Universal Screening for Methicillin-Resistant Staphylococcus aureus at Hospital Admission and Nosocomial Infection in Surgical Patients | Infectious Diseases | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Fierobe L, Decre D, Muller C,  et al.  Methicillin-resistant Staphylococcus aureus as a causative agent of postoperative intra-abdominal infection: relation to nasal colonization.  Clin Infect Dis. 1999;29(5):1231-123810524968PubMedGoogle ScholarCrossref
Huang SS, Platt R. Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization.  Clin Infect Dis. 2003;36(3):281-28512539068PubMedGoogle ScholarCrossref
Harbarth S. Control of endemic methicillin-resistant Staphylococcus aureus: recent advances and future challenges.  Clin Microbiol Infect. 2006;12(12):1154-116217121620PubMedGoogle ScholarCrossref
Zanetti G, Goldie SJ, Platt R. Clinical consequences and cost of limiting use of vancomycin for perioperative prophylaxis: example of coronary artery bypass surgery.  Emerg Infect Dis. 2001;7(5):820-82711747694PubMedGoogle Scholar
Weber SG, Huang SS, Oriola S,  et al.  Legislative mandates for use of active surveillance cultures to screen for methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci: position statement from the Joint SHEA and APIC Task Force.  Infect Control Hosp Epidemiol. 2007;28(3):249-26017326014PubMedGoogle ScholarCrossref
Diekema DJ, Edmond MB. Look before you leap: active surveillance for multidrug-resistant organisms.  Clin Infect Dis. 2007;44(8):1101-110717366459PubMedGoogle ScholarCrossref
Manian FA, Meyer PL, Setzer J, Senkel D. Surgical site infections associated with methicillin-resistant Staphylococcus aureus: do postoperative factors play a role?  Clin Infect Dis. 2003;36(7):863-86812652387PubMedGoogle ScholarCrossref
Pittet D, Safran E, Harbarth S,  et al.  Automatic alerts for methicillin-resistant Staphylococcus aureus surveillance: role of a hospital information system.  Infect Control Hosp Epidemiol. 1996;17(8):496-5028875292PubMedGoogle ScholarCrossref
Harbarth S, Martin Y, Rohner P, Henry N, Auckenthaler R, Pittet D. Effect of delayed infection control measures on a hospital outbreak of methicillin-resistant Staphylococcus aureus J Hosp Infect. 2000;46(1):43-4911023722PubMedGoogle ScholarCrossref
Pittet D, Hugonnet S, Harbarth S,  et al.  Effectiveness of a hospital-wide programme to improve compliance with hand hygiene.  Lancet. 2000;356(9238):1307-131211073019PubMedGoogle ScholarCrossref
Pittet D, Simon A, Hugonnet S, Pessoa-Silva CL, Sauvan V, Perneger TV. Hand hygiene among physicians: performance, beliefs, and perceptions.  Ann Intern Med. 2004;141(1):1-815238364PubMedGoogle ScholarCrossref
Sax H, Allegranzi B, Uckay I, Larson E, Boyce J, Pittet D. “My five moments for hand hygiene”: a user-centred design approach to understand, train, monitor and report hand hygiene.  J Hosp Infect. 2007;67(1):9-2117719685PubMedGoogle ScholarCrossref
Sax H, Uckay I, Richet H, Allegranzi B, Pittet D. Determinants of good adherence to hand hygiene among healthcare workers who have extensive exposure to hand hygiene campaigns.  Infect Control Hosp Epidemiol. 2007;28(11):1267-127417926278PubMedGoogle ScholarCrossref
Harbarth S, Masuet-Aumatell C, Schrenzel J,  et al.  Evaluation of rapid screening and pre-emptive contact isolation for detecting and controlling methicillin-resistant Staphylococcus aureus in critical care: an interventional cohort study.  Crit Care. 2006;10(1):R2516469125PubMedGoogle ScholarCrossref
Harbarth S, Sax H, Fankhauser-Rodriguez C, Schrenzel J, Agostinho A, Pittet D. Evaluating the probability of previously unknown carriage of MRSA at hospital admission.  Am J Med. 2006;119(3):275.e15-275.e2316490475PubMedGoogle ScholarCrossref
Francois P, Pittet D, Bento M,  et al.  Rapid detection of methicillin-resistant Staphylococcus aureus directly from sterile or nonsterile clinical samples by a new molecular assay.  J Clin Microbiol. 2003;41(1):254-26012517857PubMedGoogle ScholarCrossref
Francois P, Bento M, Renzi G, Harbarth S, Pittet D, Schrenzel J. Evaluation of three molecular assays for rapid identification of methicillin-resistant Staphylococcus aureus J Clin Microbiol. 2007;45(6):2011-201317428926PubMedGoogle ScholarCrossref
Garner JS, Jarvis WR, Emori TG, Toran TC, Hughes JM. CDC definitions for nosocomial infections, 1988.  Am J Infect Control. 1988;16(3):128-1402841893PubMedGoogle ScholarCrossref
Pittet D, Sax H, Hugonnet S, Harbarth S. Cost implications of successful hand hygiene promotion.  Infect Control Hosp Epidemiol. 2004;25(3):264-26615061421PubMedGoogle ScholarCrossref
Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized estimating equation approach.  Biometrics. 1988;44(4):1049-10603233245PubMedGoogle ScholarCrossref
Loeffler JM, Garbino J, Lew D, Harbarth S, Rohner P. Antibiotic consumption, bacterial resistance and their correlation in a Swiss university hospital and its adult intensive care units.  Scand J Infect Dis. 2003;35(11-12):843-85014723360PubMedGoogle ScholarCrossref
Benneyan JC. Statistical quality control methods in infection control and hospital epidemiology, part II: chart use, statistical properties, and research issues.  Infect Control Hosp Epidemiol. 1998;19(4):265-2839605277PubMedGoogle ScholarCrossref
Curran ET, Benneyan JC, Hood J. Controlling methicillin-resistant Staphylococcus aureus: a feedback approach using annotated statistical process control charts.  Infect Control Hosp Epidemiol. 2002;23(1):13-1811868886PubMedGoogle ScholarCrossref
McCabe WR, Jackson GG. Gram-negative bacteremia, I: etiology and ecology.  Arch Intern Med. 1962;110:847-855Google ScholarCrossref
Brandt C, Hansen S, Sohr D, Daschner F, Ruden H, Gastmeier P. Finding a method for optimizing risk adjustment when comparing surgical-site infection rates.  Infect Control Hosp Epidemiol. 2004;25(4):313-31815108729PubMedGoogle ScholarCrossref
Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999.  Infect Control Hosp Epidemiol. 1999;20(4):250-27810219875PubMedGoogle ScholarCrossref
Health Protection Agency.  Commentary on Quarterly, Six-Monthly and Annual Data for MRSA Bacteraemia Derived From Mandatory Surveillance. London, England: Health Protection Agency Centre for Infections; July 2007
Spiegelhalter DJ. Problems in assessing rates of infection with methicillin resistant Staphylococcus aureus BMJ. 2005;331(7523):1013-101516254304PubMedGoogle ScholarCrossref
Biant LC, Teare EL, Williams WW, Tuite JD. Eradication of methicillin resistant Staphylococcus aureus by “ring fencing” of elective orthopaedic beds.  BMJ. 2004;329(7458):149-15115258070PubMedGoogle Scholar
Jernigan JA. Is the burden of Staphylococcus aureus among patients with surgical-site infections growing?  Infect Control Hosp Epidemiol. 2004;25(6):457-46015242191PubMedGoogle ScholarCrossref
Conterno LO, Shymanski J, Ramotar K,  et al.  Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs.  Infect Control Hosp Epidemiol. 2007;28(10):1134-114117828689PubMedGoogle ScholarCrossref
Harbarth S, Pittet D. MRSA—a European currency of infection control.  QJM. 1998;91(8):519-5219893755PubMedGoogle ScholarCrossref
Boyce JM, Cookson B, Christiansen K,  et al.  Methicillin-resistant Staphylococcus aureus Lancet Infect Dis. 2005;5(10):653-66316183520PubMedGoogle ScholarCrossref
Cunningham R, Jenks P, Northwood J, Wallis M, Ferguson S, Hunt S. Effect on MRSA transmission of rapid PCR testing of patients admitted to critical care.  J Hosp Infect. 2007;65(1):24-2817145100PubMedGoogle ScholarCrossref
Strausbaugh LJ, Siegel JD, Weinstein RA. Preventing transmission of multidrug-resistant bacteria in health care settings: a tale of 2 guidelines.  Clin Infect Dis. 2006;42(6):828-83516477561PubMedGoogle ScholarCrossref
Farr BM. Political versus epidemiological correctness.  Infect Control Hosp Epidemiol. 2007;28(5):589-59317464920PubMedGoogle ScholarCrossref
Wernitz MH, Swidsinski S, Weist K,  et al.  Effectiveness of a hospital-wide selective screening programme for methicillin-resistant Staphylococcus aureus (MRSA) carriers at hospital admission to prevent hospital-acquired MRSA infections.  Clin Microbiol Infect. 2005;11(6):457-46515882195PubMedGoogle ScholarCrossref
Sankar B, Hopgood P, Bell KM. The role of MRSA screening in joint-replacement surgery.  Int Orthop. 2005;29(3):160-16315864590PubMedGoogle ScholarCrossref
Malde DJ, Abidia A, McCollum C, Welch M. The success of routine MRSA screening in vascular surgery: a nine year review.  Int Angiol. 2006;25(2):204-20816763540PubMedGoogle Scholar
Huang SS, Yokoe DS, Hinrichsen VL,  et al.  Impact of routine intensive care unit surveillance cultures and resultant barrier precautions on hospital-wide methicillin-resistant Staphylococcus aureus bacteremia.  Clin Infect Dis. 2006;43(8):971-97816983607PubMedGoogle ScholarCrossref
Shitrit P, Gottesman BS, Katzir M, Kilman A, Ben-Nissan Y, Chowers M. Active surveillance for methicillin-resistant Staphylococcus aureus (MRSA) decreases the incidence of MRSA bacteremia.  Infect Control Hosp Epidemiol. 2006;27(10):1004-100817006805PubMedGoogle ScholarCrossref
Cepeda JA, Whitehouse T, Cooper B,  et al.  Isolation of patients in single rooms or cohorts to reduce spread of MRSA in intensive-care units: prospective two-centre study.  Lancet. 2005;365(9456):295-30415664224PubMedGoogle Scholar
Original Contribution
March 12, 2008

Universal Screening for Methicillin-Resistant Staphylococcus aureus at Hospital Admission and Nosocomial Infection in Surgical Patients

Author Affiliations

Author Affiliations: Infection Control Program (Drs Harbarth, Sax, and Pittet and Mss Fankhauser and Bandiera-Clerc), Microbiology Laboratory (Dr Schrenzel and Mr Renzi), Department of Surgery (Drs Christenson and Gervaz), and Hospital Pharmacy (Dr Vernaz), University of Geneva Hospitals and Medical School, Geneva, Switzerland.

JAMA. 2008;299(10):1149-1157. doi:10.1001/jama.299.10.1149

Context Experts and policy makers have repeatedly called for universal screening at hospital admission to reduce nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infection.

Objective To determine the effect of an early MRSA detection strategy on nosocomial MRSA infection rates in surgical patients.

Design, Setting, and Patients Prospective, interventional cohort study conducted between July 2004 and May 2006 among 21 754 surgical patients at a Swiss teaching hospital using a crossover design to compare 2 MRSA control strategies (rapid screening on admission plus standard infection control measures vs standard infection control alone). Twelve surgical wards including different surgical specialties were enrolled according to a prespecified agenda, assigned to either the control or intervention group for a 9-month period, then switched over to the other group for a further 9 months.

Interventions During the rapid screening intervention periods, patients admitted to the intervention wards for more than 24 hours were screened before or on admission by rapid, multiplex polymerase chain reaction. For both intervention (n=10 844) and control (n=10 910) periods, standard infection control measures were used for patients with MRSA in all wards and consisted of contact isolation of MRSA carriers, use of dedicated material (eg, gown, gloves, mask if indicated), adjustment of perioperative antibiotic prophylaxis of MRSA carriers, computerized MRSA alert system, and topical decolonization (nasal mupirocin ointment and chlorhexidine body washing) for 5 days.

Main Outcome Measures Incidence of nosocomial MRSA infection, MRSA surgical site infection, and rates of nosocomial acquisition of MRSA.

Results Overall, 10 193 of 10 844 patients (94%) were screened during the intervention periods. Screening identified 515 MRSA-positive patients (5.1%), including 337 previously unknown MRSA carriers. Median time from screening to notification of test results was 22.5 hours (interquartile range, 12.2-28.2 hours). In the intervention periods, 93 patients (1.11 per 1000 patient-days) developed nosocomial MRSA infection compared with 76 in the control periods (0.91 per 1000 patient-days; adjusted incidence rate ratio, 1.20; 95% confidence interval, 0.85-1.69; P = .29). The rate of MRSA surgical site infection and nosocomial MRSA acquisition did not change significantly. Fifty-three of 93 infected patients (57%) in the intervention wards were MRSA-free on admission and developed MRSA infection during hospitalization.

Conclusion A universal, rapid MRSA admission screening strategy did not reduce nosocomial MRSA infection in a surgical department with endemic MRSA prevalence but relatively low rates of MRSA infection.

Trial Registration isrctn.org Identifier: ISRCTN06603006