Effect of an Indwelling Pleural Catheter vs Chest Tube and Talc Pleurodesis for Relieving Dyspnea in Patients With Malignant Pleural Effusion: The TIME2 Randomized Controlled Trial | Medical Devices and Equipment | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Roberts ME, Neville E, Berrisford RG, Antunes G, Ali NJ.BTS Pleural Disease Guideline Group.  Management of a malignant pleural effusion: British Thoracic Society Pleural Disease Guideline 2010.  Thorax. 2010;65:(suppl 2)  ii32-ii4020696691PubMedGoogle ScholarCrossref
2.
Rodrîguez-Panadero F, Borderas Naranjo F, López Mejîas J. Pleural metastatic tumours and effusions: frequency and pathogenic mechanisms in post-mortem series.  Eur Respir J. 1989;2(4):366-3692786818PubMedGoogle Scholar
3.
Ferlay JSH, ed, Bray F, ed, Forman D, ed, Mathers C, ed, Parkin DM, ed. Cancer incidence and mortality worldwide [webpage]. World Health Organization, International Agency for Research on Cancer; 2008. v1.2. CancerBase No. 10. http://globocan.iarc.fr. Accessed November 11, 2011
4.
 Cancer statistics registrations: registrations of cancer diagnosed in 2009, England. MB1 40 ed. London, England: Office for National Statistics, Stationary Office; 2011
5.
Burrows CM, Mathews WC, Colt HG. Predicting survival in patients with recurrent symptomatic malignant pleural effusions: an assessment of the prognostic values of physiologic, morphologic, and quality of life measures of extent of disease.  Chest. 2000;117(1):73-7810631202PubMedGoogle ScholarCrossref
6.
Tan C, Sedrakyan A, Browne J, Swift S, Treasure T. The evidence on the effectiveness of management for malignant pleural effusion: a systematic review.  Eur J Cardiothorac Surg. 2006;29(5):829-83816626967PubMedGoogle ScholarCrossref
7.
Dresler CM, Olak J, Herndon JE II,  et al; Cooperative Groups Cancer and Leukemia Group B; Eastern Cooperative Oncology Group; North Central Cooperative Oncology Group; Radiation Therapy Oncology Group.  Phase III intergroup study of talc poudrage vs talc slurry sclerosis for malignant pleural effusion.  Chest. 2005;127(3):909-91515764775PubMedGoogle ScholarCrossref
8.
Van Meter ME, McKee KY, Kohlwes RJ. Efficacy and safety of tunneled pleural catheters in adults with malignant pleural effusions: a systematic review.  J Gen Intern Med. 2011;26(1):70-7620697963PubMedGoogle ScholarCrossref
9.
Janes SM, Rahman NM, Davies RJ, Lee YC. Catheter-tract metastases associated with chronic indwelling pleural catheters.  Chest. 2007;131(4):1232-123417426232PubMedGoogle ScholarCrossref
10.
Tremblay A, Mason C, Michaud G. Use of tunnelled catheters for malignant pleural effusions in patients fit for pleurodesis.  Eur Respir J. 2007;30(4):759-76217567670PubMedGoogle ScholarCrossref
11.
Antevil JL, Putnam JB Jr. Talc pleurodesis for malignant effusions is preferred over the pleurx catheter (pro position).  Ann Surg Oncol. 2007;14(10):2698-269917657544PubMedGoogle ScholarCrossref
12.
Tremblay A, Michaud G. Single-center experience with 250 tunnelled pleural catheter insertions for malignant pleural effusion.  Chest. 2006;129(2):362-36816478853PubMedGoogle ScholarCrossref
13.
Putnam JB Jr, Light RW, Rodriguez RM,  et al.  A randomized comparison of indwelling pleural catheter and doxycycline pleurodesis in the management of malignant pleural effusions.  Cancer. 1999;86(10):1992-199910570423PubMedGoogle ScholarCrossref
14.
Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial.  Biometrics. 1975;31(1):103-1151100130PubMedGoogle ScholarCrossref
15.
Musani AI, Haas AR, Seijo L, Wilby M, Sterman DH. Outpatient management of malignant pleural effusions with small-bore, tunneled pleural catheters.  Respiration. 2004;71(6):559-56615627865PubMedGoogle ScholarCrossref
16.
Bausewein C, Farquhar M, Booth S, Gysels M, Higginson IJ. Measurement of breathlessness in advanced disease: a systematic review.  Respir Med. 2007;101(3):399-41016914301PubMedGoogle ScholarCrossref
17.
Ries AL. Minimally clinically important difference for the UCSD Shortness of Breath Questionnaire, Borg Scale, and Visual Analog Scale.  COPD. 2005;2(1):105-11017136970PubMedGoogle ScholarCrossref
18.
Maringwa J, Quinten C, King M,  et al; EORTC PROBE Project and Brain Cancer Group.  Minimal clinically meaningful differences for the EORTC QLQ-C30 and EORTC QLQ-BN20 scales in brain cancer patients.  Ann Oncol. 2011;22(9):2107-211221324954PubMedGoogle ScholarCrossref
19.
Kahan BC, Morris TP. Improper analysis of trials randomised using stratified blocks or minimisation.  Stat Med. 2012;31(4):328-34022139891PubMedGoogle ScholarCrossref
20.
White IR, Thompson SG. Adjusting for partially missing baseline measurements in randomized trials.  Stat Med. 2005;24(7):993-100715570623PubMedGoogle ScholarCrossref
21.
Royston P, Parmar MK. The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt.  Stat Med. 2011;30(19):2409-242121611958PubMedGoogle ScholarCrossref
22.
Fysh ET, Waterer GW, Kendall P,  et al.  Indwelling pleural catheters reduce inpatient days over pleurodesis for malignant pleural effusion [published online March 8, 2012].  Chest22406960PubMedGoogle Scholar
23.
Olden AM, Holloway R. Treatment of malignant pleural effusion: PleuRx catheter or talc pleurodesis? A cost-effectiveness analysis.  J Palliat Med. 2010;13(1):59-6519839739PubMedGoogle ScholarCrossref
24.
Putnam JB Jr, Walsh GL, Swisher SG,  et al.  Outpatient management of malignant pleural effusion by a chronic indwelling pleural catheter.  Ann Thorac Surg. 2000;69(2):369-37510735665PubMedGoogle ScholarCrossref
Original Contribution
ONLINE FIRST
June 13, 2012

Effect of an Indwelling Pleural Catheter vs Chest Tube and Talc Pleurodesis for Relieving Dyspnea in Patients With Malignant Pleural Effusion: The TIME2 Randomized Controlled Trial

Author Affiliations
    † Deceased.

Author Affiliations: Department of Respiratory Medicine, University Hospital of Wales, Cardiff, Wales (Dr H. E. Davies); Oxford Centre for Respiratory Medicine and Oxford Respiratory Trials Unit, Churchill Hospital, Oxford, England (Drs Mishra, Wrightson, R. J. O. Davies, and Rahman and Ms Crosthwaite); Medical Research Council’s Clinical Trials Unit, London (Mr Kahan); National Institute of Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford (Drs Wrightson, R. J. O. Davies, and Rahman); Great Western Hospital, Swindon (Dr Stanton); James Cook University Hospital, South Tees (Dr Guhan); University Hospital Ayr, Ayr (Dr Guhan); Royal Berkshire Hospital, Reading, Wales (Dr C. W. H. Davies); Horton Hospital, Banbury (Dr Grayez); University Hospital of North Tees, North Tees (Dr Harrison); Buckinghamshire Healthcare National Health Service Trust, Buckinghamshire (Dr Prasad); School of Medicine and Pharmacology and Centre for Asthma, Allergy, and Respiratory Research, University of Western Australia, Perth, Australia (Dr Lee); and Research Department of Infection and Population Health, University College, London (Dr Miller).

†Deceased.

JAMA. 2012;307(22):2383-2389. doi:10.1001/jama.2012.5535
Abstract

Context Malignant pleural effusion causes disabling dyspnea in patients with a short life expectancy. Palliation is achieved by fluid drainage, but the most effective first-line method has not been determined.

Objective To determine whether indwelling pleural catheters (IPCs) are more effective than chest tube and talc slurry pleurodesis (talc) at relieving dyspnea.

Design Unblinded randomized controlled trial (Second Therapeutic Intervention in Malignant Effusion Trial [TIME2]) comparing IPC and talc (1:1) for which 106 patients with malignant pleural effusion who had not previously undergone pleurodesis were recruited from 143 patients who were treated at 7 UK hospitals. Patients were screened from April 2007-February 2011 and were followed up for a year.

Intervention Indwelling pleural catheters were inserted on an outpatient basis, followed by initial large volume drainage, education, and subsequent home drainage. The talc group were admitted for chest tube insertion and talc for slurry pleurodesis.

Main Outcome Measure Patients completed daily 100-mm line visual analog scale (VAS) of dyspnea over 42 days after undergoing the intervention (0 mm represents no dyspnea and 100 mm represents maximum dyspnea; 10 mm represents minimum clinically significant difference). Mean difference was analyzed using a mixed-effects linear regression model adjusted for minimization variables.

Results Dyspnea improved in both groups, with no significant difference in the first 42 days with a mean VAS dyspnea score of 24.7 in the IPC group (95% CI, 19.3-30.1 mm) and 24.4 mm (95% CI, 19.4-29.4 mm) in the talc group, with a difference of 0.16 mm (95% CI, −6.82 to 7.15; P = .96). There was a statistically significant improvement in dyspnea in the IPC group at 6 months, with a mean difference in VAS score between the IPC group and the talc group of −14.0 mm (95% CI, −25.2 to −2.8 mm; P = .01). Length of initial hospitalization was significantly shorter in the IPC group with a median of 0 days (interquartile range [IQR], 0-1 day) and 4 days (IQR, 2-6 days) for the talc group, with a difference of −3.5 days (95% CI, −4.8 to −1.5 days; P < .001). There was no significant difference in quality of life. Twelve patients (22%) in the talc group required further pleural procedures compared with 3 (6%) in the IPC group (odds ratio [OR], 0.21; 95% CI, 0.04-0.86; P = .03). Twenty-one of the 52 patients in the catheter group experienced adverse events vs 7 of 54 in the talc group (OR, 4.70; 95% CI, 1.75-12.60; P = .002).

Conclusion Among patients with malignant pleural effusion and no previous pleurodesis, there was no significant difference between IPCs and talc pleurodesis at relieving patient-reported dyspnea.

Trial Registration isrctn.org Identifier: ISRCTN87514420

×