[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.240.35. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Original Contribution
September 17, 2008

Association of Urinary Bisphenol A Concentration With Medical Disorders and Laboratory Abnormalities in Adults

Author Affiliations

Author Affiliations: Epidemiology and Public Health Group (Drs Lang and Melzer) and Environment and Human Health Group (Dr Depledge), Peninsula Medical School, Exeter, United Kingdom; School of Biosciences, University of Exeter, Exeter (Drs Galloway and Scarlett); School of Mathematics and Statistics, University of Plymouth, Plymouth, United Kingdom (Dr Henley); and University of Iowa College of Public Health, Iowa City (Dr Wallace).

JAMA. 2008;300(11):1303-1310. doi:10.1001/jama.300.11.1303
Abstract

Context Bisphenol A (BPA) is widely used in epoxy resins lining food and beverage containers. Evidence of effects in animals has generated concern over low-level chronic exposures in humans.

Objective To examine associations between urinary BPA concentrations and adult health status.

Design, Setting, and Participants Cross-sectional analysis of BPA concentrations and health status in the general adult population of the United States, using data from the National Health and Nutrition Examination Survey 2003-2004. Participants were 1455 adults aged 18 through 74 years with measured urinary BPA and urine creatinine concentrations. Regression models were adjusted for age, sex, race/ethnicity, education, income, smoking, body mass index, waist circumference, and urinary creatinine concentration. The sample provided 80% power to detect unadjusted odds ratios (ORs) of 1.4 for diagnoses of 5% prevalence per 1-SD change in BPA concentration, or standardized regression coefficients of 0.075 for liver enzyme concentrations, at a significance level of P < .05.

Main Outcome Measures Chronic disease diagnoses plus blood markers of liver function, glucose homeostasis, inflammation, and lipid changes.

Results Higher urinary BPA concentrations were associated with cardiovascular diagnoses in age-, sex-, and fully adjusted models (OR per 1-SD increase in BPA concentration, 1.39; 95% confidence interval [CI], 1.18-1.63; P = .001 with full adjustment). Higher BPA concentrations were also associated with diabetes (OR per 1-SD increase in BPA concentration, 1.39; 95% confidence interval [CI], 1.21-1.60; P < .001) but not with other studied common diseases. In addition, higher BPA concentrations were associated with clinically abnormal concentrations of the liver enzymes γ-glutamyltransferase (OR per 1-SD increase in BPA concentration, 1.29; 95% CI, 1.14-1.46; P < .001) and alkaline phosphatase (OR per 1-SD increase in BPA concentration, 1.48; 95% CI, 1.18-1.85; P = .002).

Conclusion Higher BPA exposure, reflected in higher urinary concentrations of BPA, may be associated with avoidable morbidity in the community-dwelling adult population.

Conclusion Published online September 16, 2008 (doi:10.1001/jama.300.11.1303).

×