Relationship Between Occurrence of Surgical Complications and Hospital Finances | Health Care Safety | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Sisko AM, Truffer CJ, Keehan SP, Poisal JA, Clemens MK, Madison AJ. National health spending projections: the estimated impact of reform through 2019.  Health Aff (Millwood). 2010;29(10):1933-194120829295PubMedGoogle ScholarCrossref
Centers for Medicare & Medicaid Services.  National health care expenditures data, January 2010. Accessed May 17, 2011
Davenport DL, Henderson WG, Khuri SF, Mentzer RM Jr. Preoperative risk factors and surgical complexity are more predictive of costs than postoperative complications: a case study using the National Surgical Quality Improvement Program (NSQIP) database.  Ann Surg. 2005;242(4):463-468, discussion 468-47116192806PubMedGoogle Scholar
Khuri SF, Daley J, Henderson W,  et al; National VA Surgical Quality Improvement Program.  The Department of Veterans Affairs' NSQIP: the first national, validated, outcome-based, risk-adjusted, and peer-controlled program for the measurement and enhancement of the quality of surgical care.  Ann Surg. 1998;228(4):491-5079790339PubMedGoogle ScholarCrossref
Englesbe MJ, Pelletier SJ, Magee JC,  et al.  Seasonal variation in surgical outcomes as measured by the American College of Surgeons-National Surgical Quality Improvement Program (ACS-NSQIP).  Ann Surg. 2007;246(3):456-462, discussion 463-46517717449PubMedGoogle ScholarCrossref
Gawande AA, Thomas EJ, Zinner MJ, Brennan TA. The incidence and nature of surgical adverse events in Colorado and Utah in 1992.  Surgery. 1999;126(1):66-7510418594PubMedGoogle ScholarCrossref
Kable AK, Gibberd RW, Spigelman AD. Adverse events in surgical patients in Australia.  Int J Qual Health Care. 2002;14(4):269-27612201185PubMedGoogle ScholarCrossref
Haynes AB, Weiser TG, Berry WR,  et al; Safe Surgery Saves Lives Study Group.  A surgical safety checklist to reduce morbidity and mortality in a global population.  N Engl J Med. 2009;360(5):491-49919144931PubMedGoogle ScholarCrossref
Dimick JB, Chen SL, Taheri PA, Henderson WG, Khuri SF, Campbell DA Jr. Hospital costs associated with surgical complications: a report from the private-sector National Surgical Quality Improvement Program.  J Am Coll Surg. 2004;199(4):531-53715454134PubMedGoogle ScholarCrossref
Neily J, Mills PD, Young-Xu Y,  et al.  Association between implementation of a medical team training program and surgical mortality.  JAMA. 2010;304(15):1693-170020959579PubMedGoogle ScholarCrossref
Conley DM, Singer SJ, Edmondson L, Berry WR, Gawande AA. Effective surgical safety checklist implementation.  J Am Coll Surg. 2011;212(5):873-87921398154PubMedGoogle ScholarCrossref
Cabana MD, Rand CS, Powe NR,  et al.  Why don't physicians follow clinical practice guidelines? A framework for improvement.  JAMA. 1999;282(15):1458-146510535437PubMedGoogle ScholarCrossref
Wachter RM, Pronovost PJ. Balancing “no blame” with accountability in patient safety.  N Engl J Med. 2009;361(14):1401-140619797289PubMedGoogle ScholarCrossref
 DRG Handbook, 2006 Edition. Evanston, IL: Solucient LLC; 2006
Centers for Medicare & Medicaid Services (CMS), HHS.  Medicare program: changes to the hospital inpatient prospective payment systems and fiscal year 2008 rates.  Fed Regist. 2007;72:47379-47428Google Scholar
Rosenthal MB. Nonpayment for performance? Medicare's new reimbursement rule.  N Engl J Med. 2007;357(16):1573-157517942869PubMedGoogle ScholarCrossref
Penel N, Lefebvre J-L, Cazin JL,  et al.  Additional direct medical costs associated with nosocomial infections after head and neck cancer surgery: a hospital-perspective analysis.  Int J Oral Maxillofac Surg. 2008;37(2):135-13918022348PubMedGoogle ScholarCrossref
Dimick JB, Pronovost PJ, Cowan JA, Lipsett PA. Complications and costs after high-risk surgery: where should we focus quality improvement initiatives?  J Am Coll Surg. 2003;196(5):671-67812742194PubMedGoogle ScholarCrossref
Librero J, Marín M, Peiró S, Munujos AV. Exploring the impact of complications on length of stay in major surgery diagnosis-related groups.  Int J Qual Health Care. 2004;16(1):51-5715020560PubMedGoogle ScholarCrossref
Krupka DC, Sandberg WS, Weeks WB. The impact on hospitals of reducing surgical complications suggests many will need shared savings programs with payers.  Health Aff (Millwood). 2012;31(11):2571-257823077139PubMedGoogle ScholarCrossref
 ICD-9 provider and diagnostic codes. Accessed March 21, 2011
 Healthcare Cost and Utilization Project–HCUP. Accessed August 31, 2011
 Healthcare Cost and Utilization Project–HCUP. Accessed August 31, 2011
 Healthcare Cost and Utilization Project–HCUP.
Khan NA, Quan H, Bugar JM, Lemaire JB, Brant R, Ghali WA. Association of postoperative complications with hospital costs and length of stay in a tertiary care center.  J Gen Intern Med. 2006;21(2):177-18016606377PubMedGoogle Scholar
de Vries EN, Prins HA, Crolla RM,  et al;  SURPASS Collaborative Group.  Effect of a comprehensive surgical safety system on patient outcomes.  N Engl J Med. 2010;363(20):1928-193721067384PubMedGoogle ScholarCrossref
Rajakaruna C, Rogers CA, Angelini GD, Ascione R. Risk factors for and economic implications of prolonged ventilation after cardiac surgery.  J Thorac Cardiovasc Surg. 2005;130(5):1270-127716256778PubMedGoogle ScholarCrossref
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.  J Chronic Dis. 1987;40(5):373-3833558716PubMedGoogle ScholarCrossref
Quan H, Li B, Couris CM,  et al.  Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries.  Am J Epidemiol. 2011;173(6):676-68221330339PubMedGoogle ScholarCrossref
Quan H, Sundararajan V, Halfon P,  et al.  Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.  Med Care. 2005;43(11):1130-113916224307PubMedGoogle ScholarCrossref
Rosenberg BL, Comstock MC, Butz DA, Taheri PA, Williams DM, Upchurch GR Jr. Endovascular abdominal aortic aneurysm repair is more profitable than open repair based on contribution margin per day.  Surgery. 2005;137(3):285-29215746778PubMedGoogle ScholarCrossref
DiCiccio TJ, Efron B. Bootstrap confidence intervals (with discussion).  Stat Sci. 1996;11:189-228Google ScholarCrossref
Natarajan S, Lipsitz SR, Fitzmaurice GM,  et al.  An extension of the Wilcoxon rank sum test for complex sample survey data.  J R Stat Soc Ser C Appl Stat. 2012;61:653-664Google Scholar
Korn EL, Graubard BI. Analysis of Health Surveys. New York, NY: John Wiley & Sons; 1999
 Quick national or state statistics–2009. Accessed July 23, 2011
Hosmer DW Jr, Lemeshow S. Applied Logistic Regression. 2nd ed. New York, NY: John Wiley & Sons, Inc; 2000
Horton NJ, Bebchuk JD, Jones CL,  et al.  Goodness-of-fit for GEE: an example with mental health service utilization.  Stat Med. 1999;18:213-22210028141PubMedGoogle ScholarCrossref
Wier LM, Andrews RM. The National Hospital Bill: The Most Expensive Conditions by Payer, 2008. Rockville, MD: Agency for Healthcare Research and Quality; 2011. HCUP Statistical Brief #107. Accessed September 30, 2012
Agency for Healthcare Research and Quality.  Healthcare Cost and Utilization Project, Nationwide Inpatient Sample, 2008. Accessed June 5, 2012
Goodman DC, Fisher ES, Bronner KK. Hospital and physician capacity update: a brief report from the Dartmouth Atlas of Healthcare; (March) 2009;1-20. Accessed March 26, 2013
DeLia D, Wood E. The dwindling supply of empty beds: implications for hospital surge capacity.  Health Aff (Millwood). 2008;27(6):1688-169418997227PubMedGoogle ScholarCrossref
Bazzoli GJ, Brewster LR, Liu G, Kuo S. Does U.S. hospital capacity need to be expanded?  Health Aff (Millwood). 2003;22(6):40-5414649431PubMedGoogle ScholarCrossref
Farley DO, Elliott MN, Short PF, Damiano P, Kanouse DE, Hays RD. Effect of CAHPS performance information on health plan choices by Iowa Medicaid beneficiaries.  Med Care Res Rev. 2002;59(3):319-33612205831PubMedGoogle Scholar
Marshall MN, Shekelle PG, Leatherman S, Brook RH. The public release of performance data: what do we expect to gain? A review of the evidence.  JAMA. 2000;283(14):1866-187410770149PubMedGoogle ScholarCrossref
Schauffler HH, Mordavsky JK. Consumer reports in health care: do they make a difference?  Annu Rev Public Health. 2001;22:69-8911274512PubMedGoogle ScholarCrossref
Thompson DA, Makary MA, Dorman T, Pronovost PJ. Clinical and economic outcomes of hospital acquired pneumonia in intra-abdominal surgery patients.  Ann Surg. 2006;243(4):547-55216552208PubMedGoogle ScholarCrossref
Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R. Administrative databases provide inaccurate data for surveillance of long-term central venous catheter-associated infections.  Infect Control Hosp Epidemiol. 2003;24(12):946-94914700411PubMedGoogle ScholarCrossref
Gordon HS, Johnson ML, Wray NP,  et al.  Mortality after noncardiac surgery: prediction from administrative versus clinical data.  Med Care. 2005;43(2):159-16715655429PubMedGoogle ScholarCrossref
de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs.  Am J Infect Control. 2009;37(5):387-39719398246PubMedGoogle ScholarCrossref
Centers for Medicare & Medicaid Services (CMS); HHS Medicare Program.  Changes to the hospital inpatient prospective payment systems and fiscal year 2008 rates [pages 33-35]. Accessed September 16, 2011
Centers for Medicare & Medicaid Services (CMS); HHS Medicare Program.  Changes to the hospital inpatient prospective payment systems, 2008. Accessed September 16, 2011
Ginsburg P. Wide variation in hospital and physician payment rates: evidence of provider market power. HSC Research Brief #16. November 2010
Dimick JB, Weeks WB, Karia RJ, Das S, Campbell DA Jr. Who pays for poor surgical quality? Building a business case for quality improvement.  J Am Coll Surg. 2006;202(6):933-93716735208PubMedGoogle ScholarCrossref
Original Contribution
April 17, 2013

Relationship Between Occurrence of Surgical Complications and Hospital Finances

Author Affiliations

Author Affiliations: Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston (Dr Eappen); Boston Consulting Group (Dr Rosenberg and Mssrs Lane, Sadoff, and Matheson); Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (Dr Lipsitz); Harvard School of Public Health, Boston, Massachusetts (Dr Berry); Texas Health Resources, Arlington (Dr Lester); and Department of Health Policy and Management, Harvard School of Public Health, and Harvard Medical School, Boston (Dr Gawande).

JAMA. 2013;309(15):1599-1606. doi:10.1001/jama.2013.2773

Importance The effect of surgical complications on hospital finances is unclear.

Objective To determine the relationship between major surgical complications and per-encounter hospital costs and revenues by payer type.

Design, Setting, and Participants Retrospective analysis of administrative data for all inpatient surgical discharges during 2010 from a nonprofit 12-hospital system in the southern United States. Discharges were categorized by principal procedure and occurrence of 1 or more postsurgical complications, using International Classification of Diseases, Ninth Revision, diagnosis and procedure codes. Nine common surgical procedures and 10 major complications across 4 payer types were analyzed. Hospital costs and revenue at discharge were obtained from hospital accounting systems and classified by payer type.

Main Outcomes and Measures Hospital costs, revenues, and contribution margin (defined as revenue minus variable expenses) were compared for patients with and without surgical complications according to payer type.

Results Of 34 256 surgical discharges, 1820 patients (5.3%; 95% CI, 4.4%-6.4%) experienced 1 or more postsurgical complications. Compared with absence of complications, complications were associated with a $39 017 (95% CI, $20 069-$50 394; P < .001) higher contribution margin per patient with private insurance ($55 953 vs $16 936) and a $1749 (95% CI, $976-$3287; P < .001) higher contribution margin per patient with Medicare ($3629 vs $1880). For this hospital system in which private insurers covered 40% of patients (13 544), Medicare covered 45% (15 406), Medicaid covered 4% (1336), and self-payment covered 6% (2202), occurrence of complications was associated with an $8084 (95% CI, $4903-$9740; P < .001) higher contribution margin per patient ($15 726 vs $7642) and with a $7435 lower per-patient total margin (95% CI, $5103-$10 507; P < .001) ($1013 vs −$6422).

Conclusions and Relevance In this hospital system, the occurrence of postsurgical complications was associated with a higher per-encounter hospital contribution margin for patients covered by Medicare and private insurance but a lower one for patients covered by Medicaid and who self-paid. Depending on payer mix, many hospitals have the potential for adverse near-term financial consequences for decreasing postsurgical complications.