Effects of Targeting Higher vs Lower Arterial Oxygen Saturations on Death or Disability in Extremely Preterm Infants: A Randomized Clinical Trial | Critical Care Medicine | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Tin W. Oxygen therapy: 50 years of uncertainty.  Pediatrics. 2002;110(3):615-61612205267PubMedGoogle ScholarCrossref
2.
Silverman WA. A cautionary tale about supplemental oxygen: the albatross of neonatal medicine.  Pediatrics. 2004;113(2):394-39614754955PubMedGoogle ScholarCrossref
3.
Higgins RD, Bancalari E, Willinger M, Raju TN. Executive summary of the workshop on oxygen in neonatal therapies: controversies and opportunities for research.  Pediatrics. 2007;119(4):790-79617403851PubMedGoogle ScholarCrossref
4.
Askie LM, Henderson-Smart DJ, Ko H. Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants.  Cochrane Database Syst Rev. 2009;(1):CD00107719160188PubMedGoogle Scholar
5.
Saugstad OD, Aune D. In search of the optimal oxygen saturation for extremely low birth weight infants: a systematic review and meta-analysis.  Neonatology. 2011;100(1):1-821150224PubMedGoogle ScholarCrossref
6.
Weinberger B, Laskin DL, Heck DE, Laskin JD. Oxygen toxicity in premature infants.  Toxicol Appl Pharmacol. 2002;181(1):60-6712030843PubMedGoogle ScholarCrossref
7.
Saugstad OD. Oxidative stress in the newborn--a 30-year perspective.  Biol Neonate. 2005;88(3):228-23616210845PubMedGoogle ScholarCrossref
8.
Silverman WA. Retrolental Fibroplasia: A Modern Parable. New York, NY: Grune & Stratton; 1980
9.
Whyte RK. First day neonatal mortality since 1935: re-examination of the Cross hypothesis.  BMJ. 1992;304(6823):343-3461540730PubMedGoogle ScholarCrossref
10.
Cole CH, Wright KW, Tarnow-Mordi W, Phelps DL.Pulse Oximetry Saturation Trial for Prevention of Retinopathy of Prematurity Planning Study Group.  Resolving our uncertainty about oxygen therapy.  Pediatrics. 2003;112(6 Pt 1):1415-141914654618PubMedGoogle ScholarCrossref
11.
Tin W, Milligan DW, Pennefather P, Hey E. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation.  Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F106-F11011207226PubMedGoogle ScholarCrossref
12.
Askie LM, Brocklehurst P, Darlow BA, Finer N, Schmidt B, Tarnow-Mordi W.NeOProM Collaborative Group.  NeOProM: Neonatal Oxygenation Prospective Meta-analysis Collaboration study protocol.  BMC Pediatr. 2011;11:621235822PubMedGoogle Scholar
13.
Carlo WA, Finer NN, Walsh MC,  et al;  SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network.  Target ranges of oxygen saturation in extremely preterm infants.  N Engl J Med. 2010;362(21):1959-196920472937PubMedGoogle ScholarCrossref
14.
Vaucher YE, Peralta-Carcelen M, Finer NN,  et al; SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network.  Neurodevelopmental outcomes in the early CPAP and pulse oximetry trial.  N Engl J Med. 2012;367(26):2495-250423268664PubMedGoogle ScholarCrossref
15.
Stenson B, Brocklehurst P, Tarnow-Mordi W.U.K. BOOST II trial; Australian BOOST II trial; New Zealand BOOST II trial.  Increased 36-week survival with high oxygen saturation target in extremely preterm infants.  N Engl J Med. 2011;364(17):1680-168221524227PubMedGoogle ScholarCrossref
16.
Ahmed SJ, Rich W, Finer NN. The effect of averaging time on oximetry values in the premature infant.  Pediatrics. 2010;125(1):e115-e12120026496PubMedGoogle ScholarCrossref
17.
Vagedes J, Poets CF, Dietz K. Averaging time, desaturation level, duration and extent.  Arch Dis Child Fetal Neonatal Ed. 2013;98(3):F265-F26622960097PubMedGoogle ScholarCrossref
18.
Johnston ED, Boyle B, Juszczak E, King A, Brocklehurst P, Stenson BJ. Oxygen targeting in preterm infants using the Masimo SET Radical pulse oximeter.  Arch Dis Child Fetal Neonatal Ed. 2011;96(6):F429-F43321378398PubMedGoogle ScholarCrossref
19.
Jobe AH, Bancalari E. Bronchopulmonary dysplasia.  Am J Respir Crit Care Med. 2001;163(7):1723-172911401896PubMedGoogle ScholarCrossref
20.
Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy.  Dev Med Child Neurol. 1997;39(4):214-2239183258PubMedGoogle ScholarCrossref
21.
Bayley N. Manual for the Bayley Scales of Infant and Toddler Development. 3rd ed. San Antonio, TX: Psychological Corp; 2006
22.
Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW.Victorian Infant Collaborative Group.  Underestimation of developmental delay by the new Bayley-III Scale.  Arch Pediatr Adolesc Med. 2010;164(4):352-35620368488PubMedGoogle ScholarCrossref
23.
Section on Ophthalmology American Academy of Pediatrics; American Academy of Ophthalmology; American Association for Pediatric Ophthalmology and Strabismus.  Screening examination of premature infants for retinopathy of prematurity.  Pediatrics. 2006;117(2):572-57616452383PubMedGoogle ScholarCrossref
24.
 A SAS Program for the CDC Growth Charts. http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm. Accessed September 12, 2010
25.
Kramer MS, Platt RW, Wen SW,  et al; Fetal/Infant Health Study Group of the Canadian Perinatal Surveillance System.  A new and improved population-based Canadian reference for birth weight for gestational age.  Pediatrics. 2001;108(2):E3511483845PubMedGoogle ScholarCrossref
26.
Bassler D, Briel M, Montori VM,  et al; STOPIT-2 Study Group.  Stopping randomized trials early for benefit and estimation of treatment effects: systematic review and meta-regression analysis.  JAMA. 2010;303(12):1180-118720332404PubMedGoogle ScholarCrossref
27.
Rich W, Finer NN, Gantz MG,  et al; SUPPORT and Generic Database Subcommittees of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network.  Enrollment of extremely low birth weight infants in a clinical research study may not be representative.  Pediatrics. 2012;129(3):480-48422371462PubMedGoogle ScholarCrossref
28.
Brocklehurst P. Boost-II UK: benefits of oxygen saturation targeting: protocol—which oxygen saturation level should we use for very premature infants? a randomised controlled trial. Version 3. University of Oxford; 2011. https://www.npeu.ox.ac.uk/files/downloads/boost/BOOSTII-Protocol-Version-3-Nov-1.pdf. Accessed December 29, 2012
29.
Armbruster J, Schmidt B, Poets CF, Bassler D. Nurses' compliance with alarm limits for pulse oximetry: qualitative study.  J Perinatol. 2010;30(8):531-53420010614PubMedGoogle ScholarCrossref
30.
Greenspan JS, Goldsmith JP. Oxygen therapy in preterm infants: hitting the target.  Pediatrics. 2006;118(4):1740-174117015567PubMedGoogle ScholarCrossref
31.
Hagadorn JI, Furey AM, Nghiem TH,  et al; AVIOx Study Group.  Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks' gestation: the AVIOx study.  Pediatrics. 2006;118(4):1574-158217015549PubMedGoogle ScholarCrossref
32.
Deans KJ, Minneci PC, Eichacker PQ, Natanson C. Defining the standard of care in randomized controlled trials of titrated therapies.  Curr Opin Crit Care. 2004;10(6):579-58215616405PubMedGoogle ScholarCrossref
33.
Msall ME, Phelps DL, Hardy RJ,  et al; Cryotherapy for Retinopathy of Prematurity Cooperative Group.  Educational and social competencies at 8 years in children with threshold retinopathy of prematurity in the CRYO-ROP multicenter study.  Pediatrics. 2004;113(4):790-79915060229PubMedGoogle ScholarCrossref
Caring for the Critically Ill Patient
ONLINE FIRST
May 22, 2013

Effects of Targeting Higher vs Lower Arterial Oxygen Saturations on Death or Disability in Extremely Preterm Infants: A Randomized Clinical Trial

Author Affiliations
 

Caring for the Critically Ill Patient Section Editor: Derek C. Angus, MD, MPH, Contributing Editor, JAMA (angusdc@upmc.edu).

Author Affiliations: Division of Neonatology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia (Dr Schmidt); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada (Dr Schmidt and Mr Roberts); Department of Pediatrics, Dalhousie University, Halifax, Canada (Dr Whyte); Department of Paediatrics, University of Toronto, Toronto, Canada (Dr Asztalos); Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada (Dr Moddemann); Department of Neonatology, Eberhard Karl University, Tuebingen, Germany (Dr Poets); Department of Pediatrics, University of Calgary, Calgary, Canada (Dr Rabi); and Department of Pediatrics, University of British Columbia, Vancouver, Canada (Dr Solimano).

JAMA. 2013;309(20):2111-2120. doi:10.1001/jama.2013.5555
Abstract

Importance The goal of oxygen therapy is to deliver sufficient oxygen to the tissues while minimizing oxygen toxicity and oxidative stress. It remains uncertain what values of arterial oxygen saturations achieve this balance in preterm infants.

Objective To compare the effects of targeting lower or higher arterial oxygen saturations on the rate of death or disability in extremely preterm infants.

Design, Setting, and Participants Randomized, double-blind trial in 25 hospitals in Canada, the United States, Argentina, Finland, Germany, and Israel in which 1201 infants with gestational ages of 23 weeks 0 days through 27 weeks 6 days were enrolled within 24 hours after birth between December 2006 and August 2010. Follow-up assessments began in October 2008 and ended in August 2012.

Interventions Study participants were monitored until postmenstrual ages of 36 to 40 weeks with pulse oximeters that displayed saturations of either 3% above or below the true values. Caregivers adjusted the concentration of oxygen to achieve saturations between 88% and 92%, which produced 2 treatment groups with true target saturations of 85% to 89% (n = 602) or 91% to 95% (n = 599). Alarms were triggered when displayed saturations decreased to 86% or increased to 94%.

Main Outcomes and Measures The primary outcome was a composite of death, gross motor disability, cognitive or language delay, severe hearing loss, or bilateral blindness at a corrected age of 18 months. Secondary outcomes included retinopathy of prematurity and brain injury.

Results Of the 578 infants with adequate data for the primary outcome who were assigned to the lower target range, 298 (51.6%) died or survived with disability compared with 283 of the 569 infants (49.7%) assigned to the higher target range (odds ratio adjusted for center, 1.08; 95% CI, 0.85 to 1.37; P = .52). The rates of death were 16.6% for those in the 85% to 89% group and 15.3% for those in the 91% to 95% group (adjusted odds ratio, 1.11; 95% CI, 0.80 to 1.54; P = .54). Targeting lower saturations reduced the postmenstrual age at last use of oxygen therapy (adjusted mean difference, −0.8 weeks; 95% CI, −1.5 to −0.1; P = .03) but did not alter any other outcomes.

Conclusion and Relevance In extremely preterm infants, targeting oxygen saturations of 85% to 89% compared with 91% to 95% had no significant effect on the rate of death or disability at 18 months. These results may help determine the optimal target oxygen saturation.

Trial Registrations ISRCTN Identifier: 62491227; ClinicalTrials.gov Identifier: NCT00637169JAMA. 2013;309(20):2111-2120

×