Prevalence and Prognosis of Unrecognized Myocardial Infarction Determined by Cardiac Magnetic Resonance in Older Adults | Radiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.237.124.210. Please contact the publisher to request reinstatement.
1.
Sigurdsson E, Thorgeirsson G, Sigvaldason H, Sigfusson N. Unrecognized myocardial infarction: epidemiology, clinical characteristics, and the prognostic role of angina pectoris: the Reykjavik Study.  Ann Intern Med. 1995;122(2):96-1027993002PubMedGoogle ScholarCrossref
2.
Kannel WB, Abbott RD. Incidence and prognosis of unrecognized myocardial infarction: an update on the Framingham study.  N Engl J Med. 1984;311(18):1144-11476482932PubMedGoogle ScholarCrossref
3.
Sheifer SE, Gersh BJ, Yanez ND III, Ades PA, Burke GL, Manolio TA. Prevalence, predisposing factors, and prognosis of clinically unrecognized myocardial infarction in the elderly.  J Am Coll Cardiol. 2000;35(1):119-12610636269PubMedGoogle ScholarCrossref
4.
Boland LL, Folsom AR, Sorlie PD,  et al.  Occurrence of unrecognized myocardial infarction in subjects aged 45 to 65 years (the ARIC study).  Am J Cardiol. 2002;90(9):927-93112398956PubMedGoogle ScholarCrossref
5.
Kim RJ, Wu E, Rafael A,  et al.  The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction.  N Engl J Med. 2000;343(20):1445-145311078769PubMedGoogle ScholarCrossref
6.
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III).  Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report.  Circulation. 2002;106(25):3143-342112485966PubMedGoogle Scholar
7.
Burke AP, Kolodgie FD, Farb A,  et al.  Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression.  Circulation. 2001;103(7):934-94011181466PubMedGoogle ScholarCrossref
8.
Horan LG, Flowers NC, Johnson JC. Significance of the diagnostic Q wave of myocardial infarction.  Circulation. 1971;43(3):428-4365544988PubMedGoogle ScholarCrossref
9.
Cox CJ. Return to normal of the electrocardiogram after myocardial infarction.  Lancet. 1967;1(7501):1194-11974165135PubMedGoogle Scholar
10.
Kim RJ, Fieno DS, Parrish TB,  et al.  Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function.  Circulation. 1999;100(19):1992-200210556226PubMedGoogle ScholarCrossref
11.
Wagner A, Mahrholdt H, Holly TA,  et al.  Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study.  Lancet. 2003;361(9355):374-37912573373PubMedGoogle ScholarCrossref
12.
Klein C, Nekolla SG, Bengel FM,  et al.  Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography.  Circulation. 2002;105(2):162-16711790695PubMedGoogle ScholarCrossref
13.
Harris TB, Launer LJ, Eiriksdottir G,  et al.  Age, Gene/Environment Susceptibility–Reykjavik Study: multidisciplinary applied phenomics.  Am J Epidemiol. 2007;165(9):1076-108717351290PubMedGoogle ScholarCrossref
14.
Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction.  Lancet. 2001;357(9249):21-2811197356PubMedGoogle ScholarCrossref
15.
Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies.  Eur Heart J. 2005;26(15):1461-147415831557PubMedGoogle ScholarCrossref
16.
Kim RJ, Albert TS, Wible JH,  et al; Gadoversetamide Myocardial Infarction Imaging Investigators.  Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial.  Circulation. 2008;117(5):629-63718212288PubMedGoogle ScholarCrossref
17.
Genuth S, Alberti KG, Bennett P,  et al; Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.  Follow-up report on the diagnosis of diabetes mellitus.  Diabetes Care. 2003;26(11):3160-316714578255PubMedGoogle ScholarCrossref
18.
Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement.  Magn Reson Med. 2002;47(2):372-38311810682PubMedGoogle ScholarCrossref
19.
Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers.  Stat Med. 2011;30(1):11-2121204120PubMedGoogle ScholarCrossref
20.
Kennedy KF, Pencina MJ. A SAS macro to compute added predictive ability of new markers predicting a dichotomous outcome. http://analytics.ncsu.edu/sesug/2010/SDA07.Kennedy.pdf. Accessed June 1, 2011
21.
Burke AP, Virmani R. Pathophysiology of acute myocardial infarction.  Med Clin North Am. 2007;91(4):553-57217640536PubMedGoogle ScholarCrossref
22.
Schelbert EB, Rumsfeld JS, Krumholz HM,  et al.  Ischaemic symptoms, quality of care and mortality during myocardial infarction.  Heart. 2008;94(2):e217639097PubMedGoogle ScholarCrossref
23.
Burns RJ, Gibbons RJ, Yi Q,  et al; CORE Study Investigators.  The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis.  J Am Coll Cardiol. 2002;39(1):30-3611755283PubMedGoogle ScholarCrossref
24.
Kwong RY, Chan AK, Brown KA,  et al.  Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease.  Circulation. 2006;113(23):2733-274316754804PubMedGoogle ScholarCrossref
25.
Barbier CE, Nylander R, Themudo R,  et al.  Prevalence of unrecognized myocardial infarction detected with magnetic resonance imaging and its relationship to cerebral ischemic lesions in both sexes.  J Am Coll Cardiol. 2011;58(13):1372-137721920267PubMedGoogle ScholarCrossref
26.
Kwong RY, Sattar H, Wu H,  et al.  Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction.  Circulation. 2008;118(10):1011-102018725488PubMedGoogle ScholarCrossref
27.
Kim HW, Klem I, Shah DJ,  et al.  Unrecognized non-Q-wave myocardial infarction: prevalence and prognostic significance in patients with suspected coronary disease.  PLoS Med. 2009;6(4):e100005719381280PubMedGoogle ScholarCrossref
28.
Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury.  Circulation. 2002;105(2):224-22911790705PubMedGoogle ScholarCrossref
29.
Schelbert EB, Hsu LY, Anderson SA,  et al.  Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart.  Circ Cardiovasc Imaging. 2010;3(6):743-75220847191PubMedGoogle ScholarCrossref
Original Contribution
September 5, 2012

Prevalence and Prognosis of Unrecognized Myocardial Infarction Determined by Cardiac Magnetic Resonance in Older Adults

Author Affiliations

Author Affiliations: National Heart, Lung, and Blood Institute (Drs Schelbert, Cao, Kellman, Aletras, Dyke, and Arai) and National Institute on Aging (Drs Launer and Harris), National Institutes of Health, Bethesda, Maryland; Icelandic Heart Association, Kopavogur, Iceland (Mr Sigurdsson and Drs Aspelund, Eiriksdottir, and Gudnason); University of Iceland, Reykjavik, Iceland (Drs Aspelund, Thorgeirsson, and Gudnason); University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, Pennsylvania (Dr Schelbert); St Francis Hospital, State University of New York at Stony Brook, Roslyn (Dr Cao); and Alaska Heart Institute, Anchorage (Dr Dyke).

JAMA. 2012;308(9):890-896. doi:10.1001/2012.jama.11089
Abstract

Context Unrecognized myocardial infarction (MI) is prognostically important. Electrocardiography (ECG) has limited sensitivity for detecting unrecognized MI (UMI).

Objective Determine prevalence and mortality risk for UMI detected by cardiac magnetic resonance (CMR) imaging or ECG among older individuals.

Design, Setting, and Participants ICELAND MI is a cohort substudy of the Age, Gene/Environment Susceptibility–Reykjavik Study (enrollment January 2004-January 2007) using ECG or CMR to detect UMI. From a community-dwelling cohort of older individuals in Iceland, data for 936 participants aged 67 to 93 years were analyzed, including 670 who were randomly selected and 266 with diabetes.

Main Outcome Measures Prevalence and mortality of MI through September 1, 2011. Results reported with 95% confidence limits and net reclassification improvement (NRI).

Results Of 936 participants, 91 had recognized MI (RMI) (9.7%; 95% CI, 8% to 12%), and 157 had UMI detected by CMR (17%; 95% CI, 14% to 19%), which was more prevalent than the 46 UMI detected by ECG (5%; 95% CI, 4% to 6%; P < .001). Participants with diabetes (n = 337) had more UMI detected by CMR than by ECG (n = 72; 21%; 95% CI, 17% to 26%, vs n = 15; 4%; 95% CI, 2% to 7%; P < .001). Unrecognized MI by CMR was associated with atherosclerosis risk factors, coronary calcium, coronary revascularization, and peripheral vascular disease. Over a median of 6.4 years, 30 of 91 participants (33%; 95% CI, 23% to 43%) with RMI died, and 44 of 157 participants (28%; 95% CI, 21% to 35%) with UMI died, both higher rates than the 119 of 688 participants (17%; 95% CI, 15% to 20%) with no MI who died. Unrecognized MI by CMR improved risk stratification for mortality over RMI (NRI, 0.34; 95% CI, 0.16 to 0.53). Adjusting for age, sex, diabetes, and RMI, UMI by CMR remained associated with mortality (hazard ratio [HR], 1.45; 95% CI, 1.02 to 2.06, absolute risk increase [ARI], 8%) and significantly improved risk stratification for mortality (NRI, 0.16; 95% CI, 0.01 to 0.31), but UMI by ECG did not (HR, 0.88; 95% CI, 0.45 to 1.73; ARI, −2%; NRI, −0.05; 95% CI, −0.17 to 0.05). Compared with those with RMI, participants with UMI by CMR used cardiac medications such as statins less often (36%; 95% CI, 28% to 43%, or 56/157, vs 73%; 95% CI, 63% to 82%, or 66/91; P < .001).

Conclusions In a community-based cohort of older individuals, the prevalence of UMI by CMR was higher than the prevalence of RMI and was associated with increased mortality risk. In contrast, UMI by ECG prevalence was lower than that of RMI and was not associated with increased mortality risk.

Trial Registration clinicaltrials.gov Identifier: NCT01322568

×