Newer-Generation Antiepileptic Drugs and the Risk of Major Birth Defects | Congenital Defects | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Czeizel AE, Bod M, Halász P. Evaluation of anticonvulsant drugs during pregnancy in a population-based Hungarian study.  Eur J Epidemiol. 1992;8(1):122-1271572421PubMedGoogle Scholar
Malm H, Martikainen J, Klaukka T, Neuvonen PJ.Finnish Register-Based Study.  Prescription drugs during pregnancy and lactation: a Finnish register–based study.  Eur J Clin Pharmacol. 2003;59(2):127-13312700878PubMedGoogle Scholar
Wide K, Winbladh B, Källén B. Major malformations in infants exposed to antiepileptic drugs in utero, with emphasis on carbamazepine and valproic acid: a nation-wide, population-based register study.  Acta Paediatr. 2004;93(2):174-17615046269PubMedGoogle ScholarCrossref
Tomson T, Battino D. Teratogenic effects of antiepileptic medications.  Neurol Clin. 2009;27(4):993-100219853219PubMedGoogle ScholarCrossref
Tsiropoulos I, Gichangi A, Andersen M, Bjerrum L, Gaist D, Hallas J. Trends in utilization of antiepileptic drugs in Denmark.  Acta Neurol Scand. 2006;113(6):405-41116674607PubMedGoogle ScholarCrossref
Meador KJ, Zupanc ML. Neurodevelopmental outcomes of children born to mothers with epilepsy.  Cleve Clin J Med. 2004;71:(suppl 2)  S38-S4115379298PubMedGoogle ScholarCrossref
Meador K, Reynolds MW, Crean S, Fahrbach K, Probst C. Pregnancy outcomes in women with epilepsy: a systematic review and meta-analysis of published pregnancy registries and cohorts.  Epilepsy Res. 2008;81(1):1-1318565732PubMedGoogle ScholarCrossref
Tomson T, Battino D. Pharmacokinetics and therapeutic drug monitoring of newer antiepileptic drugs during pregnancy and the puerperium.  Clin Pharmacokinet. 2007;46(3):209-21917328580PubMedGoogle ScholarCrossref
Sabers A, Dam M, A-Rogvi-Hansen B,  et al.  Epilepsy and pregnancy: lamotrigine as main drug used.  Acta Neurol Scand. 2004;109(1):9-1314653845PubMedGoogle ScholarCrossref
Meador KJ, Penovich P, Baker GA,  et al; NEAD Study Group.  Antiepileptic drug use in women of childbearing age.  Epilepsy Behav. 2009;15(3):339-34319410654PubMedGoogle ScholarCrossref
Perucca E. Birth defects after prenatal exposure to antiepileptic drugs.  Lancet Neurol. 2005;4(11):781-78616239185PubMedGoogle ScholarCrossref
Cunnington M, Ferber S, Quartey G.International Lamotrigine Pregnancy Registry Scientific Advisory Committee.  Effect of dose on the frequency of major birth defects following fetal exposure to lamotrigine monotherapy in an international observational study.  Epilepsia. 2007;48(6):1207-121017381445PubMedGoogle ScholarCrossref
Holmes LB, Baldwin EJ, Smith CR,  et al.  Increased frequency of isolated cleft palate in infants exposed to lamotrigine during pregnancy.  Neurology. 2008;70(22 pt 2):2152-215818448870PubMedGoogle ScholarCrossref
Morrow J, Russell A, Guthrie E,  et al.  Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register.  J Neurol Neurosurg Psychiatry. 2006;77(2):193-19816157661PubMedGoogle ScholarCrossref
Vajda FJ, Graham JE, Hitchcock AA, O’Brien TJ, Lander CM, Eadie MJ. Is lamotrigine a significant human teratogen? observations from the Australian Pregnancy Register.  Seizure. 2010;19(9):558-56120739196PubMedGoogle ScholarCrossref
Artama M, Auvinen A, Raudaskoski T, Isojärvi I, Isojärvi J. Antiepileptic drug use of women with epilepsy and congenital malformations in offspring.  Neurology. 2005;64(11):1874-187815955936PubMedGoogle ScholarCrossref
Hunt S, Craig J, Russell A,  et al.  Levetiracetam in pregnancy: preliminary experience from the UK Epilepsy and Pregnancy Register.  Neurology. 2006;67(10):1876-187917130430PubMedGoogle ScholarCrossref
Hunt S, Russell A, Smithson WH,  et al; UK Epilepsy and Pregnancy Register.  Topiramate in pregnancy: preliminary experience from the UK Epilepsy and Pregnancy Register.  Neurology. 2008;71(4):272-27618645165PubMedGoogle ScholarCrossref
Knudsen LB, Olsen J. The Danish Medical Birth Registry.  Dan Med Bull. 1998;45(3):320-3239675544PubMedGoogle Scholar
Jørgensen FS. Ultrasonography of pregnant women in Denmark 1999-2000: description of the development since 1980-1990.  Ugeskr Laeger. 2003;165(46):4409-441514655565PubMedGoogle Scholar
Kristensen J, Langhoff-Roos J, Skovgaard LT, Kristensen FB. Validation of the Danish birth registration.  J Clin Epidemiol. 1996;49(8):893-8978699210PubMedGoogle ScholarCrossref
The Danish Medicines Agency.  About the Register of Medicinal Product Statistics.,-prices-and-reimbursement/statistics-and-analyses/about-the-register-of-medicinal-product---tatistics-. Accessibility verified April 25, 2011
WHO Collaborating Centre for Drug Statistics Methodology.  ATC/DDD index 2011. Accessed April 11, 2011
Andersen TF, Madsen M, Jørgensen J, Mellemkjoer L, Olsen JH. The Danish National Hospital Register: a valuable source of data for modern health sciences.  Dan Med Bull. 1999;46(3):263-26810421985PubMedGoogle Scholar
EUROCAT.  Chapter 3.3: coding of EUROCAT subgroups of congenital anomalies. Accessed January 3, 2011
EUROCAT.  Chapter 3.2: minor anomalies for exclusion. Accessed January 3, 2011
Clayton D, Hills M. Poisson and logistic regression. In: Clayton D, Hills M, eds. Statistical Models in Epidemiology. Oxford, England: Oxford University Press; 2001:227-236
Fried S, Kozer E, Nulman I, Einarson TR, Koren G. Malformation rates in children of women with untreated epilepsy: a meta-analysis.  Drug Saf. 2004;27(3):197-20214756581PubMedGoogle ScholarCrossref
Larsen H, Nielsen GL, Bendsen J, Flint C, Olsen J, Sørensen HT. Predictive value and completeness of the registration of congenital abnormalities in three Danish population-based registries.  Scand J Public Health. 2003;31(1):12-1612623519PubMedGoogle ScholarCrossref
Agergaard P, Hebert A, Bjerre J, Sørensen KM, Olesen C, Østergaard JR. Children diagnosed with congenital cardiac malformations at the national university departments of pediatric cardiology: positive predictive values of data in the Danish National Patient Registry.  Clin Epidemiol. 2011;3:61-6621386975PubMedGoogle Scholar
Honein MA, Paulozzi LJ, Cragan JD, Correa A. Evaluation of selected characteristics of pregnancy drug registries.  Teratology. 1999;60(6):356-36410590397PubMedGoogle ScholarCrossref
Dolk H, Loane M, Garne E. The prevalence of congenital anomalies in Europe.  Adv Exp Med Biol. 2010;686:349-36420824455PubMedGoogle Scholar
Original Contribution
May 18, 2011

Newer-Generation Antiepileptic Drugs and the Risk of Major Birth Defects

Author Affiliations

Author Affiliations: Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.

JAMA. 2011;305(19):1996-2002. doi:10.1001/jama.2011.624

Context Epilepsy during pregnancy is a therapeutic challenge. Since the 1990s, the number of licensed antiepileptic drugs has substantially increased, but safety data on first-trimester use of newer-generation antiepileptic drugs and birth defects are limited.

Objective To study the association between fetal exposure to newer-generation antiepileptic drugs during the first trimester of pregnancy and the risk of major birth defects.

Design, Setting, and Participants Population-based cohort study of 837 795 live-born infants in Denmark from January 1, 1996, through September 30, 2008. Individual-level information on dispensed antiepileptic drugs to mothers, birth defect diagnoses, and potential confounders were ascertained from nationwide health registries.

Main Outcome Measures Prevalence odds ratios (PORs) of any major birth defect diagnosed within the first year of life by fetal exposure to antiepileptic drugs.

Results Of the 1532 infants exposed to lamotrigine, oxcarbazepine, topiramate, gabapentin, or levetiracetam during the first trimester, 49 were diagnosed with a major birth defect compared with 19 911 of the 836 263 who were not exposed to an antiepileptic drug (3.2% vs 2.4%, respectively; adjusted POR [APOR], 0.99; 95% confidence interval [CI], 0.72-1.36). A major birth defect was diagnosed in 38 of 1019 infants (3.7%) exposed to lamotrigine during the first trimester (APOR, 1.18; 95% CI, 0.83-1.68), in 11 of 393 infants (2.8%) exposed to oxcarbazepine (APOR, 0.86; 95% CI, 0.46-1.59), and in 5 of 108 infants (4.6%) exposed to topiramate (APOR, 1.44; 95% CI, 0.58-3.58). Gabapentin (n = 59) and levetiracetam (n = 58) exposure during the first trimester was uncommon, with only 1 (1.7%) and 0 infants diagnosed with birth defects, respectively.

Conclusion Among live-born infants in Denmark, first-trimester exposure to lamotrigine, oxcarbazepine, topiramate, gabapentin, or levetiracetam compared with no exposure was not associated with an increased risk of major birth defects.