
Hegi ME, Diserens AC, Gorlia T,  et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma.  N Engl J Med. 2005;352(10):997-100315758010PubMedGoogle ScholarCrossref
34.
Li J, Yen C, Liaw D,  et al.  PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.  Science. 1997;275(5308):1943-19479072974PubMedGoogle ScholarCrossref
35.
Steck PA, Pershouse MA, Jasser SA,  et al.  Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers.  Nat Genet. 1997;15(4):356-3629090379PubMedGoogle ScholarCrossref
36.
White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation.  EMBO J. 2006;25(1):1-1216052208PubMedGoogle ScholarCrossref
37.
Morgan RO, Martin-Almedina S, Garcia M, Jhoncon-Kooyip J, Fernandez MP. Deciphering function and mechanism of calcium-binding proteins from their evolutionary imprints.  Biochim Biophys Acta. 2006;1763(11):1238-124917092580PubMedGoogle ScholarCrossref
38.
Srivastava M, Eidelman O, Leighton X, Glasman M, Goping G, Pollard HB. Anx7 is required for nutritional control of gene expression in mouse pancreatic islets of Langerhans.  Mol Med. 2002;8(12):781-79712606813PubMedGoogle Scholar
39.
Chin L, Gray JW. Translating insights from the cancer genome into clinical practice.  Nature. 2008;452(7187):553-56318385729PubMedGoogle ScholarCrossref
40.
Mellinghoff IK, Wang MY, Vivanco I,  et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors.  N Engl J Med. 2005;353(19):2012-202416282176PubMedGoogle ScholarCrossref
Original Contribution
July 15, 2009

Monosomy of Chromosome 10 Associated With Dysregulation of Epidermal Growth Factor Signaling in Glioblastomas

Author Affiliations

Author Affiliations: Department of Neurological Surgery, Northwestern Brain Tumor Institute, Lurie Center for Cancer Genetics Research, and Center for Genetic Medicine (Drs Yadav, Chandler, Das, and M. Bredel and Ms Renfrow), Department of Preventive Medicine (Dr Scholtens), Department of Neurology (Dr Kessler), Robert H. Lurie Comprehensive Cancer Center, and Department of Pediatrics (Drs Xie and Soares), Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Neurosurgery (Drs Harsh and M. Bredel), Oncology Division, Department of Medicine (Mr Duran and Drs C. Bredel and Sikic), and Department of Pathology (Dr Vogel), Stanford University School of Medicine, Palo Alto, California; Department of General Neurosurgery, Neurocenter and Comprehensive Cancer Center Freiburg, University of Freiburg, Freiburg, Germany (Drs M. Bredel and C. Bredel); Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center, and Richard L. Solove Research Institute, The Ohio State University Medical School, Columbus (Dr Chakravarti); Departments of Neurosurgery and Human Genetics, University of Liege, Belgium (Dr Robe); and Ina Levine Brain Tumor Center, Neuro-Oncology and Neurosurgery Research, Barrow Neurological Institute of St Joseph's Medical Center, Phoenix, Arizona (Dr Scheck).

JAMA. 2009;302(3):276-289. doi:10.1001/jama.2009.1022
Abstract

Context Glioblastomas—uniformly fatal brain tumors—often have both monosomy of chromosome 10 and gains of the epidermal growth factor receptor (EGFR) gene locus on chromosome 7, an association for which the mechanism is poorly understood.

Objectives To assess whether coselection of EGFR gains on 7p12 and monosomy 10 in glioblastomas promotes tumorigenic epidermal growth factor (EGF) signaling through loss of the annexin A7 (ANXA7) gene on 10q21.1-q21.2 and whether ANXA7 acts as a tumor suppressor gene by regulating EGFR in glioblastomas.

Design, Setting, and Patients Multidimensional analysis of gene, coding sequence, promoter methylation, messenger RNA (mRNA) transcript, protein data for ANXA7 (and EGFR), and clinical patient data profiles of 543 high-grade gliomas from US medical centers and The Cancer Genome Atlas pilot project (made public 2006-2008; and unpublished, tumors collected 2001-2008). Functional analyses using LN229 and U87 glioblastoma cells.

Main Outcome Measures Associations among ANXA7 gene dosage, coding sequence, promoter methylation, mRNA transcript, and protein expression. Effect of ANXA7 haploinsufficiency on EGFR signaling and patient survival. Joint effects of loss of ANXA7 and gain of EGFR expression on tumorigenesis.

Results Heterozygous ANXA7 gene deletion is associated with significant loss of ANXA7 mRNA transcript expression (P = 1 × 10−15; linear regression) and a reduction (mean [SEM]) of 91.5% (2.3%) of ANXA7 protein expression compared with ANXA7 wild-type glioblastomas (P = .004; unpaired t test). ANXA7 loss of function stabilizes the EGFR protein (72%-744% increase in EGFR protein abundance) and augments EGFR transforming signaling in glioblastoma cells. ANXA7 haploinsufficiency doubles tumorigenic potential of glioblastoma cells, and combined ANXA7 knockdown and EGFR overexpression promotes tumorigenicity synergistically. The heterozygous loss of ANXA7 in ≈75% of glioblastomas in the The Cancer Genome Atlas plus infrequency of ANXA7 mutation (≈6% of tumors) indicates its role as a haploinsufficiency gene. ANXA7 mRNA transcript expression, dichotomized at the median, associates with patient survival in 191 glioblastomas (log-rank P = .008; hazard ratio [HR], 0.667; 95% confidence interval [CI], 0.493-0.902; 46.9 vs 74.8 deaths/100 person-years for high vs low ANXA7 mRNA expression) and with a separate group of 180 high-grade gliomas (log-rank P = .00003; HR, 0.476; 95% CI, 0.333-0.680; 21.8 vs 50.0 deaths/100 person-years for high vs low ANXA7 mRNA expression). Deletion of the ANXA7 gene associates with poor patient survival in 189 glioblastomas (log-rank P = .042; HR, 0.686; 95% CI, 0.476-0.989; 54.0 vs 80.1 deaths/100 person-years for wild-type ANXA7 vs ANXA7 deletion).

Conclusion Haploinsufficiency of the tumor suppressor ANXA7 due to monosomy of chromosome 10 provides a clinically relevant mechanism to augment EGFR signaling in glioblastomas beyond that resulting from amplification of the EGFR gene.

×